Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.188
Filtrar
4.
FASEB J ; 38(18): e70052, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39291773

RESUMEN

Oogenesis involves two phases: initial volumetric growth driven by nutrient accumulation and subsequent nuclear maturation. While melatonin (MLT) has been employed as a supplement to enhance the quality of fully grown oocytes during nuclear maturation phase, its impact on oocyte growth remains poorly studied. Here, we provide in vivo evidence demonstrating that follicle-stimulating hormone increases MLT content in ovary. Administration of MLT improves oocyte growth and quality in mice and goats by enhancing nutrient reserves and mitochondrial function. Conversely, MLT-deficient mice have smaller oocytes and dysfunctional mitochondria. Exploring the clinical implications of MLT in promoting oocyte growth, we observe that a brief 2-day MLT treatment enhances oocyte quality and reproductive performance in older mice. These findings highlight the role of MLT in regulating oocyte growth and provide a specific treatment window for optimizing oocyte quality and reproductive performance in female animals.


Asunto(s)
Cabras , Melatonina , Mitocondrias , Oocitos , Animales , Melatonina/farmacología , Melatonina/metabolismo , Oocitos/metabolismo , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Ratones , Femenino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Oogénesis/efectos de los fármacos , Oogénesis/fisiología , Hormona Folículo Estimulante/metabolismo , Nutrientes/metabolismo , Ratones Endogámicos C57BL
8.
Reproduction ; 168(5)2024 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121036

RESUMEN

In brief: FSH leads to glutamine dependence, which is required for mTORC1 activation and in consequence Sertoli cell proliferation. Abstract: The spermatogenic capacity of adult individuals depends on, among other factors, the number of Sertoli cells (SCs) that result from the proliferative waves during development. FSH upregulates SC proliferation at least partly, through the activation of the PI3K/Akt/mTORC1 pathway, among other mechanisms. It is widely known that mTORC1 is a sensor of amino acids. Among amino acids, glutamine acquires relevance since it might contribute to cell cycle progression through the modulation of mTORC1 activity. It has not been studied yet whether glutamine intervenes in FSH-mediated regulation of SC proliferation and cell cycle progression, or if FSH has any effect on glutamine metabolism. Eight-day-old rat SCs were incubated in culture media without glutamine or with glutamine in the absence or presence of a glutamine transporter inhibitor or a glutaminase activity inhibitor under basal conditions or stimulated with FSH. The results obtained show that FSH does not promote SC proliferation and mTORC1 activation in the absence of glutamine. Also, FSH modulates glutamine metabolism increasing glutaminase isoform 2 and reducing glutamine synthetaseexpression. FSH did not promote SC proliferation and mTORC1 activation when glutaminase activity was inhibited. The results suggest that glutamine or its metabolites might cooperate with FSH in the upregulation of SC proliferation through mTORC1. In addition, as FSH modulates glutamine metabolism through the induction of glutaminase isoform 2, the hormonal control of glutamine metabolism might be part of the intricate signaling network triggered by FSH, which is crucial to establish the population of mature SCs that supports the reproductive function.


Asunto(s)
Proliferación Celular , Hormona Folículo Estimulante , Glutamina , Diana Mecanicista del Complejo 1 de la Rapamicina , Células de Sertoli , Animales , Glutamina/metabolismo , Glutamina/farmacología , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/efectos de los fármacos , Células de Sertoli/citología , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Proliferación Celular/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratas , Células Cultivadas , Transducción de Señal/efectos de los fármacos , Glutaminasa/metabolismo , Ratas Sprague-Dawley , Ratas Wistar
9.
Cell Commun Signal ; 22(1): 396, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138534

RESUMEN

BACKGROUND: Secreted frizzled-related proteins (SFRPs) comprise a family of WNT signaling antagonists whose roles in the ovary are poorly understood. Sfrp4-null mice were previously found to be hyperfertile due to an enhanced granulosa cell response to gonadotropins, leading to decreased antral follicle atresia and enhanced ovulation rates. The present study aimed to elucidate the mechanisms whereby SFRP4 antagonizes FSH action. METHODS: Primary cultures of granulosa cells from wild-type mice were treated with FSH and/or SFRP4, and effects of treatment on gene expression were evaluated by RT-qPCR and RNAseq. Bioinformatic analyses were conducted to analyse the effects of SFRP4 on the transcriptome, and compare them to those of FSH or a constitutively active mutant of FOXO1. Additional granulosa cell cultures from wild-type or Sfrp4-null mice, some pretreated with pharmacologic inhibitors of specific signaling effectors, were used to examine the effects of FSH and/or SFRP4 on signaling pathways, autophagy and apoptosis by western blotting and TUNEL. RESULTS: Treatment of cultured granulosa cells with recombinant SFRP4 was found to decrease basal and FSH-stimulated mRNA levels of FSH target genes. Unexpectedly, this effect was found to occur neither via a canonical (CTNNB1-dependent) nor non-canonical WNT signaling mechanism, but was found to be GSK3ß-dependent. Rather, SFRP4 was found to antognize AKT activity via a mechanism involving AMPK. This lead to the hypophosphorylation of FOXO1 and a decrease in the expression of a portion of the FSH and FOXO1 transcriptomes. Conversely, FSH-stimulated AMPK, AKT and FOXO1 phosphorylation levels were found to be increased in the granulosa cells of Sfrp4-null mice relative to wild-type controls. SFRP4 treatement of granulosa cells also induced autophagy by signaling via AKT-mTORC1-ULK1, as well as apoptosis. CONCLUSIONS: This study identifies a novel GSK3ß-AMPK-AKT signaling mechanism through which SFPR4 antagonizes FSH action, and further identifies SFRP4 as a novel regulator of granulosa cell autophagy. These findings provide a mechanistic basis for the phenotypic changes previously observed in Sfrp4-null mice, and broaden our understanding of the physiological roles of WNT signaling processes in the ovary.


Asunto(s)
Autofagia , Hormona Folículo Estimulante , Células de la Granulosa , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Autofagia/efectos de los fármacos , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones Endogámicos C57BL , Células Cultivadas , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Ratones Noqueados
10.
Prim Care ; 51(3): 467-481, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067972

RESUMEN

In this article, we will review common pituitary disorders. There are 6 hormones secreted by the anterior pituitary gland: thyroid-stimulating hormone, adrenocorticotropic hormone, follicle-stimulating hormone, luteinizing hormone, growth hormone, and prolactin. The posterior pituitary gland stores and releases the hormones made in the hypothalamus, oxytocin and antidiuretic hormone, based on the body's needs. This article will discuss the role of these hormones, conditions and symptoms that occur with elevated or reduced hormone levels, as well as the evaluation and treatment of these pituitary disorders.


Asunto(s)
Enfermedades de la Hipófisis , Humanos , Enfermedades de la Hipófisis/diagnóstico , Enfermedades de la Hipófisis/terapia , Tirotropina/sangre , Hormona Folículo Estimulante/metabolismo , Prolactina/metabolismo , Atención Primaria de Salud , Hormona Luteinizante/metabolismo , Hormona Adrenocorticotrópica/metabolismo
11.
J Med Food ; 27(7): 651-660, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38975681

RESUMEN

Purpose: This study aimed to investigate the protective effects of gallic acid (GA) against ovarian damage induced by bisphenol A (BPA) exposure in female rats. We evaluated whether GA can mitigate the adverse effects of BPA on ovarian structure, inflammatory markers, oxidative stress, apoptosis, and reproductive hormone levels. Methods: Thirty-two female rats were categorized into four groups: control, GA, BPA, and GA+BPA. Histopathological evaluations of ovarian tissue were performed using hematoxylin-eosin staining. The immunohistochemical analysis was conducted for inflammatory, oxidative DNA damage, and apoptotic markers (Tumor necrosis factor alpha [TNFα], cyclooxygenase-2 [COX2], interleukin-1 beta [IL-1ß], 8-hydroxydeoxyguanosine [8-OHdG], and caspase 3). Oxidative stress was assessed by measuring malondialdehyde and superoxide dismutase levels. Furthermore, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogen, and progesterone levels were quantified using enzyme-linked immunosorbent assay. Results: Histopathological outcomes revealed that BPA significantly induced follicular degeneration, which was effectively mitigated by GA treatment (P < 0.05). Immunohistochemical analysis highlighted the exacerbation of inflammatory responses and oxidative DNA damage and apoptosis (TNFα, COX-2, IL-1ß, 8-OHdG, and caspase 3) in BPA-exposed tissues, which were reduced in the presence of GA (P < 0.05). The assessment of oxidative stress demonstrated that GA could significantly decrease lipid peroxidation and partially restore antioxidant defense mechanisms disrupted by BPA (P < 0.05). Hormonal profiling indicated that BPA exposure altered the levels of FSH, LH, estrogen, and progesterone, with GA treatment showing a capacity to modulate these changes, especially in progesterone levels (P < 0.05). Conclusions: The findings suggest that GA exhibits protective properties against BPA-induced ovarian damage through its antioxidative and anti-inflammatory activities, alongside its ability to modulate hormonal imbalances. This research underscores the therapeutic potential of GA in safeguarding reproductive health against environmental toxicants.


Asunto(s)
Apoptosis , Compuestos de Bencidrilo , Daño del ADN , Disruptores Endocrinos , Ácido Gálico , Ovario , Estrés Oxidativo , Fenoles , Animales , Femenino , Ácido Gálico/farmacología , Compuestos de Bencidrilo/toxicidad , Ovario/efectos de los fármacos , Ovario/metabolismo , Estrés Oxidativo/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Ratas , Daño del ADN/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Sustancias Protectoras/farmacología , Hormona Luteinizante/sangre , Hormona Folículo Estimulante/sangre , Hormona Folículo Estimulante/metabolismo , Ratas Sprague-Dawley , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Progesterona , Humanos , Antioxidantes/farmacología , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-39032767

RESUMEN

Daurian ground squirrels (Spermophilus dauricus) experience various stress states during winter hibernation, but the impact on testicular function remains unclear. This study focused on the effects of changes in testicular autophagy, apoptosis, and mitochondrial homeostasis signaling pathways at various stages on the testes of Daurian ground squirrels. Results indicated that: (1) During winter hibernation, there was a significant increase in seminiferous tubule diameter and seminiferous epithelium thickness compared to summer. Spermatogonia number and testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels were higher during inter-bout arousal, suggesting that the testes remained stable during hibernation. (2) An increased number of mitochondria with intact morphology were observed during hibernation, indicating that mitochondrial homeostasis may contribute to testicular stability. (3) DNA fragmentation was evident in the testes during the hibernation and inter-bout arousal stages, with the highest level of caspase3 enzyme activity detected during inter-bout arousal, together with elevated levels of Bax/Bcl-2 and Lc3 II/Lc3 I, indicating an up-regulation of apoptosis and autophagy signaling pathways during hibernation. (4) The abundance of DRP1, MFF, OPA1, and MFN2 proteins was increased, suggesting an up-regulation of mitochondrial dynamics-related pathways. Overall, testicular autophagy, apoptosis, and mitochondrial homeostasis-related signaling pathways were notably active in the extreme winter environment. The well-maintained mitochondrial morphology may favor the production of reproductive hormones and support stable testicular morphology.


Asunto(s)
Apoptosis , Autofagia , Hibernación , Dinámicas Mitocondriales , Sciuridae , Testículo , Animales , Masculino , Sciuridae/fisiología , Sciuridae/metabolismo , Hibernación/fisiología , Testículo/metabolismo , Testículo/fisiología , Autofagia/fisiología , Mitocondrias/metabolismo , Estaciones del Año , Testosterona/metabolismo , Hormona Folículo Estimulante/metabolismo , Hormona Luteinizante/metabolismo
13.
Gen Comp Endocrinol ; 357: 114593, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047797

RESUMEN

Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) control antral follicular growth by regulating several processes, such as the synthesis of hormones and signaling molecules, proliferation, survival, apoptosis, luteinization, and ovulation. To exert these effects, gonadotropins bind to their respective Gs protein-coupled receptors, activating the protein kinase A (PKA) pathway or recruiting Gq proteins to activate protein kinase C (PKC) signaling. Although the action mechanism of FSH and LH is clear, recently, it has been shown that both gonadotropins promote the synthesis of sphingosine-1-phosphate (S1P) in granulosa and theca cells through the activation of sphingosine kinase 1. Moreover, the inhibition of SPHKs reduces S1P synthesis, cell viability, and the proliferation of follicular cells in response to gonadotropins, and the addition of S1P to the culture medium increases the proliferation of granulosa and theca cells without apparent effects on sexual steroid synthesis. Therefore, we consider that S1P is a crucial signaling molecule that complements the canonical gonadotropin pathway to promote the proliferation and viability of granulosa and theca cells.


Asunto(s)
Gonadotropinas , Lisofosfolípidos , Folículo Ovárico , Esfingosina , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacología , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Femenino , Animales , Humanos , Gonadotropinas/metabolismo , Folículo Ovárico/metabolismo , Folículo Ovárico/efectos de los fármacos , Hormona Luteinizante/metabolismo , Hormona Folículo Estimulante/metabolismo , Hormona Folículo Estimulante/farmacología , Transducción de Señal/efectos de los fármacos , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos
14.
Biol Sex Differ ; 15(1): 60, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080808

RESUMEN

BACKGROUND: Cyp19a1a is a key enzyme in the pathway that converts androgens into estrogen and is regulated by TGF-ß signaling. Smad4 and FoxH1 are downstream effectors of TGF-ß signaling and may play important roles in ovarian development in M. albus. METHODS: We investigated the expression pattern of the Smad4 and FoxH1 using qRT‒PCR and immunofluorescence, then tested the changes of smad4 and foxh1 by qRT‒PCR after ovary incubation with FSH in vitro, and analysed the regulation of cyp19a1a transcription by Smad4 and FoxH1 by dual-luciferase reporter assays. RESULTS: We found that Smad4 encoded a putative protein of 449 amino acids and harbored the three conserved domains typical of this protein family. Smad4 and foxh1 exhibited similar expression patterns during ovarian development and after FSH incubation, with Pearson's coefficients of 0.873 and 0.63-0.81, respectively. Furthermore, Smad4, FoxH1 and Cyp19a1a colocalized in the granulosa cells and theca cells of ovaries during the mid-to-late vitellogenic stage. Smad4 repressed cyp19a1a activity via SBE1 (- 1372/-1364) and SBE2 (- 415/-407) in the cyp19a1a promoter, whereas mutating SBE1 or SBE2 restored cyp19a1a promoter activity. Co-overexpression of Smad4 and FoxH1 significantly reduced cyp19a1a promoter activity. CONCLUSIONS: This study provides new insights into the potential functions of transcription factors Smad4 and FoxH1 in ovarian development and the transcriptional regulation mechanism of cyp19a1a in M. albus, which will reveal Smad4/FoxH1-mediated TGF-ß signaling in reproduction and the regulation of the cyp19a1a. Aromatase, encoded by cyp19a1a, is involved in ovarian development and plays an important role in the quality of eggs, as well the sex ratio, of the teleost fish, M. albus. The research on the transcriptional regulation of cyp19a1a has contributed to the understanding of its role in ovarian development. In previous study, it was shown that FoxH1 inhibits cyp19a1a transcription. In the present study, Smad4 was confirmed as a cyp19a1a transcriptional repressor and Smad4 may also coordinate with FoxH1 to repress cyp19a1a transcription. At present, we provide a new perspective for the transcriptional regulation of cyp19a1a by transcription factors Smad4 and FoxH1 in teleost fish ovary. In the future, the regulatory networks of Smad4 and FoxH1 will be further studied and the gene editing technology will be applied to screen specific regulatory factors of cyp191a1a gene, so as to alter the female cycle and modulate the sex ratio of the eggs production.


Asunto(s)
Aromatasa , Anguilas , Factores de Transcripción Forkhead , Ovario , Regiones Promotoras Genéticas , Proteína Smad4 , Animales , Femenino , Ovario/metabolismo , Aromatasa/metabolismo , Aromatasa/genética , Proteína Smad4/metabolismo , Proteína Smad4/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Anguilas/metabolismo , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Hormona Folículo Estimulante/metabolismo
15.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000389

RESUMEN

This study aimed to produce single-chain recombinant Anguillid eel follicle-stimulating hormone (rec-eel FSH) analogs with high activity in Cricetulus griseus ovary DG44 (CHO DG44) cells. We recently reported that an O-linked glycosylated carboxyl-terminal peptide (CTP) of the equine chorionic gonadotropin (eCG) ß-subunit contributes to high activity and time-dependent secretion in mammalian cells. We constructed a mutant (FSH-M), in which a linker including the eCG ß-subunit CTP region (amino acids 115-149) was inserted between the ß-subunit and α-subunit of wild-type single-chain eel FSH (FSH-wt). Plasmids containing eel FSH-wt and eel FSH-M were transfected into CHO DG44 cells, and single cells expressing each protein were isolated from 10 and 7 clones. Secretion increased gradually during the cultivation period and peaked at 4000-5000 ng/mL on day 9. The molecular weight of eel FSH-wt was 34-40 kDa, whereas that of eel FSH-M increased substantially, with two bands at 39-46 kDa. Treatment with PNGase F to remove the N glycosylation sites decreased the molecular weight remarkably to approximately 8 kDa. The EC50 value and maximal responsiveness of eel FSH-M were approximately 1.23- and 1.06-fold higher than those of eel FSH-wt, indicating that the mutant showed slightly higher biological activity. Phosphorylated extracellular-regulated kinase (pERK1/2) activation exhibited a sharp peak at 5 min, followed by a rapid decline. These findings indicate that the new rec-eel FSH molecule with the eCG ß-subunit CTP linker shows potent activity and could be produced in massive quantities using the stable CHO DG44 cell system.


Asunto(s)
Cricetulus , Hormona Folículo Estimulante , Proteínas Recombinantes , Animales , Células CHO , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Glicosilación , Anguilas/genética , Gonadotropina Coriónica/farmacología , Gonadotropina Coriónica/genética
16.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062762

RESUMEN

Female fertility depends on the ovarian reserve of follicles, which is determined at birth. Primordial follicle development and oocyte maturation are regulated by multiple factors and pathways and classified into gonadotropin-independent and gonadotropin-dependent phases, according to the response to gonadotropins. Folliculogenesis has always been considered to be gonadotropin-dependent only from the antral stage, but evidence from the literature highlights the role of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) during early folliculogenesis with a potential role in the progression of the pool of primordial follicles. Hormonal and molecular pathway alterations during the very earliest stages of folliculogenesis may be the root cause of anovulation in polycystic ovary syndrome (PCOS) and in PCOS-like phenotypes related to antiepileptic treatment. Excessive induction of primordial follicle activation can also lead to premature ovarian insufficiency (POI), a condition characterized by menopause in women before 40 years of age. Future treatments aiming to suppress initial recruitment or prevent the growth of resting follicles could help in prolonging female fertility, especially in women with PCOS or POI. This review will briefly introduce the impact of gonadotropins on early folliculogenesis. We will discuss the influence of LH on ovarian reserve and its potential role in PCOS and POI infertility.


Asunto(s)
Gonadotropinas , Folículo Ovárico , Síndrome del Ovario Poliquístico , Insuficiencia Ovárica Primaria , Animales , Femenino , Humanos , Hormona Folículo Estimulante/metabolismo , Gonadotropinas/metabolismo , Hormona Luteinizante/metabolismo , Folículo Ovárico/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/fisiopatología , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/etiología , Insuficiencia Ovárica Primaria/patología
17.
J Exp Zool A Ecol Integr Physiol ; 341(9): 1021-1029, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38973535

RESUMEN

Hyperandrogenemia is associated with polycystic ovarian syndrome (PCOS) and imbalances in the pituitary hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels. Apelin and its receptor, APJ (class A, rhodopsin-like G- protein-coupled receptor), belongs to adipokines, and its expression has been shown in the pituitary. It is also well known that, hyperandrogenism and PCOS have deregulation of different adipokines. Whether hyperandrogenism also deregulates the apelin system in the pituitary has yet to be investigated. Thus, we have investigated the expression and localization of apelin and its receptor, APJ, in the letrozole-induced hyperandrogenised pituitary of female mice. Our results showed that the apelin, APJ and androgen receptor (AR) expression were upregulated in the anterior pituitary. Furthermore, the immunostaining of LH exhibited increased abundance than FSH. The circulating LH was also found to be elevated compared to FSH levels. The increased LH synthesis and secretion coincides with elevated apelin system in the pituitary of hyperandrogenised mice. Recently, a direct role of apelin has also been reported in the female pituitary, where apelin inhibits LH secretion. Thus, apelin could be one of the factors for deregulated gonadotropin secretion in hyperandrogenised conditions. However, more research is needed to fully understand the complex interactions between apelin and androgen regarding gonadotropin secretion in hyperandrogenised conditions.


Asunto(s)
Receptores de Apelina , Apelina , Hormona Folículo Estimulante , Hiperandrogenismo , Letrozol , Hormona Luteinizante , Hipófisis , Animales , Femenino , Apelina/metabolismo , Ratones , Receptores de Apelina/metabolismo , Hipófisis/metabolismo , Hiperandrogenismo/metabolismo , Hormona Luteinizante/sangre , Hormona Luteinizante/metabolismo , Hormona Folículo Estimulante/sangre , Hormona Folículo Estimulante/metabolismo , Nitrilos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Regulación de la Expresión Génica , Triazoles , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
18.
J Sci Food Agric ; 104(14): 9062-9075, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38993070

RESUMEN

BACKGROUND: Mercuric chloride (HgCl2) is poisonous to humans and animals and typically damages the nervous system and other organs. Mercuric chloride exposition disclosed to initiation of oxidative stress pathway can result in a defect in male fertility and testis tissue. Synthesized selenium nanoparticles (SeNPs) were characterized with a diameter range minimal than 100 nm, having the effective sets of the biological matter. The present study aimed to evaluate the effect of biosynthesized SeNPs, prepared by leek extract on Wistar rats' testicles and brain. METHODS: Thirty-five Wistar male rats (120-150 g) were randomly split into five groups (n = 7), orally ingested with leek aqueous extract loaded on SeNPs, and then the animals were administered with mercury II chloride (HgCl2) to induce testis injury and damage the nervous system. RESULTS: The used dose of mercuric chloride led to oxidative stress damage in the testis of the rats which was evidenced by a decrease in testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and proliferating cell nuclear antigen (PCNA) levels, and an increase in nuclear factor-kappa B (NF-κB) and caspase-3. Also, HgCl2 decreased the levels of dopamine (DA), serotonin (5-HT), norepinephrine (NE) and brain-derived neurotrophic factor (BDNF) in the brains of rats. In addition, A decrease was observed in the levels of antioxidant markers, B-cell lymphoma-2 (Bcl-2), as well as an increase in malondialdehyde (MDA), nitric oxide (NO), NF-κB, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and Bax in both testes and brains. Pre-treatment with leek extract loaded on SeNPs significantly ameliorated testosterone, LH, FSH, PCNA and caspase-3 levels in the testis and DA, 5-HT, NE and BDNF in brains. Although the contents of MDA, NO, TNF-α, IL-1ß, NF-κB and Bax decreased significantly in both. glutathione, glutathione peroxidase, glutathione reductase, catalase, superoxide dismutase and Bcl-2 levels were significantly improved in both organs. CONCLUSION: Our findings suggest that treatment with aqueous leek extract loaded on SeNPs may offer promising prospects for the advancement of anti-inflammation activity against testis injury and also have a very key role in neurobehavioral alterations as a result of mercury toxicity. © 2024 Society of Chemical Industry.


Asunto(s)
Lesiones Encefálicas , Cloruro de Mercurio , Nanopartículas , Estrés Oxidativo , Extractos Vegetales , Ratas Wistar , Selenio , Testículo , Animales , Masculino , Testículo/efectos de los fármacos , Testículo/metabolismo , Ratas , Cloruro de Mercurio/toxicidad , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Selenio/química , Selenio/farmacología , Estrés Oxidativo/efectos de los fármacos , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/prevención & control , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/etiología , Lesiones Encefálicas/tratamiento farmacológico , Nanopartículas/química , Allium/química , FN-kappa B/metabolismo , Testosterona/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Sustancias Protectoras/farmacología , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/química , Hormona Luteinizante/metabolismo , Humanos , Hormona Folículo Estimulante/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Caspasa 3/metabolismo
19.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891991

RESUMEN

The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.


Asunto(s)
Espermatogénesis , Testículo , Humanos , Masculino , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Animales , Hormona Folículo Estimulante/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Andrógenos/metabolismo , Testosterona/metabolismo
20.
Anim Reprod Sci ; 266: 107516, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823233

RESUMEN

Irisin is a hormone secreted by muscle in response to exercise. The irisin receptor (IrisinR) is a heterodimer of integrin alpha V (ITGAV) and integrin beta 5 (ITGB5) subunits. Since irisin may mediate some beneficial effects of exercise on animal reproduction, we tested the hypothesis that bovine gonadotrophs express IrisinR and irisin stimulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion by gonadotrophs. Reverse transcription polymerase chain reaction was used to detect the mRNA expression of both ITGAV and ITGB5 in the anterior pituitary glands (APs) of post pubertal heifers and mouse gonadotroph cell line "LßT2." Western blotting was used to detect protein expression in bovine APs. Immunofluorescence microscopy, utilizing the same antibody, visualized IrisinR on the plasma membrane of majority of gonadotrophs. We prepared AP cells from healthy postpubertal heifers, cultured them for 3.5 d, and treated them with increasing concentrations (0, 0.01, 0.1, 1, or 10 nM) of irisin for 5 min before either no treatment or gonadotropin-releasing hormone (GnRH) stimulation. After 2 h, media were harvested for LH and FSH assays. Irisin (0.1-10 nM) stimulated basal LH and FSH secretion, and these stimulatory effects were inhibited by the extracellular signal-regulated kinase or SMAD pathway inhibitors. In the presence of GnRH, irisin at 0.01-1 nM stimulated LH and FSH secretion. A higher dose of irisin (10 nM), however, suppressed the GnRH-induced LH and FSH levels. In conclusion, bovine gonadotrophs expressed IrisinR, and irisin controlled LH and FSH secretion from bovine gonadotrophs.


Asunto(s)
Fibronectinas , Hormona Folículo Estimulante , Gonadotrofos , Hormona Luteinizante , Animales , Bovinos , Femenino , Ratones , Fibronectinas/metabolismo , Hormona Folículo Estimulante/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Gonadotrofos/metabolismo , Gonadotrofos/efectos de los fármacos , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Luteinizante/metabolismo , Condicionamiento Físico Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA