Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 707
Filtrar
1.
Physiol Plant ; 176(4): e14424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38973627

RESUMEN

Drought is one of the most common abiotic stresses that affect barley productivity. Long noncoding RNA (lncRNA) has been reported to be widely involved in abiotic stress, however, its function in the drought stress response in wild barley remains unclear. In this study, RNA sequencing was performed to identify differentially expressed lncRNAs (DElncRNA) among two wild barley and two cultivated barley genotypes. Then, the cis-regulatory networks were according to the chromosome position and the expression level correction. The GO annotation indicates that these cis-target genes are mainly involved in "ion transport transporter activity" and "metal ion transport transporter activity". Through weighted gene co-expression network analysis (WGCNA), 10 drought-related modules were identified to contract trans-regulatory networks. The KEGG annotation demonstrated that these trans-target genes were enriched for photosynthetic physiology, brassinosteroid biosynthesis, and flavonoid metabolism. In addition, we constructed the lncRNA-mediated ceRNA regulatory network by predicting the microRNA response elements (MREs). Furthermore, the expressions of lncRNAs were verified by RT-qPCR. Functional verification of a candidate lncRNA, MSTRG.32128, demonstrated its positive role in drought response and root growth and development regulation. Hormone content analysis provided insights into the regulatory mechanisms of MSTRG.32128 in root development, revealing its involvement in auxin and ethylene signal transduction pathways. These findings advance our understanding of lncRNA-mediated regulatory mechanisms in barley under drought stress. Our results will provide new insights into the functions of lncRNAs in barley responding to drought stress.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Hordeum , ARN Largo no Codificante , Estrés Fisiológico , Hordeum/genética , Hordeum/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Estrés Fisiológico/genética , Redes Reguladoras de Genes , ARN de Planta/genética
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000330

RESUMEN

Drought stress is a major meteorological threat to crop growth and yield. Barley (Hordeum vulgare L.) is a vital cereal crop with strong drought tolerance worldwide. However, the underlying growth properties and metabolomic regulatory module of drought tolerance remains less known. Here, we investigated the plant height, spike length, effective tiller, biomass, average spikelets, 1000-grain weight, number of seeds per plant, grain weight per plant, ash content, protein content, starch content, cellulose content, and metabolomic regulation mechanisms of drought stress in barley. Our results revealed that the growth properties were different between ZDM5430 and IL-12 under drought stress at different growth stages. We found that a total of 12,235 metabolites were identified in two barley genotype root samples with drought treatment. More than 50% of these metabolites showed significant differences between the ZDM5430 and IL-12 roots. The Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 368 differential metabolites mainly involved in starch and sucrose metabolism, the pentose phosphate pathway, pyrimidine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis in ZDM5430 under drought stress, whereas the different metabolites of IL-12 under drought stress related to starch and sucrose metabolism, the pentose phosphate pathway, 2-oxocarboxylic acid metabolism, cutin, suberine and wax biosynthesis, carbon metabolism, fatty acid biosynthesis, and C5-branched dibasic acid metabolism. These metabolites have application in the tricarboxylic cycle, the urea cycle, the met salvage pathway, amino acid metabolism, unsaturated fatty acid biosynthesis, phenolic metabolism, and glycolysis. On the other hand, the expression patterns of 13 genes related to the abovementioned bioprocesses in different barley genotypes roots were proposed. These findings afford an overview for the understanding of barley roots' metabolic changes in the drought defense mechanism by revealing the differently accumulated compounds.


Asunto(s)
Sequías , Hordeum , Metabolómica , Hordeum/genética , Hordeum/metabolismo , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Metabolómica/métodos , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Metaboloma , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Almidón/metabolismo , Resistencia a la Sequía
3.
Sci Rep ; 14(1): 17420, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075223

RESUMEN

Genetic and agronomic advances consistently lead to an annual increase in global barley yield. Since abiotic stresses (physical environmental factors that negatively affect plant growth) reduce barley yield, it is necessary to predict barley resistance. Artificial intelligence and machine learning (ML) models are new and powerful tools for predicting product resilience. Considering the research gap in the use of molecular markers in predicting abiotic stresses, this paper introduces a new approach called GenPhenML that combines molecular markers and phenotypic traits to predict the resistance of barley genotypes to drought and salinity stresses by ML models. GenPhenML uses feature selection algorithms to determine the most important molecular markers. It then identifies the best model that predicts atmospheric resistance with lower MAE, RMSE, and higher R2. The results showed that GenPhenML with a neural network model predicted the salinity stress resistance score with MAE, RMSE and R2 values of 0.1206, 0.0308 and 0.9995, respectively. Also, the NN model predicted drought stress scores with MAE, RMSE and R2 values of 0.0727, 0.0105 and 0.9999, respectively. The GenPhenML approach was also used to classify barley genotypes as resistant and stress-sensitive. The results showed that the accuracy, accuracy and F1 score of the proposed approach for salinity and drought stress classification were higher than 97%.


Asunto(s)
Sequías , Genotipo , Hordeum , Tolerancia a la Sal , Hordeum/genética , Hordeum/fisiología , Hordeum/crecimiento & desarrollo , Hordeum/efectos de los fármacos , Tolerancia a la Sal/genética , Aprendizaje Automático , Estrés Fisiológico , Fenotipo , Salinidad , Redes Neurales de la Computación , Estrés Salino
4.
BMC Plant Biol ; 24(1): 666, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997634

RESUMEN

BACKGROUND: Hulless barley (Hordeum vulgare L. var. nudum Hook. f.) is a significant cereal crop and a substantial source of forage for livestock. Long non-coding RNAs (lncRNAs) and metabolites play crucial roles in the nutrient accumulation and regeneration of hulless barley plants following mowing. The study aimed to identify differentially expressed lncRNAs and metabolites in hulless barley plants by analyzing transcriptomic and metabolomic datasets at 2 h, 24 h, and 72 h following mowing. RESULTS: The study revealed that 190, 90, and 438 lncRNA genes were differentially expressed at the 2 h, 24 h, and 72 h time points compared to the non-mowing control. We identified 14 lncRNA genes-11 downregulated and 3 upregulated-showing consistently significant differential expression across all time points after mowing. These differentially expressed lncRNAs target genes involved in critical processes such as cytokinin signaling, cell wall degradation, storage protein accumulation, and biomass increase. In addition, we identified ten differentially expressed metabolites targeting diverse metabolic pathways, including plant hormones, alkaloids, and flavonoids, before and after mowing at various time points. Endogenous hormone analysis revealed that cytokinin most likely played a crucial role in the regeneration of hulless barley after mowing. CONCLUSIONS: This study created a comprehensive dataset of lncRNAs, metabolites, and hormones in hulless barley after mowing, revealing valuable insights into the functional characteristics of lncRNAs, metabolites, and hormones in regulating plant regeneration. The results indicated that cytokinin plays a significant role in facilitating the regeneration process of hulless barley after mowing. This comprehensive dataset is an invaluable resource for better understanding the complex mechanisms that underlie plant regeneration, with significant implications for crop improvement.


Asunto(s)
Hordeum , ARN Largo no Codificante , Hordeum/genética , Hordeum/metabolismo , Hordeum/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , ARN de Planta/genética , Perfilación de la Expresión Génica , Metaboloma
5.
Sci Rep ; 14(1): 14931, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942909

RESUMEN

Salinity has become a major environmental concern for agricultural lands, leading to decreased crop yields. Hence, plant biology experts aim to genetically improve barley's adaptation to salinity stress by deeply studying the effects of salt stress and the responses of barley to this stress. In this context, our study aims to explore the variation in physiological and biochemical responses of five Tunisian spring barley genotypes to salt stress during the heading phase. Two salinity treatments were induced by using 100 mM NaCl (T1) and 250 mM NaCl (T2) in the irrigation water. Significant phenotypic variations were detected among the genotypes in response to salt stress. Plants exposed to 250 mM of NaCl showed an important decline in all studied physiological parameters namely, gas exchange, ions concentration and relative water content RWC. The observed decreases in concentrations ranged from, approximately, 6.64% to 40.76% for K+, 5.91% to 43.67% for Na+, 14.12% to 52.38% for Ca2+, and 15.22% to 38.48% for Mg2+ across the different genotypes and salt stress levels. However, under salinity conditions, proline and soluble sugars increased for all genotypes with an average increase of 1.6 times in proline concentrations and 1.4 times in soluble sugars concentration. Furthermore, MDA levels rose also for all genotypes, with the biggest rise in Lemsi genotype (114.27% of increase compared to control). Ardhaoui and Rihane showed higher photosynthetic activity compared to the other genotypes across all treatments. The stepwise regression approach identified potassium content, K+/Na+ ratio, relative water content, stomatal conductance and SPAD measurement as predominant traits for thousand kernel weight (R2 = 84.06), suggesting their significant role in alleviating salt stress in barley. Overall, at heading stage, salt accumulation in irrigated soils with saline water significantly influences the growth of barley by influencing gas exchange parameters, mineral composition and water content, in a genotype-dependent manner. These results will serve on elucidating the genetic mechanisms underlying these variations to facilitate targeted improvements in barley's tolerance to salt stress.


Asunto(s)
Genotipo , Hordeum , Minerales , Estrés Salino , Agua , Hordeum/genética , Hordeum/metabolismo , Hordeum/fisiología , Agua/metabolismo , Minerales/metabolismo , Salinidad , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo
6.
Plant J ; 119(3): 1210-1225, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843114

RESUMEN

WHIRLY1 is a chloroplast-nucleus located DNA/RNA-binding protein with functions in development and stress tolerance. By overexpression of HvWHIRLY1 in barley, one line with a 10-fold and two lines with a 50-fold accumulation of the protein were obtained. In these lines, the relative abundance of the nuclear form exceeded that of the chloroplast form. Growth of the plants was shown to be compromised in a WHIRLY1 abundance-dependent manner. Over-accumulation of WHIRLY1 in chloroplasts had neither an evident impact on nucleoid morphology nor on the composition of the photosynthetic apparatus. Nevertheless, oeW1 plants were found to be compromised in the light reactions of photosynthesis as well as in carbon fixation. The reduction in growth and photosynthesis was shown to be accompanied by a decrease in the levels of cytokinins and an increase in the level of jasmonic acid. Gene expression analyses revealed that in nonstress conditions the oeW1 plants had enhanced levels of pathogen response (PR) gene expression indicating activation of constitutive defense. During growth in continuous light of high irradiance PR gene expression increased indicating that under stress conditions oeW1 are capable to further enhance defense.


Asunto(s)
Cloroplastos , Regulación de la Expresión Génica de las Plantas , Hordeum , Proteínas de Plantas , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Citocininas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Hordeum/genética , Hordeum/metabolismo , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Luz , Oxilipinas/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Estrés Fisiológico
7.
Plant Cell Rep ; 43(7): 172, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874775

RESUMEN

KEY MESSAGE: The heat stress transcription factor HSFA2e regulates both temperature and drought response via hormonal and secondary metabolism alterations. High temperature and drought are the primary yield-limiting environmental constraints for staple food crops. Heat shock transcription factors (HSF) terminally regulate the plant abiotic stress responses to maintain growth and development under extreme environmental conditions. HSF genes of subclass A2 predominantly express under heat stress (HS) and activate the transcriptional cascade of defense-related genes. In this study, a highly heat-inducible HSF, HvHSFA2e was constitutively expressed in barley (Hordeum vulgare L.) to investigate its role in abiotic stress response and plant development. Transgenic barley plants displayed enhanced heat and drought tolerance in terms of increased chlorophyll content, improved membrane stability, reduced lipid peroxidation, and less accumulation of ROS in comparison to wild-type (WT) plants. Transcriptome analysis revealed that HvHSFA2e positively regulates the expression of abiotic stress-related genes encoding HSFs, HSPs, and enzymatic antioxidants, contributing to improved stress tolerance in transgenic plants. The major genes of ABA biosynthesis pathway, flavonoid, and terpene metabolism were also upregulated in transgenics. Our findings show that HvHSFA2e-mediated upregulation of heat-responsive genes, modulation in ABA and flavonoid biosynthesis pathways enhance drought and heat stress tolerance.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Hordeum , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Hordeum/genética , Hordeum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Respuesta al Choque Térmico/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Clorofila/metabolismo , Estrés Fisiológico/genética , Metabolismo Secundario/genética , Redes y Vías Metabólicas/genética , Resistencia a la Sequía
8.
BMC Plant Biol ; 24(1): 385, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724918

RESUMEN

Waterlogging stress is one of the major abiotic stresses affecting the productivity and quality of many crops worldwide. However, the mechanisms of waterlogging tolerance are still elusive in barley. In this study, we identify key differentially expressed genes (DEGs) and differential metabolites (DM) that mediate distinct waterlogging tolerance strategies in leaf and root of two barley varieties with contrasting waterlogging tolerance under different waterlogging treatments. Transcriptome profiling revealed that the response of roots was more distinct than that of leaves in both varieties, in which the number of downregulated genes in roots was 7.41-fold higher than that in leaves of waterlogging sensitive variety after 72 h of waterlogging stress. We also found the number of waterlogging stress-induced upregulated DEGs in the waterlogging tolerant variety was higher than that of the waterlogging sensitive variety in both leaves and roots in 1 h and 72 h treatment. This suggested the waterlogging tolerant variety may respond more quickly to waterlogging stress. Meanwhile, phenylpropanoid biosynthesis pathway was identified to play critical roles in waterlogging tolerant variety by improving cell wall biogenesis and peroxidase activity through DEGs such as Peroxidase (PERs) and Cinnamoyl-CoA reductases (CCRs) to improve resistance to waterlogging. Based on metabolomic and transcriptomic analysis, we found the waterlogging tolerant variety can better alleviate the energy deficiency via higher sugar content, reduced lactate accumulation, and improved ethanol fermentation activity compared to the waterlogging sensitive variety. In summary, our results provide waterlogging tolerance strategies in barley to guide the development of elite genetic resources towards waterlogging-tolerant crop varieties.


Asunto(s)
Perfilación de la Expresión Génica , Hordeum , Metaboloma , Estrés Fisiológico , Transcriptoma , Hordeum/genética , Hordeum/fisiología , Hordeum/metabolismo , Estrés Fisiológico/genética , Agua/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Planta ; 259(6): 145, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709313

RESUMEN

MAIN CONCLUSION: Soil acidity in Ethiopian highlands impacts barley production, affecting root system architecture. Study on 300 accessions showed significant trait variability, with potential for breeding enhancement. Soil acidity poses a significant challenge to crop production in the highland regions of Ethiopia, particularly impacting barley, a crucial staple crop. This acidity serves as a key stressor affecting the root system architecture (RSA) of this crop. Hence, the objective of this study was to assess the RSA traits variability under acidic soil conditions using 300 barley accessions in a greenhouse experiment. The analysis of variance indicated substantial variations among the accessions across all traits studied. The phenotypic coefficient of variation ranged from 24.4% for shoot dry weight to 11.1% for root length, while the genotypic coefficient variation varied between 18.83 and 9.2% for shoot dry weight and root length, respectively. The broad-sense heritability ranged from 36.7% for leaf area to 69.9% for root length, highlighting considerable heritability among multiple traits. The genetic advances as a percent of the mean ranged from 13.63 to 29.9%, suggesting potential for enhancement of these traits through breeding efforts. Principal component analysis and cluster analysis grouped the genotypes into two major clusters, each containing varying numbers of genotypes with contrasting traits. This diverse group presents an opportunity to access a wide range of potential parent candidates to enhance genetic variablity in breeding programs. The Pearson correlation analysis revealed significant negative associations between root angle (RA) and other RSA traits. This helps indirect selection of accessions for further improvement in soil acidity. In conclusion, this study offers valuable insights into the RSA characteristics of barley in acidic soil conditions, aiding in the development of breeding strategies to enhance crop productivity in acidic soil environments.


Asunto(s)
Genotipo , Hordeum , Raíces de Plantas , Plantones , Suelo , Hordeum/genética , Hordeum/fisiología , Hordeum/crecimiento & desarrollo , Hordeum/anatomía & histología , Suelo/química , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología , Plantones/anatomía & histología , Fenotipo , Concentración de Iones de Hidrógeno , Fitomejoramiento , Etiopía , Variación Genética , Análisis de Componente Principal , Ácidos/metabolismo
10.
Planta ; 259(6): 144, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709333

RESUMEN

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Asunto(s)
Hordeum , Ácidos Indolacéticos , Óxido Nítrico , Estrés Oxidativo , Fosfatos , Fotosíntesis , Raíces de Plantas , Silicio , Hordeum/metabolismo , Hordeum/genética , Hordeum/efectos de los fármacos , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Silicio/farmacología , Silicio/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiencia , Fosfatos/metabolismo , Óxido Nítrico/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/genética , Plantones/efectos de los fármacos , Plantones/fisiología
11.
Plant Genome ; 17(2): e20463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764204

RESUMEN

Root architectural traits play pivotal roles in plant adaptation to drought stress, and hence they are considered promising targets in breeding programs. Here, we phenotyped eight root architecture traits in response to well-watered and drought stress conditions in 200 spring barley (Hordeum vulgare L.) inbred lines over two consecutive field seasons. Root architecture traits were less developed under drought in both seasons when compared with control treatments. Genetic variation in root architectural traits was dissected employing a genome-wide association study (GWAS) coupled with linkage disequilibrium mapping. GWAS uncovered a total of 186 significant single nucleotide polymorphism-trait associations for eight root traits under control, drought, and drought-related indices. Of these, a few loci for root traits were detected on chromosomes 3 and 5, which co-located with QTL identified in previous studies. Interestingly, 13 loci showed simultaneou associations with multiple root traits under drought and drought-related indices. These loci harbored candidate genes, which included a wide range of drought-responsive components such as transcription factors, binding proteins, protein kinases, nutrient and ion transporters, and stress signaling factors. For instance, two candidate genes, HORVU7Hr3G0713160 and HORVU6H r3G0626550, are orthologous to AtACX3 and AtVAMPs, which have reported functions in root length-mediated drought tolerance and as a key protein in abiotic stress tolerance, respectively. Interestingly, one of these loci underlying a high-confidence candidate gene NEW ENHANCER OF ROOT DWARFISM1 (NERD1) showed involvement with root development. An allelic variation of this locus in non-coding region was significantly associated with increased root length under drought. Collectively, these results offer promising multi-trait affecting loci and candidate genes underlying root phenotypic responses to drought stress, which may provide valuable resources for genetic improvement of drought tolerance in barley.


Asunto(s)
Sequías , Estudio de Asociación del Genoma Completo , Hordeum , Raíces de Plantas , Sitios de Carácter Cuantitativo , Hordeum/genética , Hordeum/fisiología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Estrés Fisiológico/genética , Polimorfismo de Nucleótido Simple , Desequilibrio de Ligamiento , Fenotipo
12.
BMC Plant Biol ; 24(1): 270, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605311

RESUMEN

Barley (Hordeum vulgare L.) is a significant cereal crop belonging to Poaceae that is essential for human food and animal feeding. The production of barley grains was around 142.37 million tons in 2017/2018. However, the growth of barley was influenced by salinity which was enhanced by applying a foliar spray of salicylic acid. The current study investigated to evaluated the potential effect of SA on the barley (Hordeum vulgare L.) plants under salinity stress and its possible effects on physiological, biochemical, and growth responses. The experiment was conducted at Postgraduate Research Station (PARS), University of Agriculture; Faisalabad to assess the influence of salicylic acid on barley (Hordeum vulgare L.) under highly saline conditions. The experiment was conducted in a Completely Randomized Design (CRD) with 3 replicates. In plastic pots containing 8 kg of properly cleaned sand, two different types of barley (Sultan and Jau-17) were planted. The plants were then watered with a half-strength solution of Hoagland's nutritional solution. After the establishment of seedlings, two salt treatments (0 mM and 120 mM NaCl) were applied in combining three levels of exogenously applied salicylic acid (SA) (0, 0.5, and 1 mg L-1). Data about morphological, physiological, and biochemical attributes was recorded using standard procedure after three weeks of treatment. The morpho-physiological fresh weight of the shoot and root (48%), the dry mass of the shoot and root (66%), the plant height (18%), the chlorophyll a (30%), the chlorophyll b (22%), and the carotenoids (22%), all showed significant decreases. Salinity also decreased yield parameters and the chl. ratio (both at 29% and 26% of the total chl. leaf area index). Compared to the control parameters, the following data was recorded under salt stress: spike length, number of spikes, number of spikelets, number of tillers, biological yield, and harvest index. Salicylic acid was used as a foliar spray to lessen the effects of salinity stress, and 1 mg L-1 of salicylic acid proved more effective than 0.5 mg L-1. Both varieties show better growth by applying salicylic acid (0 mg L-1) as a control, showing normal growth. By increasing its level to (0.5 mg L-1), it shows better growth but maximized growth occurred at a higher level (1 mg L-1). Barley sultan (Hordeum vulgare L.) is the best variety as compared to Jau-17 performs more growth to mitigate salt stress (0mM and 120mM NaCl) by improving morpho-physiological parameters by enhancing plan height, Root and shoot fresh and dry weights, as well as root and shoot lengths, photosynthetic pigments, area of the leaves and their index, and yield attributes and reduce sodium ions.


Asunto(s)
Hordeum , Clorofila A , Hordeum/fisiología , Ácido Salicílico/farmacología , Salinidad , Estrés Salino , Cloruro de Sodio/farmacología
14.
Ann Bot ; 133(7): 983-996, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38407464

RESUMEN

BACKGROUND AND AIMS: Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets. METHODS: We used serial transverse internode sections to determine the internode area, vascular area and number of veins along the rachis of several barley lines. KEY RESULTS: Internode area and total vascular area show a clear positive correlation with spike size, whereas the number of veins is only weakly correlated. The lateral periphery of the rachis contains large mature veins of constant size, whereas the central part is occupied by small immature veins. Spikelet-derived veins entering the rachis often merge with the immature rachis veins but never merge with the mature veins. An increase in floret fertility through the conversion of a two-rowed barley into an isogenic six-rowed line, in addition to a decrease in floret fertility owing to enhanced pre-anthesis tip degeneration caused by the mutation tip sterile 2.b (tst2.b), significantly affected vein size but had limited to no effects on the number of veins or internode area. CONCLUSIONS: The rachis vasculature is the result of a two-step process involving an initial layout followed by size adjustment according to floret fertility/spike size. The restriction of large mature vessels to the periphery and that of small immature vessels to the centre of the rachis suggests that long-distance transport and local supply to spikelets are spatially separated processes. The identification of spikelet-derived veins entering the rachis without fusing with its vasculature indicates that a vascular continuity between rachis and spikelets might be non-essential.


Asunto(s)
Hordeum , Haz Vascular de Plantas , Hordeum/anatomía & histología , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Haz Vascular de Plantas/anatomía & histología , Haz Vascular de Plantas/fisiología , Haz Vascular de Plantas/crecimiento & desarrollo , Transporte Biológico , Inflorescencia/anatomía & histología , Inflorescencia/crecimiento & desarrollo , Inflorescencia/fisiología
15.
Cells ; 12(13)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37443719

RESUMEN

Plants, as sessile organisms, have developed sophisticated mechanisms to survive in changing environments. Recent advances in omics approaches have facilitated the exploration of plant genomes; however, the molecular mechanisms underlying the responses of barley and other cereals to multiple abiotic stresses remain largely unclear. Exposure to stress stimuli affects many proteins with regulatory and protective functions. In the present study, we employed liquid chromatography coupled with high-resolution mass spectrometry to identify stress-responsive proteins on the genome-wide scale of barley flag leaves exposed to drought, heat, or both. Profound alterations in the proteome of genotypes with different flag leaf sizes were found. The role of stress-inducible proteins was discussed and candidates underlying the universal stress response were proposed, including dehydrins. Moreover, the putative functions of several unknown proteins that can mediate responses to stress stimuli were explored using Pfam annotation, including calmodulin-like proteins. Finally, the confrontation of protein and mRNA abundances was performed. A correlation network between transcripts and proteins performance revealed several components of the stress-adaptive pathways in barley flag leaf. Taking the findings together, promising candidates for improving the tolerance of barley and other cereals to multivariate stresses were uncovered. The presented proteomic landscape and its relationship to transcriptomic remodeling provide novel insights for understanding the molecular responses of plants to environmental cues.


Asunto(s)
Hordeum , Proteoma , Proteoma/metabolismo , Hordeum/fisiología , Sequías , Proteómica/métodos , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Choque Térmico/metabolismo , Grano Comestible/metabolismo , Hojas de la Planta/metabolismo
16.
Physiol Plant ; 175(4): e13955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323067

RESUMEN

The aim of the present study was to quantify the contribution of apoplastic bypass flow to the uptake of water and salt across the root cylinder of wheat and barley during day and night. Plants were grown on hydroponics until they were 14-17 days old and then analysed over a single day (16 h) or night (8 h) period while being exposed to different concentrations of NaCl (50, 100, 150 and 200 mM NaCl). Exposure to salt started just before the experiment (short-term stress) or had started 6d before (longer-term stress). Bypass flow was quantified using the apoplastic tracer dye 8-hydroxy-1,3,6-pyrenesulphonic acid (PTS). The percent contribution of bypass flow to root water uptake increased in response to salt stress and during the night and amounted to up to 4.4%. Bypass flow across the root cylinder of Na+ and Cl- made up 2%-12% of the net delivery of these ions to the shoot; this percentage changed little (wheat) or decreased (barley) during the night. Changes in the contribution of bypass flow to the net uptake of water, Na+ and Cl- in response to salt stress and day/night are the combined result of changes in xylem tension, the contribution of alternative cell-to-cell flow path and the requirement to generate xylem osmotic pressure.


Asunto(s)
Hordeum , Hordeum/fisiología , Triticum/fisiología , Agua , Cloruro de Sodio , Estrés Salino , Sodio , Iones , Raíces de Plantas
17.
Environ Sci Pollut Res Int ; 30(17): 49215-49225, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36773250

RESUMEN

The effect of sodium chloride (NaCl) on cadmium (Cd) tolerance, uptake, translocation, and compartmentation was investigated in 3 barley genotypes. Seedlings were cultivated hydroponically in the absence of NaCl and Cd (control), in the presence of 50 mM NaCl alone, in the presence of 10 µM Cd alone, and in the combined addition of NaCl (50 mM) and Cd (10 µM). Plants were cultivated during one month under 16 h light period at a minimal light intensity of 250 µmol m-2 s-1, a temperature of 25 ± 3 °C, and 70-80% of relative humidity. Results showed that NaCl alone did not significantly affect plant development and biomass production; however, Cd alone reduced plant development rate leading to a decline in biomass production in Raihane and Giza 127 but did not affect that in Amalou. NaCl addition in Cd-treated plants accentuated the Cd effect on plant growth. NaCl limited Cd accumulation in the roots and in the shoots in all tested barley varieties by reducing Cd-absorption efficiency and the translocation of Cd from the root to the shoot. In all Cd-treated plants, cell Cd compartmentalization showed the following gradient: organelles < cell wall < vacuole. NaCl in the medium increased Cd accumulation in the soluble fraction and reduced that in organelle and cell wall fractions. Globally our results showed that, although NaCl reduces Cd accumulation in barley, it accentuates the Cd toxic effects, hence limiting the plant yield. We advise farmers to avoid barley cultivation near mine sites and its irrigation with moderately salty water, although this plant is considered as salt tolerant.


Asunto(s)
Cadmio , Hordeum , Cloruro de Sodio , Cadmio/farmacología , Hordeum/fisiología , Raíces de Plantas , Plantones , Cloruro de Sodio/farmacología
18.
Physiol Plant ; 174(4): e13735, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35716005

RESUMEN

The plant cuticle, which covers all aerial parts of plants in their primary developmental stage, is the major barrier against water loss from leaves. Accumulation of cutin and waxes has often been linked to drought tolerance. Here we investigated whether cutin and waxes play a role in the drought adaption of barley mimicked by osmotic stress acting on roots. We compared the cuticle properties of cultivated barley (Hordeum vulgare spp. vulgare) with wild barley (Hordeum vulgare spp. spontaneum), and tested whether wax and cutin composition or amount and cuticular transpiration could be future breeding targets for more drought-tolerant barley lines. In response to osmotic stress, accumulation of wax crystals was observed. This coincides with an increased wax and cutin gene expression and a total increase of wax and cutin amounts in leaves, which seems to be a general response triggered through root shoot signalling. Stomatal conductance decreased fast and significantly, whereas cuticular conductance remained unaffected in both wild and cultivated barley. The often-made conclusion that higher amounts of wax and cutin necessarily reduce cuticular transpiration and thus enhance drought tolerance is not always straightforward. To prevent water loss, stomatal regulation under water stress is much more important than regulation or adaptation of cuticular transpiration in response to drought.


Asunto(s)
Hordeum , Sequías , Regulación de la Expresión Génica de las Plantas , Hordeum/fisiología , Lípidos de la Membrana , Presión Osmótica , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Ceras/metabolismo
19.
BMC Plant Biol ; 22(1): 62, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35120438

RESUMEN

BACKGROUND: For translational genomics, a roadmap is needed to know the molecular similarities or differences between species, such as model species and crop species. This knowledge is invaluable for the selection of target genes and pathways to alter downstream in response to the same stimuli. Here, the transcriptomic responses to six treatments including hormones (abscisic acid - ABA and salicylic acid - SA); treatments that cause oxidative stress (3-amino-1,2,4-triazole - 3AT, methyl viologen - MV); inhibit respiration (antimycin A - AA) or induce genetic damage (ultraviolet radiation -UV) were analysed and compared between Arabidopsis (Arabidopsis thaliana), barley (Hordeum vulgare) and rice (Oryza sativa). RESULTS: Common and opposite responses were identified between species, with the number of differentially expressed genes (DEGs) varying greatly between treatments and species. At least 70% of DEGs overlapped with at least one other treatment within a species, indicating overlapping response networks. Remarkably, 15 to 34% of orthologous DEGs showed opposite responses between species, indicating diversity in responses, despite orthology. Orthologous DEGs with common responses to multiple treatments across the three species were correlated with experimental data showing the functional importance of these genes in biotic/abiotic stress responses. The mitochondrial dysfunction response was revealed to be highly conserved in all three species in terms of responsive genes and regulation via the mitochondrial dysfunction element. CONCLUSIONS: The orthologous DEGs that showed a common response between species indicate conserved transcriptomic responses of these pathways between species. However, many genes, including prominent salt-stress responsive genes, were oppositely responsive in multiple-stresses, highlighting fundamental differences in the responses and regulation of these genes between species. This work provides a resource for translation of knowledge or functions between species.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Hordeum/genética , Oryza/genética , Estrés Oxidativo/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Adaptación Fisiológica/fisiología , Arabidopsis/fisiología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hordeum/fisiología , Oryza/fisiología , Especificidad de la Especie
20.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163073

RESUMEN

Soil salinity is an important environmental factor affecting physiological processes in plants. It is possible to limit the negative effects of salt through the exogenous application of microelements. Silicon (Si) is widely recognized as an element improving plant resistance to abiotic and biotic stresses. The aim of the research was to determine the impact of foliar application of Si on the photosynthetic apparatus, gas exchange and DNA methylation of barley (Hordeum vulgare L.) grown under salt stress. Plants grown under controlled pot experiment were exposed to sodium chloride (NaCl) in the soil at a concentration of 200 mM, and two foliar applications of Si were made at three concentrations (0.05%, 0.1% and 0.2%). Measurements were made of relative chlorophyll content in leaves (CCl), gas exchange parameters (Ci, E, gs, and PN), and selected chlorophyll fluorescence parameters (Fv/Fm, Fv/F0, PI and RC/ABS). Additionally, DNA methylation level based on cytosine methylation within the 3'CCGG 5' sequence was analyzed. Salinity had a negative effect on the values of the parameters examined. Exogenous application of Si by spraying leaves increased the values of the measured parameters in plants. Plants treated with NaCl in combination with the moderate (0.1%) and highest (0.2%) dose of Si indicated the lowest methylation level. Decrease of methylation implicated with activation of gene expression resulted in better physiological parameters observed in this group of barley plants.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Hordeum/fisiología , Fotosíntesis , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Estrés Salino , Silicio/farmacología , Antioxidantes/farmacología , Clorofila/metabolismo , Metilación de ADN , Hordeum/efectos de los fármacos , Hordeum/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Salinidad , Oligoelementos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA