Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
1.
Nano Lett ; 24(40): 12701-12708, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39331492

RESUMEN

Idiopathic pulmonary fibrosis, an idiopathic interstitial lung disease with high mortality, remains challenging to treat due to the lack of clinically approved lung-targeting drugs. Herein, we present PDIC-DPC, a perylenediimide derivative that exhibits superior lung-selective enrichment. PDIC-DPC forms nanocomposites with plasma proteins, including fibrinogen beta chain and vitronectin, which bind to pulmonary endothelial receptors for lung-specific accumulation. Moreover, PDIC-DPC significantly suppresses transforming growth factor beta1 and activates adenosine monophosphate-activated protein kinase. As a result, compared to existing therapeutic drugs, PDIC-DPC achieves superior therapeutic outcomes, evidenced by the lowest Ashcroft score, significantly improved pulmonary function, and an extended survival rate in a bleomycin-induced pulmonary fibrosis model. This study elucidates the lung-selective enrichment of assembled prodrug from biological perspectives and affords a platform enabling therapeutic efficiency on idiopathic pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Imidas , Pulmón , Nanocompuestos , Perileno , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Imidas/química , Imidas/farmacología , Animales , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Perileno/uso terapéutico , Ratones , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Nanocompuestos/química , Nanocompuestos/uso terapéutico , Humanos , Bleomicina , Factor de Crecimiento Transformador beta1/metabolismo
2.
Molecules ; 29(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125057

RESUMEN

G-quadruplex (G4) sequences, which can fold into higher-order G4 structures, are abundant in the human genome and are over-represented in the promoter regions of many genes involved in human cancer initiation, progression, and metastasis. They are plausible targets for G4-binding small molecules, which would, in the case of promoter G4s, result in the transcriptional downregulation of these genes. However, structural information is currently available on only a very small number of G4s and their ligand complexes. This limitation, coupled with the currently restricted information on the G4-containing genes involved in most complex human cancers, has led to the development of a phenotypic-led approach to G4 ligand drug discovery. This approach was illustrated by the discovery of several generations of tri- and tetra-substituted naphthalene diimide (ND) ligands that were found to show potent growth inhibition in pancreatic cancer cell lines and are active in in vivo models for this hard-to-treat disease. The cycles of discovery have culminated in a highly potent tetra-substituted ND derivative, QN-302, which is currently being evaluated in a Phase 1 clinical trial. The major genes whose expression has been down-regulated by QN-302 are presented here: all contain G4 propensity and have been found to be up-regulated in human pancreatic cancer. Some of these genes are also upregulated in other human cancers, supporting the hypothesis that QN-302 is a pan-G4 drug of potential utility beyond pancreatic cancer.


Asunto(s)
Antineoplásicos , Descubrimiento de Drogas , G-Cuádruplex , G-Cuádruplex/efectos de los fármacos , Humanos , Descubrimiento de Drogas/métodos , Ligandos , Antineoplásicos/farmacología , Antineoplásicos/química , Fenotipo , Línea Celular Tumoral , Naftalenos/farmacología , Naftalenos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Animales , Imidas/química , Imidas/farmacología , Regiones Promotoras Genéticas
3.
Bioorg Med Chem Lett ; 111: 129903, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053704

RESUMEN

Nitrobenzoxadiazole (NBD)-incorporated naphthalene diimide derivatives were designed and synthesized as candidates of antitumor agents with cytotoxicity against human pancreatic cancer cell MIA PaCa-2. Among these, compounds 1NND and 3NND exhibited fluorescent "turn-off" property toward human telomeric G-quadruplex (G4), which allows the direct measurement of dissociation constant (Kd) of ligands against G4 by fluorescence titration method. Notably, the compound 1NND not only exhibited great cytotoxic activity against MIA PaCa-2 with a half maximal inhibitory concentration (IC50) of 77.9 nM, but also exhibited high affinity against G4 with Kd of 1.72 µM. Furthermore, the target binding properties were investigated by circular dichroism (CD) spectra and further studied by molecular docking methods.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , G-Cuádruplex , Imidas , Naftalenos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , G-Cuádruplex/efectos de los fármacos , Imidas/química , Imidas/farmacología , Imidas/síntesis química , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Naftalenos/química , Naftalenos/farmacología , Naftalenos/síntesis química , Relación Estructura-Actividad
4.
J Agric Food Chem ; 72(27): 15276-15283, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38943575

RESUMEN

Using nicofluprole as the lead compound, we designed and synthesized a series of new phenylpyrazole analogues through substituting the methyl group on the nitrogen atom of the amide with an acyl group. Bioassay results showed that compounds A12-A17 with a 1-cyanocyclopropimide group exhibited outstanding insecticidal activity. The LC50 values for compounds A12-A17 against Tetranychus cinnabarinus ranged from 0.58 to 0.91 mg/L. Compound A15 showed an LC50 value of 0.29 and 3.10 mg/L against Plutella xylostella and Myzus persicae, respectively. Molecular docking indicated the potential binding interactions of compound A15 with a gamma-aminobutyric acid receptor. Additionally, density functional theory calculations implied that the 1-cyanocyclopropimide structure might be essential for its biological activity. Phenylpyrazole derivatives, containing a 1-cyanocyclopropimide fragment, have the potential for further development as potential insecticides.


Asunto(s)
Acaricidas , Diseño de Fármacos , Insecticidas , Simulación del Acoplamiento Molecular , Pirazoles , Animales , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Acaricidas/química , Acaricidas/farmacología , Acaricidas/síntesis química , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Relación Estructura-Actividad , Imidas/química , Imidas/farmacología , Imidas/síntesis química , Áfidos/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Tetranychidae/efectos de los fármacos , Estructura Molecular
5.
Langmuir ; 40(27): 13870-13878, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38917360

RESUMEN

This manuscript describes the synthesis, self-assembly, and antibacterial properties of naphthalene-diimide (NDI)-derived cationic π-amphiphiles. Three such asymmetric NDI derivatives with a nonionic hydrophilic wedge and a guanidine group in the two opposite sides of the NDI chromophore were considered. They differ by a single functional group (hydrazide, amide, and ester for NDI-1, NDI-2, and NDI-3, respectively), located in the linker between the NDI and the hydrophilic wedge. For NDI-1, the H-bonding among the hydrazides regulated unilateral stacking and a preferential direction of curvature of the resulting supramolecular polymer, producing an unsymmetric polymersome with the guanidinium groups displayed at the outer surface. NDI-3, lacking any H-bonding group, exhibits π-stacking without any preferential orientation and generates spherical particles with a relatively poor display of the guanidium groups. In sharp contrast to NDI-1, NDI-2 exhibits an entangled one-dimensional (1D) fibrillar morphology, indicating the prominent role of the H-bonding motif of the amide group and flexibility of the linker. The antibacterial activity of these assemblies was probed against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). NDI-1 showed the most promising antibacterial activity with a minimum inhibitory concentration (MIC) of ∼7.8 µg/mL against S. aureus and moderate activity (MIC ∼ 125 µg/mL) against E. coli. In sharp contrast, NDI-3 did not show any significant activity against the bacteria, suggesting a strong impact of the H-bonding-regulated directional assembly. NDI-2, forming a fibrillar network, showed moderate activity against S. aureus and negligible activity against E. coli, highlighting a significant impact of the morphology. All of these three molecules were found to be compatible with mammalian cells from the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) and hemolysis assay. The mechanistic investigation by membrane polarization assay, live/dead fluorescence assay, and microscopy studies confirmed the membrane disruption mechanism of cell killing for the lead candidate NDI-1.


Asunto(s)
Antibacterianos , Escherichia coli , Enlace de Hidrógeno , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Naftalenos/química , Naftalenos/farmacología , Imidas/química , Imidas/farmacología , Cationes/química , Cationes/farmacología , Humanos
6.
J Med Chem ; 67(13): 10643-10654, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38924701

RESUMEN

Several G-quadruplex nucleic acid (G4s) ligands have been developed seeking target selectivity in the past decade. Naphthalene diimide (NDI)-based compounds are particularly promising due to their biological activity and red-fluorescence emission. Previously, we demonstrated the existence of G4s in the promoter region of parasite genomes, assessing the effectiveness of NDI-derivatives against them. Here, we explored the biological activity of a small library of G4-DNA ligands, exploiting the NDI pharmacophore, against both Trypanosoma brucei and Leishmania major parasites. Biophysical and biological assays were conducted. Among the various families analyzed, core-extended NDIs exhibited the most promising results concerning the selectivity and antiparasitic effects. NDI 16 emerged as the most potent, with an IC50 of 0.011 nM against T. brucei and remarkable selectivity vs MRC-5 cells (3454-fold). Fascinating, 16 is 480-fold more potent than the standard drug pentamidine (IC50 = 5.3 nM). Cellular uptake and parasite localization were verified by exploiting core-extended NDI red-fluorescent emission.


Asunto(s)
G-Cuádruplex , Imidas , Leishmania major , Naftalenos , Tripanocidas , Trypanosoma brucei brucei , G-Cuádruplex/efectos de los fármacos , Relación Estructura-Actividad , Naftalenos/farmacología , Naftalenos/química , Imidas/química , Imidas/farmacología , Ligandos , Trypanosoma brucei brucei/efectos de los fármacos , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/síntesis química , Humanos , Leishmania major/efectos de los fármacos , Línea Celular
7.
Angew Chem Int Ed Engl ; 63(23): e202401250, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38576254

RESUMEN

A nano-immunomodulator (R-NPT NP) comprising a tumor microenvironment (TME) activable resiquimod (R848) and a π-extended NIR-absorbing naphthophenanthrolinetetraone (NPT) has been engineered for spatiotemporal controlled photothermal immunotherapy. R-NPT NP demonstrated excellent photostability, while R848 promoted synergistic immunity as a toll-like receptor 7/8 (TLR7/8) agonist. Upon accumulation at the tumor site, R-NPT NP released R848 in response to redox metabolite glutathione (GSH), triggering dendritic cell (DC) activation. The photothermal effect endowed by R-NPT NP can ablate tumors directly and trigger immunogenic cell death to augment immunity after photoirradiation. The synergistic effect of GSH-liable TLR7/8 agonist and released immunogenic factors leads to a robust evocation of systematic immunity through promoted DC maturation and T cell infiltration. Thus, R-NPT NP with photoirradiation achieved 99.3 % and 98.2 % growth inhibition against primary and distal tumors, respectively.


Asunto(s)
Imidas , Factores Inmunológicos , Inmunoterapia , Naftalenos , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Humanos , Naftalenos/química , Naftalenos/farmacología , Imidas/química , Imidas/farmacología , Animales , Nanopartículas/química , Ratones , Microambiente Tumoral/efectos de los fármacos , Terapia Fototérmica , Imidazoles/química , Imidazoles/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Línea Celular Tumoral
8.
ACS Infect Dis ; 10(2): 489-499, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38175706

RESUMEN

Human immunodeficiency virus 1 (HIV-1) therapeutic regimens consist of three or more drugs targeting different steps of the viral life cycle to limit the emergence of viral resistance. In line with the multitargeting strategy, here we conjugated a naphthalene diimide (NDI) moiety with a tetraazacycloalkane to obtain novel naphthalene diimide (NDI)-tetraazacycloalkane conjugates. The NDI inhibits the HIV-1 promoter activity by binding to LTR G-quadruplexes, and the tetraazacycloalkane mimics AMD3100, which blocks HIV entry into cells by interfering with the CXCR4 coreceptor. We synthesized, purified, and tested the metal-free NDI-tetraazacycloalkane conjugate and the two derived metal-organic complexes (MOCs) that incorporate Cu2+ and Zn2+. The NDI-MOCs showed enhanced binding to LTR G4s as assessed by FRET and CD assays in vitro. They also showed enhanced activity in cells where they dose-dependently reduced LTR promoter activity and inhibited viral entry only of the HIV-1 strain that exploited the CXCR4 coreceptor. The time of addition assay confirmed the dual targeting at the different HIV-1 steps. Our results indicate that the NDI-MOC conjugates can simultaneously inhibit viral entry, by targeting the CXCR4 coreceptor, and LTR promoter activity, by stabilizing the LTR G-quadruplexes. The approach of combining multiple targets in a single compound may streamline treatment regimens and improve the overall patient outcomes.


Asunto(s)
G-Cuádruplex , VIH-1 , Humanos , VIH-1/genética , Imidas/farmacología , Imidas/química , Imidas/metabolismo , Naftalenos/farmacología , Naftalenos/química
9.
Bioorg Chem ; 141: 106917, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37865055

RESUMEN

The limitations associated with the in vivo use of the thrombin binding aptamer (TBA or TBA15) have dramatically stimulated the search of suitable chemically modified analogues in order to discover effective and reversible inhibitors of thrombin activity. In this context, we previously proposed cyclic and pseudo-cyclic TBA analogues with improved stability that proved to be more active than the parent aptamer. Herein, we have investigated a novel library of TBA derivatives carrying naphthalene diimide (NDI) moieties at the 3'- or 5'-end. In a subset of the investigated oligonucleotides, additional 3-hydroxypropylphosphate (HPP) groups were introduced at one or both ends of the TBA sequence. Evaluation of the G-quadruplex thermal stability, serum nuclease resistance and in vitro anticoagulant activity of the new TBA analogues allowed rationalizing the effect of these appendages on the activity of the aptamer on the basis of their relative position. Notably, most of the different TBA analogues tested were more potent thrombin inhibitors than unmodified TBA. Particularly, the analogue carrying an NDI group at the 5'-end and an HPP group at the 3'-end, named N-TBA-p, exhibited enhanced G-quadruplex thermal stability (ΔTm + 14° C) and ca. 10-fold improved nuclease resistance in serum compared to the native aptamer. N-TBA-p also induced prolonged and dose-dependent clotting times, showing a ca. 11-fold higher anticoagulant activity compared to unmodified TBA, as determined by spectroscopic methods. Overall, N-TBA-p proved to be in vitro a more efficient thrombin inhibitor than all the best ones previously investigated in our group. Its interesting features, associated with its easy preparation, make it a very promising candidate for future in vivo studies.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Trombina/metabolismo , Anticoagulantes/química , Imidas/farmacología , Naftalenos/farmacología , Aptámeros de Nucleótidos/química
10.
Angew Chem Int Ed Engl ; 62(41): e202308513, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37607898

RESUMEN

We report a supramolecular naphthalene diimide (NDI) radical anion with efficient NIR-II photothermal conversion for E. coli-responsive photothermal therapy. The supramolecular radical anion (NDI-2CB[7])⋅- , which is obtained from the E. coli-induced in situ reduction of NDI-2CB[7] neutral complex, formed by the host-guest interaction between an NDI derivative and cucurbit[7]uril (CB[7]), exhibits unexpectedly strong NIR-II absorption and remarkable photothermal conversion capacity in aqueous solution. The NIR-II absorption is caused by the self-assembly of NDI radical anions to form supramolecular dimer radicals in aqueous solution, which is supported by theoretically predicted spectra. The (NDI-2CB[7])⋅- demonstrates excellent NIR-II photothermal antimicrobial activity (>99 %). This work provides a new approach for constructing NIR-II photothermal agents and non-contact treatments for bacterial infections.


Asunto(s)
Escherichia coli , Terapia Fototérmica , Aniones , Imidas/farmacología
11.
Inorg Chem ; 62(24): 9649-9660, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37267472

RESUMEN

In this work, four naphthalene diimide (NDI)-functionalized half-sandwich Ru(II) complexes Ru1-Ru4 bearing the general formula [(η6-arene)RuII(N^N)Cl]PF6, where arene = benzene (bn), p-cymene (p-cym), 1,3,5-trimethylbenzene (tmb), and hexamethylbenzene (hmb), have been synthesized and characterized. By introducing the NDI unit into the N,N-chelating ligand of these half-sandwich complexes, the poor luminescent half-sandwich complexes are endowed with excellent emission performance. Besides, modification on the arene ligand of arene-Ru(II) complexes can influence the electron density of the metal center, resulting in great changes in the kinetic properties, catalytic activities in the oxidative conversion of NADH to NAD+, and biological activities of these compounds. Particularly, Ru4 exhibits the highest reactivity and the strongest inhibitory activity against the growth of three tested cancer cell lines. Further study revealed that Ru4 can enter cells quickly in an energy-dependent manner and preferentially accumulate in the mitochondria of MDA-MB-231 cells, inducing cell apoptosis via reactive oxygen species overproduction and mitochondrial dysfunction. Significantly, Ru4 can effectively inhibit the cell migration and invasion. Overall, the complexation with NDI and modification on the arene ligand endowed the half-sandwich Ru(II) complexes with improved spectroscopic properties and anticancer activities, highlighting their potential applications for cancer treatment.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Estructura Molecular , Ligandos , Antineoplásicos/farmacología , Antineoplásicos/química , Imidas/farmacología , Rutenio/farmacología , Rutenio/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Línea Celular Tumoral
12.
ACS Appl Bio Mater ; 5(11): 5181-5189, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36260814

RESUMEN

The potential of ionic liquids (ILs) to be used as antimicrobial agents for biomedical applications has been hindered by the fact that most of them are cytotoxic toward mammalian cells. Understanding the mechanism of bacterial and mammalian cellular damage of ILs is key to their safety design. In this work, we evaluate the antimicrobial activity and mode of action of several ILs with varying anions and cations toward the clinically relevant Gram-negative Escherichia coli. Langmuir monolayer technique was used to evaluate if the IL's mode of action was related to the bacterial cell membrane interaction for an effective E. coli killing. 1-Decyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [DMIM][TFSI] and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P6,6,6,14][TFSI] were surface-active and induced bacterial cell lysis, through a membrane-disruption phenomenon on bacteria, in a mechanism that was clearly related to the long alkyl chains of the cation. 1-Ethyl-3-methylimidazolium hydrogen sulfate [EMIM][HSO4] was highly antimicrobial toward E. coli and found suitable for biological applications since it was harmless to mammalian cells at most of the tested concentrations. The results suggest that the imidazolium cation of the ILs is mostly responsible not only for their antimicrobial activity but also for their cytotoxicity, and the inclusion of different anions may tailor the ILs' biocompatibility without losing the capacity to kill bacteria, as is the case of [EMIM][HSO4]. Importantly, this IL was found to be highly antimicrobial even when incorporated in a polymeric matrix.


Asunto(s)
Líquidos Iónicos , Animales , Líquidos Iónicos/farmacología , Escherichia coli , Antibacterianos/farmacología , Aniones/farmacología , Cationes/farmacología , Imidas/farmacología , Mamíferos
13.
Bioorg Med Chem ; 71: 116946, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35939903

RESUMEN

Naphthalene diimide (NDI) is a central scaffold that has been commonly used in the design of G-quadruplex (G4) ligands. Previous work revealed notable anticancer activity of a disubstituted N-methylpiperazine propyl NDI G4 ligand. Here, we explored structure-activity relationship studies around ligand bis-N,N-2,7-(3-(4-methylpiperazin-1-yl)propyl)-1,4,5,8-naphthalenetetracarboxylic diimide, maintaining the central NDI core whilst modifying the spacer and the nature of the cationic groups. We prepared new disubstituted NDI derivatives of the original compound and examined their in vitro antiproliferative and antiparasitic activity. Several N-methylpiperazine propyl NDIs showed sub-micromolar activity against Trypanosoma brucei and Leishmania major parasites with up to 30 fold selectivity versus MRC-5 cells. The best compound was a dimorpholino NDI with an IC50 of 0.17 µM against T.brucei and 40 fold selectivity versus MRC-5 cells. However, no clear correlation between G4 binding of the new NDI derivatives and antiproliferative or antiparasitic activity was observed, indicating that other mechanisms of action may be responsible for the observed biological activity.


Asunto(s)
Antiparasitarios , G-Cuádruplex , Antiparasitarios/química , Antiparasitarios/farmacología , Imidas/química , Imidas/farmacología , Ligandos , Naftalenos , Relación Estructura-Actividad
14.
Molecules ; 27(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35889422

RESUMEN

The [ferrocene-ene-phenol] motif has been identified as the pharmacophore responsible for the anticancer activity of the family of ferrocene-based molecules coined ferrocifens, owing to its unique redox properties. The addition of imide entities to the historical ferrociphenol scaffold tremendously enhanced the cytotoxic activity of a large panel of cancer cell cultures and preliminary studies showed that the reduction of one of the carbonyl groups of the imide groups to the corresponding α-hydroxylactams only slightly affected the antiproliferative activity. As a continuation to these studies, we took advantage of the facile conversion of α-hydroxylactams to highly electrophilic N-acyliminium ions to graft various substituents to the imide motif of phthalimido ferrocidiphenol. Cell viability studies showed that the newly synthesized compounds showed diverse cytotoxic activities on two breast cancer cell lines, while only one compound was significantly less active on the non-tumorigenic cell line hTERT-RPE1.


Asunto(s)
Antineoplásicos , Compuestos Ferrosos , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Ferrosos/farmacología , Humanos , Imidas/farmacología , Metalocenos/farmacología , Estructura Molecular , Relación Estructura-Actividad
15.
Fitoterapia ; 161: 105232, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35690187

RESUMEN

To find more effective anticancer agents, a series of novel dehydroabietylamine (DA) derivatives were synthesized, focusing on C-ring nitro modifications and C-18 imide introduction. Their cytotoxic activities against human tumor cell line HeLa (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver), and nonmalignant cell line HUVEC (umbilical vein) in vitro were screened. The C-18 imide heterocyclic compounds 1, 2, and C-ring 14-nitro substituted 14 exhibited moderate to good cytotoxic activities and significant selectivity towards malignant cell lines. More importantly, they were significantly less cytotoxic to nonmalignant cells (HUVEC) than the parent compound and positive control doxorubicin hydrochloride (DOX). Meantime the mechanism of cytotoxicity of DA derivatives was studied. Annexin V-FITC/PI double-staining analysis suggested that cytotoxicity of compounds 2 and 14 was associated with early apoptosis induction. The interaction between compounds and DNA (herring sperm DNA) was studied using absorption spectral analysis and ethidium bromide (EB) fluorescence displacement experiments, the results exhibited that the binding of the compound to DNA was in the intercalative mode. The structure-activity relationship discussion implied that introduction of the nitro-group, especially the 14-nitro group, can significantly improve the cytotoxicity of dehydroabietylimide compounds. The relatively high cytotoxicity and significant high selectivity of compounds 2 and 14 indicated that they were particularly noteworthy. NO released amounts indicated that the amounts of NO released by the compounds bearing nitro-group were quite well associated positive correlation with their cytotoxic activity, which provide a new strategy for structure design of DA anticancer agents in the future.


Asunto(s)
Antineoplásicos , Semen , Abietanos , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , ADN/farmacología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Imidas/farmacología , Masculino , Estructura Molecular , Relación Estructura-Actividad
16.
Chem Biol Interact ; 358: 109881, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35307378

RESUMEN

Stomach cancer causes the third-highest cancer-related deaths worldwide. Limited availability of anticancer measures with higher efficiency and low unwanted toxicities necessitates the development of better cancer chemotherapeutics. Naphthalene diimide (NDI) derivatives have gained significant attention owing to their excellent anticancer potential. We evaluated the anticancer properties of NDI derivatives, 1a and 2a in cancer cell lines and found that 1a showed higher efficacy as compared to 2a exhibiting a remarkable difference in activity upon single atom substitution of C with N. Particularly, NDI 1a showed potent inhibitory activity against gastric cancer cell line AGS with IC50 of 2.0 µM. NDI 1a induced remarkable morphological changes and reduced clonogenicity as well as the migratory ability of AGS cells. The reduction in AGS cell migration was mediated through inhibition of Tyr397 p-FAK dephosphorylation at focal adhesion points leading to enhanced attachment of cells at contact points. NDI 1a caused extensive DNA double-strand-breaks (DSBs) leading to activation of p53 and its transcriptional target p21. Reduced nuclear BRCA1 but enhanced nuclear p53BP1 foci formation upon 1a treatment suggests that DNA DSB repair is mediated through error-prone NHEJ which led to the accumulation of extensive DNA damage. Combinatorial effects mediated by interactions of 1a with double-stranded DNA through minor groove binding as well as induction of intracellular ROS exacerbated the loss of genomic integrity induced by 1a. NDI 1a mediated DNA damage-induced S phase arrest; however, cells experiencing extensive and irreparable DNA damage underwent mitochondrial apoptosis through downregulation of anti-apoptotic protein p21. Furthermore, proliferation inhibitory activity of 1a is also attributed to inhibition of ß-catenin/c-Myc axis in AGS cells with constitutively active ß-catenin pathway. In vivo toxicity analysis of 1a revealed minimal systemic toxicity suggesting that compound 1a is a safe and potential candidate for the development of gastric cancer chemotherapeutics.


Asunto(s)
Apoptosis , Ciclo Celular , Daño del ADN , Imidas , Naftalenos , Neoplasias Gástricas , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Imidas/farmacología , Naftalenos/farmacología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , beta Catenina
17.
Eur J Med Chem ; 232: 114183, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168151

RESUMEN

Glycosyl conjugation to drugs is a strategy being used to take advantage of glucose transporters (GLUT) overexpression in cancer cells in comparison with non-cancerous cells. Its extension to the conjugation of drugs to thiosugars tries to exploit their higher biostability when compared to O-glycosides. Here, we have synthesized a series of thiosugar naphthalene diimide conjugates as G-quadruplex ligands and have explored modifications of the amino sidechain comparing dimethyl amino and morpholino groups. Then, we studied their antiproliferative activity in colon cancer cells, and their antiparasitic activity in T. brucei and L. major parasites, together with their ability to bind quadruplexes and their cellular uptake and location. We observed higher toxicity for the sugar-NDI-NMe2 derivatives than for the sugar-NDI-morph compounds, both in mammalian cells and in parasites. Our experiments indicate that a less efficient binding to quadruplexes and a worse cellular uptake of the carb-NDI-morph derivatives could be the reasons for these differences. We found small variations in cytotoxicity between O-carb-NDIs and S-carb-NDIs, except against non-cancerous human fibroblasts MRC-5, where thiosugar-NDIs tend to be less toxic. This leads to a notable selectivity for ß-thiomaltosyl-NDI-NMe212 (9.8 fold), with an IC50 of 0.3 µM against HT-29 cells. Finally, the antiparasitic activity observed for the carb-NDI-NMe2 derivatives against T. brucei was in the nanomolar range with a good selectivity index in the range of 30- to 69- fold.


Asunto(s)
G-Cuádruplex , Tioazúcares , Animales , Antiparasitarios/farmacología , Humanos , Imidas/química , Imidas/farmacología , Ligandos , Naftalenos
18.
Environ Sci Pollut Res Int ; 29(17): 24983-24994, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34839439

RESUMEN

The applicability of ionic liquids (ILs) has increased over the last years, and even new opportunities are becoming a reality, i.e. mixtures of pure IL and inorganic salt as electrolytes for smart electrochemical devices, yet the effects on the environment are almost unknown. In this work, the ecotoxicity of two pure protic ILs (Ethylammonium nitrate and Ethylimidazolium nitrate) and two pure aprotic ILs (butylmethylpyrrolidinium bis(trifluoromethylsulfonyl)imide and butyldimethylimidazolium bis(trifluoromethylsulfonyl)imide) and that of their binary mixtures with inorganic salts with common cation was tested towards changes in the bioluminescence of the bacteria Aliivibrio fischeri, using the Microtox® standard toxicity test. EC50 of these mixtures was determined over three standard periods of time and compared with the corresponding values to pure ILs. Results indicate that the aprotic ILs are more toxic than protic and that aromatic are more toxic than non-aromatic. The addition of inorganic mono (LiNO3), di (Ca(NO3)2·4H2O, Mg(NO3)2·6H2O) and trivalent (Al(NO3)3·9H2O) salts in binary mixtures with EAN was analysed first. The latter was found to induce an important increase in toxicity. Finally, mixtures of IL-inorganic lithium salt (LiNO3, for the protic ILs and LiTFSI for the aprotic ILs) toxicity was also studied, which showed toxicity levels strongly dependent on the IL of the mixture.


Asunto(s)
Líquidos Iónicos , Aliivibrio fischeri , Cationes , Imidas/farmacología , Líquidos Iónicos/toxicidad , Sales (Química)
19.
J Mater Chem B ; 10(1): 107-119, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34889936

RESUMEN

Positively charged amphiphiles hold great significance in supramolecular chemistry due to their good solubility, and physiochemical and molecular recognition properties. Herein, we report the synthesis, characterization and molecular recognition properties of the dicationic amphiphile based on perylene diimide-tyrosine alkyl amide amine (PDI 3). PDI 3 showed the formation of a nanoring architecture in the self-assembled aggregated state (90% H2O-DMSO mixture) as observed by SEM and TEM studies. The diameter of the nanoring is around 30-50 nm with a height varying from 1 to 2 nm. The self-assembled aggregates of PDI 3 are very sensitive towards nucleoside triphosphates. Upon addition of ATP, PDI 3 showed a decrease in the absorbance and emission intensity at 535 and 580 nm (due to the monomer state), respectively. The lowest detection limit for ATP is 10.8 nM (UV) and 3.06 nM (FI). Upon interaction of ATP with PDI 3, the nanoring morphology transformed into a spherical structure. These changes could be attributed to the formation of ionic self-assembled aggregates between dicationic PDI 3 and negatively charged ATP via electrostatic and H-bonding interactions. The complexation mechanism of PDI 3 and ATP was confirmed by optical, NMR, Job's plot, DLS, SEM and AFM studies. PDI 3 displays low cytotoxicity toward MG-63 cells and can be successfully used for the detection of exogenous and endogenous ATP. The resulting PDI 3 + ATP complex is successfully used as a 'turn-on' biochemical assay for monitoring phosphorylation of glucose.


Asunto(s)
Adenosina Trifosfato/análisis , Materiales Biocompatibles/química , Glucosa/análisis , Imidas/química , Nanopartículas/química , Perileno/análogos & derivados , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Glucosa/metabolismo , Humanos , Imidas/síntesis química , Imidas/farmacología , Ensayo de Materiales , Tamaño de la Partícula , Perileno/síntesis química , Perileno/química , Perileno/farmacología , Fosforilación , Células Tumorales Cultivadas
20.
Chem Commun (Camb) ; 57(97): 13126-13129, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34807201

RESUMEN

A series of thionated perylenediimides with modulating phototheranostic modalities have been synthesized by a one-pot method for multiple anti-cancer applications. Compared to the initial and 4-tert-butyl phenol-substituted fluorescent perylenediimide, the obtained monothionated perylenediimide became photodynamic. With the increase of thionation degree, tetrathionated perylenediimide changed into an optimal photothermal agent.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Fluorescencia , Imidas/farmacología , Perileno/análogos & derivados , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Compuestos de Sulfhidrilo/farmacología , Animales , Antineoplásicos/química , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Imidas/química , Ratones , Estructura Molecular , Perileno/química , Perileno/farmacología , Fármacos Fotosensibilizantes/química , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA