Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.359
Filtrar
1.
Cell Mol Life Sci ; 81(1): 429, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382697

RESUMEN

The mammalian imprinted Dlk1-Dio3 domain contains multiple lncRNAs, mRNAs, the largest miRNA cluster in the genome and four differentially methylated regions (DMRs), and deletion of maternally expressed RNA within this locus results in embryonic lethality, but the mechanism by which this occurs is not clear. Here, we optimized the model of maternally expressed RNAs transcription termination in the domain and found that the cause of embryonic death was apoptosis in the embryo, particularly in the liver. We generated a mouse model of maternally expressed RNAs silencing in the Dlk1-Dio3 domain by inserting a 3 × polyA termination sequence into the Gtl2 locus. By analyzing RNA-seq data of mouse embryos combined with histological analysis, we found that silencing of maternally expressed RNAs in the domain activated apoptosis, causing vascular rupture of the fetal liver, resulting in hemorrhage and injury. Mechanistically, termination of Gtl2 transcription results in the silencing of maternally expressed RNAs and activation of paternally expressed genes in the interval, and it is the gene itself rather than the IG-DMR and Gtl2-DMR that causes the aforementioned phenotypes. In conclusion, these findings illuminate a novel mechanism by which the silencing of maternally expressed RNAs within Dlk1-Dio3 domain leads to hepatic hemorrhage and embryonic death through the activation of apoptosis.


Asunto(s)
Apoptosis , Proteínas de Unión al Calcio , Yoduro Peroxidasa , Hígado , ARN Largo no Codificante , Animales , Ratones , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Hígado/metabolismo , Hígado/patología , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Apoptosis/genética , Femenino , Impresión Genómica/genética , Masculino , Silenciador del Gen , Ratones Endogámicos C57BL , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Embrión de Mamíferos/metabolismo , Metilación de ADN/genética , Feto/metabolismo , Feto/patología
2.
Clin Epigenetics ; 16(1): 138, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369220

RESUMEN

BACKGROUND: Multi-locus imprinting disturbance (MLID) with methylation defects in various differentially methylated regions (DMRs) has recently been identified in approximately 150 cases with imprinting disorders (IDs), and deleterious variants have been found in genes related to methylation maintenance of DMRs, such as those encoding proteins constructing the subcortical maternal complex (SCMC), in a small fraction of patients and/or their mothers. However, integrated methylation analysis for DMRs and sequence analysis for MLID-causative genes in MLID cases and their mothers have been performed only in a single study focusing on Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) phenotypes. RESULTS: Of 783 patients with various IDs we have identified to date, we examined a total of 386 patients with confirmed epimutation and 71 patients with epimutation or uniparental disomy. Consequently, we identified MLID in 29 patients with epimutation confirmed by methylation analysis for multiple ID-associated DMRs using pyrosequencing and/or methylation-specific multiple ligation-dependent probe amplification. MLID was detected in approximately 12% of patients with BWS phenotype and approximately 5% of patients with SRS phenotype, but not in patients with Kagami-Ogata syndrome, Prader-Willi syndrome, or Angelman syndrome phenotypes. We next conducted array-based methylation analysis for 78 DMRs and whole-exome sequencing in the 29 patients, revealing hypomethylation-dominant aberrant methylation patterns in various DMRs of all the patients, eight probably deleterious variants in genes for SCMC in the mothers of patients, and one homozygous deleterious variant in ZNF445 in one patient. These variants did not show gene-specific methylation disturbance patterns. Clinically, neurodevelopmental delay and/or intellectual developmental disorder (ND/IDD) was observed in about half of the MLID patients, with no association with the identified methylation disturbance patterns and genetic variants. Notably, seven patients with BWS phenotype were conceived by assisted reproductive technology (ART). CONCLUSIONS: The frequency of MLID was 7.5% (29/386) in IDs caused by confirmed epimutation. Furthermore, we revealed diverse patterns of hypomethylation-dominant methylation defects, nine deleterious variants, ND/IDD complications in about half of the MLID patients, and a high frequency of MLID in ART-conceived patients.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Metilación de ADN , Impresión Genómica , Síndrome de Silver-Russell , Humanos , Impresión Genómica/genética , Metilación de ADN/genética , Femenino , Masculino , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Silver-Russell/genética , Fenotipo , Epigénesis Genética/genética , Niño , Preescolar
3.
Clin Epigenetics ; 16(1): 132, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294759

RESUMEN

BACKGROUND: Imprinted genes play important functions in placentation and pregnancy; however, research on their roles in different placental diseases is limited. It is believed that epigenetic alterations, such as DNA methylation, of placental imprinting genes may contribute to the different pathological features of severe placental diseases, such as pre-eclampsia (PE) and placenta accreta spectrum disorders (PAS). RESULTS: In this study, we conducted a comparative analysis of the methylation and expression of placental imprinted genes between PE and PAS using bisulfite sequencing polymerase chain reaction (PCR) and quantitative PCR, respectively. Additionally, we assessed oxidative damage of placental DNA by determining 8-hydroxy-2'-deoxyguanosine levels and fetal growth by determining insulin-like growth factor 2 (IGF2) and cortisol levels in the umbilical cord blood using enzyme-linked immunosorbent assay. Our results indicated that methylation and expression of potassium voltage-gated channel subfamily Q member 1, GNAS complex locus, mesoderm specific transcript, and IGF2 were significantly altered in both PE and PAS placentas. Additionally, our results revealed that the maternal imprinted genes were significantly over-expressed in PE and significantly under-expressed in PAS compared with a normal pregnancy. Moreover, DNA oxidative damage was elevated and positively correlated with IGF2 DNA methylation in both PE and PAS placentas, and cortisol and IGF2 levels were significantly decreased in PE and PAS. CONCLUSIONS: This study suggested that DNA methylation and expression of imprinted genes are aberrant in both PE and PAS placentas and that PE and PAS have different methylation profiles, which may be linked to their unique pathogenesis.


Asunto(s)
Metilación de ADN , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina , Preeclampsia , Humanos , Femenino , Embarazo , Metilación de ADN/genética , Impresión Genómica/genética , Factor II del Crecimiento Similar a la Insulina/genética , Preeclampsia/genética , Adulto , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Placenta/metabolismo , Epigénesis Genética/genética , Hidrocortisona/sangre , Enfermedades Placentarias/genética , Estrés Oxidativo/genética , Sangre Fetal/química , Sangre Fetal/metabolismo , Cromograninas , Proteínas , Canales de Potasio con Entrada de Voltaje
4.
HGG Adv ; 5(4): 100342, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39169619

RESUMEN

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of function of maternal UBE3A. The major cause of AS is a maternal deletion in 15q11.2-q13, and the minor causes are a UBE3A mutation, uniparental disomy (UPD), and imprinting defect (ID). Previous reports suggest that all patients with AS exhibit developmental delay, movement or balance disorders, behavioral characteristics, and speech impairment. In contrast, a substantial number of AS patients with a UBE3A mutation, UPD, or ID were reported not to show these consistent features and to show age-dependent changes in their features. In this study, we investigated 134 patients with AS, including 57 patients with a UBE3A mutation and 48 patients with UPD or ID. Although developmental delay was present in all patients, 20% of patients with AS caused by UPD or ID did not exhibit movement or balance disorders. Differences were also seen in hypopigmentation and seizures, depending on the causes. Moreover, patients with a UBE3A mutation, UPD, or ID tended to show fewer of the specific phenotypes depending on their age. In particular, in patients with UPD or ID, easily provoked laughter and hyperactivity tended to become more pronounced as they aged. Therefore, the clinical features of AS based on cause and age should be understood, and genetic testing should not be limited to patients with the typical clinical features of AS.


Asunto(s)
Síndrome de Angelman , Estudios de Asociación Genética , Mutación , Fenotipo , Ubiquitina-Proteína Ligasas , Humanos , Síndrome de Angelman/genética , Síndrome de Angelman/diagnóstico , Femenino , Masculino , Preescolar , Niño , Adolescente , Ubiquitina-Proteína Ligasas/genética , Lactante , Adulto , Adulto Joven , Impresión Genómica/genética , Disomía Uniparental/genética
5.
Clin Epigenetics ; 16(1): 101, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095842

RESUMEN

Adaptive nanopore sequencing as a diagnostic method for imprinting disorders and episignature analysis revealed an intragenic duplication of Exon 6 and 7 in UBE3A (NM_000462.5) in a patient with relatively mild Angelman-like syndrome. In an all-in-one nanopore sequencing analysis DNA hypomethylation of the SNURF:TSS-DMR, known contributing deletions on the maternal allele and point mutations in UBE3A could be ruled out as disease drivers. In contrast, breakpoints and orientation of the tandem duplication could clearly be defined. Segregation analysis in the family showed that the duplication derived de novo in the maternal grandfather. Our study shows the benefits of an all-in-one nanopore sequencing approach for the diagnostics of Angelman syndrome and other imprinting disorders.


Asunto(s)
Síndrome de Angelman , Metilación de ADN , Duplicación de Gen , Secuenciación de Nanoporos , Ubiquitina-Proteína Ligasas , Humanos , Síndrome de Angelman/genética , Síndrome de Angelman/diagnóstico , Ubiquitina-Proteína Ligasas/genética , Secuenciación de Nanoporos/métodos , Metilación de ADN/genética , Femenino , Duplicación de Gen/genética , Masculino , Exones/genética , Linaje , Impresión Genómica/genética
6.
BMC Mol Cell Biol ; 25(1): 19, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090552

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) infection poses a substantial threat to human health, impacting not only infected individuals but also potentially exerting adverse effects on the health of their offspring. The underlying mechanisms driving this phenomenon remain elusive. This study aims to shed light on this issue by examining alterations in paternally imprinted genes within sperm. METHODS: A cohort of 35 individuals with normal semen analysis, comprising 17 hepatitis B surface antigen (HBsAg)-positive and 18 negative individuals, was recruited. Based on the previous research and the Online Mendelian Inheritance in Man database (OMIM, https://www.omim.org/ ), targeted promoter methylation sequencing was employed to investigate 28 paternally imprinted genes associated with various diseases. RESULTS: Bioinformatic analyses revealed 42 differentially methylated sites across 29 CpG islands within 19 genes and four differentially methylated CpG islands within four genes. At the gene level, an increase in methylation of DNMT1 and a decrease in methylation of CUL7, PRKAG2, and TP53 were observed. DNA methylation haplotype analysis identified 51 differentially methylated haplotypes within 36 CpG islands across 22 genes. CONCLUSIONS: This is the first study to explore the effects of HBV infection on sperm DNA methylation and the potential underlying mechanisms of intergenerational influence of paternal HBV infection.


Asunto(s)
Islas de CpG , Metilación de ADN , Impresión Genómica , Virus de la Hepatitis B , Hepatitis B , Regiones Promotoras Genéticas , Espermatozoides , Humanos , Masculino , Metilación de ADN/genética , Regiones Promotoras Genéticas/genética , Espermatozoides/metabolismo , Islas de CpG/genética , Impresión Genómica/genética , Hepatitis B/genética , Hepatitis B/virología , Adulto , Virus de la Hepatitis B/genética , Haplotipos/genética , Persona de Mediana Edad
7.
Clin Epigenetics ; 16(1): 99, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090763

RESUMEN

BACKGROUND: Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need. METHODS: A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations. RESULTS: In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID. CONCLUSIONS: MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3-5 years to evaluate the research advancements and update this guidance as needed.


Asunto(s)
Metilación de ADN , Impresión Genómica , Humanos , Impresión Genómica/genética , Metilación de ADN/genética , Pruebas Genéticas/métodos
8.
J Transl Med ; 22(1): 808, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217334

RESUMEN

BACKGROUND: Neuroblastoma (NB) is a complex disease, and the current understanding of NB biology is limited. Deregulation in genomic imprinting is a common event in malignancy. Since imprinted genes play crucial roles in early fetal growth and development, their role in NB pathogenesis could be suggested. METHODS: We examined alterations in DNA methylation patterns of 369 NB tumours at 49 imprinted differentially methylated regions (DMRs) and assessed its association with overall survival probabilities and selected clinical and genomic features of the tumours. In addition, an integrated analysis of DNA methylation and allele-specific copy number alterations (CNAs) was performed, to understand the correlation between the two molecular events. RESULTS: Several imprinted regions with aberrant methylation patterns in NB were identified. Regions that underwent loss of methylation in > 30% of NB samples were DMRs annotated to the genes NDN, SNRPN, IGF2, MAGEL2 and HTR5A and regions with gain of methylation were NNAT, RB1 and GPR1. Methylation alterations at six of the 49 imprinted DMRs were statistically significantly associated with reduced overall survival: MIR886, RB1, NNAT/BLCAP, MAGEL2, MKRN3 and INPP5F. RB1, NNAT/BLCAP and MKRN3 were further able to stratify low-risk NB tumours i.e. tumours that lacked MYCN amplification and 11q deletion into risk groups. Methylation alterations at NNAT/BLCAP, MAGEL2 and MIR886 predicted risk independently of MYCN amplification or 11q deletion and age at diagnosis. Investigation of the allele-specific CNAs demonstrated that the imprinted regions that displayed most alterations in NB tumours harbor true epigenetic changes and are not result of the underlying CNAs. CONCLUSIONS: Aberrant methylation in imprinted regions is frequently occurring in NB tumours and several of these regions have independent prognostic value. Thus, these could serve as potentially important clinical epigenetic markers to identify individuals with adverse prognosis. Incorporation of methylation status of these regions together with the established risk predictors may further refine the prognostication of NB patients.


Asunto(s)
Metilación de ADN , Impresión Genómica , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Metilación de ADN/genética , Impresión Genómica/genética , Pronóstico , Masculino , Femenino , Variaciones en el Número de Copia de ADN/genética , Alelos , Preescolar , Lactante , Regulación Neoplásica de la Expresión Génica
9.
Hum Mol Genet ; 33(19): 1711-1725, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39045627

RESUMEN

Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that terminates at PWAR1 in non-neurons. qRT-PCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11 834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS.


Asunto(s)
Factor de Unión a CCCTC , Diferenciación Celular , Cromosomas Humanos Par 15 , Metilación de ADN , Impresión Genómica , Neuronas , Transcriptoma , Ubiquitina-Proteína Ligasas , Humanos , Impresión Genómica/genética , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Cromosomas Humanos Par 15/genética , Neuronas/metabolismo , Metilación de ADN/genética , Transcriptoma/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Diferenciación Celular/genética , Síndrome de Angelman/genética , Síndrome de Angelman/patología , ARN Largo no Codificante/genética , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patología , Síndrome de Prader-Willi/metabolismo , Proteínas Nucleares snRNP/genética , Proteínas Nucleares snRNP/metabolismo , Alelos , Línea Celular , Epigenoma
10.
Trends Genet ; 40(10): 880-890, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38955588

RESUMEN

Oocyte maturation and preimplantation embryo development are critical to successful pregnancy outcomes and the correct establishment and maintenance of genomic imprinting. Thanks to novel technologies and omics studies in human patients and mouse models, the importance of the proteins associated with the cytoplasmic lattices (CPLs), highly abundant structures found in the cytoplasm of mammalian oocytes and preimplantation embryos, in the maternal to zygotic transition is becoming increasingly evident. This review highlights the recent discoveries on the role of these proteins in protein storage and other oocyte cytoplasmic processes, epigenetic reprogramming, and zygotic genome activation (ZGA). A better comprehension of these events may significantly improve clinical diagnosis and pave the way for targeted interventions aiming to correct or mitigate female fertility issues and genomic imprinting disorders.


Asunto(s)
Citoplasma , Oocitos , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo , Humanos , Animales , Femenino , Citoplasma/genética , Citoplasma/metabolismo , Cigoto/metabolismo , Impresión Genómica/genética , Desarrollo Embrionario/genética , Epigénesis Genética , Embarazo , Blastocisto/metabolismo
11.
J Assist Reprod Genet ; 41(9): 2289-2300, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39017772

RESUMEN

PURPOSE: To investigate whether the DNA methylation profiles of GNAS(20q13.32), MEST(7q32.2), MESTIT1(7q32.2), IGF2(11p15.5), H19 (7q32.2), and CEP41(7q32.2) genes are related to the transcriptomic and epigenomic etiology of male infertility. METHODS: The DNA methylation levels of spermatozoa were obtained from fertile (n = 30), oligozoospermic (n = 30), and men with normal sperm count (n = 30). The methylation status of each CpG site was categorized as hypermethylated or hypomethylated. Expression levels of target gene transcripts were determined using real-time PCR. RESULTS: The oligozoospermia showed a higher frequency of hypermethylation at GNASAS 1st, 3rd, and 5th CpG dinucleotides (66.7%, 73.3%, 73.3%) compared to the fertile group (33.3%, 33.3%, 40%, respectively). The normal sperm count exhibited a higher frequency of hypermethylation at the 3rd CpG of CEP41 (46.7%) than the fertile group (16.7%). Normal sperm count was predicted by CEP41 hypermethylation (OR = 1.750, 95%CI 1.038-2.950) and hypermethylation of both CEP41 and GNASAS (OR = 2.389, 95%CI 1.137-5.021). Oligozoospermia was predicted solely by GNASAS hypermethylation (OR = 2.460, 95%CI 1.315-4.603). In sperms with decreased IGF2 expression in the fertile group, we observed hypomethylation in the 2nd CpG of IGF2 antisense (IFG2AS), and hypermethylation in the 1st, 2nd, and 4th CpGs of H19. No significant relationship was found between IGF2 expression and methylation status of IGF2AS and H19 in infertile groups. CONCLUSION: The disappearance of the relationship between IGF2 expression and IGF2AS and H19 methylations in the infertile group provides new information regarding the disruption of epigenetic programming during spermatogenesis. A better understanding of sperm GNASAS and CEP41 hypermethylation could advance innovative diagnostic markers for male infertility.


Asunto(s)
Cromograninas , Metilación de ADN , Subunidades alfa de la Proteína de Unión al GTP Gs , Impresión Genómica , Infertilidad Masculina , Oligospermia , Masculino , Humanos , Metilación de ADN/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Cromograninas/genética , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Impresión Genómica/genética , Adulto , Oligospermia/genética , Oligospermia/patología , Espermatozoides/patología , Espermatozoides/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Epigénesis Genética/genética , Islas de CpG/genética , ARN Largo no Codificante/genética , Recuento de Espermatozoides
12.
Psychoneuroendocrinology ; 167: 107088, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924829

RESUMEN

BACKGROUND: Changes in NR3C1 and IGF2/H19 methylation patterns have been associated with behavioural and psychiatric outcomes. Maternal mental state has been associated with offspring NR3C1 promotor and IGF2/H19 imprinting control region (ICR) methylation patterns. However, there is a lack of prospective studies with long-term follow-up. METHODS: 52 mother-offspring pairs were studied from 12 to 22 weeks of pregnancy and offspring was followed-up until 28-29 years-of-age. During pregnancy, mothers filled in a Life Event Scale and a Daily Hassles Scale measuring perceived stress; i.e., appraisal or subjectively experienced severity of impact of important life events and of daily hassles in several life domains during pregnancy, respectively. Green space was quantified around the residence, using high-resolution (1 m2) map data. Saliva and blood samples were obtained from the adult offspring. Absolute DNA methylation levels were determined in blood and saliva on four NR3C1 amplicons, and one IGF2/H19 ICR amplicon using a bisulfite PCR and sequencing method. Linear mixed effect models were used to test the associations between perceived stress and green spaces during pregnancy, and adult offspring methylation patterns. RESULTS: We found associations between maternal perceived stress during pregnancy and methylation patterns on two out of the four NR3C1 amplicons, measured in blood, from offspring in adulthood, but not with IGF2/H19 methylation. For an interquartile-range (IQR) increase in maternal perceived life event or daily hassles stress scores, absolute methylation levels on several NR3C1 CpG sites were significantly changed (-1.62 % to +5.89 %, p<0.05). Maternal perceived stress scores were not associated with IGF2/H19 methylation, neither in blood nor in saliva. Maternal exposure to green spaces surrounding the residence during the pregnancy was associated with IGF2/H19 ICR methylation (-0.80 % to -1.04 %, p<0.05) in saliva, but not with NR3C1 promotor methylation. CONCLUSION: We observed significant long-term effects of maternal perceived stress during pregnancy on the methylation patterns of the NR3C1 promotor in offspring well into adulthood. This may imply that maternal psychological distress during pregnancy may influence the regulation of the HPA-axis well into adulthood. Additionally, maternal proximity to green spaces was associated with IGF2/H19 ICR methylation patterns, which is a novel finding.


Asunto(s)
Metilación de ADN , Factor II del Crecimiento Similar a la Insulina , Efectos Tardíos de la Exposición Prenatal , ARN Largo no Codificante , Receptores de Glucocorticoides , Estrés Psicológico , Humanos , Femenino , Embarazo , Metilación de ADN/genética , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Proyectos Piloto , Estrés Psicológico/genética , Estrés Psicológico/metabolismo , Adulto , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Masculino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Hijos Adultos/psicología , Madres/psicología , Regiones Promotoras Genéticas/genética , Impresión Genómica/genética , Estudios Prospectivos
13.
Clin Epigenetics ; 16(1): 73, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840187

RESUMEN

Silver-Russell syndrome (SRS) is a representative imprinting disorder characterized by pre- and postnatal growth failure. We encountered two Japanese SRS cases with a de novo pathogenic frameshift variant of HMGA2 (NM_003483.6:c.138_141delinsCT, p.(Lys46Asnfs*16)) and a de novo ~ 3.4 Mb microdeletion at 12q14.2-q15 involving HMGA2, respectively. Furthermore, we compared clinical features in previously reported patients with various genetic conditions leading to compromised IGF2 expression, i.e., HMGA2 aberrations, PLAG1 aberrations, IGF2 aberrations, and H19/IGF2:IG-DMR epimutations (hypomethylations). The results provide further support for HMGA2 being involved in the development of SRS and imply some characteristic features in patients with HMGA2 aberrations.


Asunto(s)
Proteína HMGA2 , Síndrome de Silver-Russell , Humanos , Síndrome de Silver-Russell/genética , Proteína HMGA2/genética , Masculino , Femenino , Mutación del Sistema de Lectura/genética , Japón , Impresión Genómica/genética , Lactante , Factor II del Crecimiento Similar a la Insulina/genética , Metilación de ADN/genética , Cromosomas Humanos Par 12/genética
14.
Clin Epigenetics ; 16(1): 62, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715103

RESUMEN

BACKGROUND: Temple syndrome (TS14) is a rare imprinting disorder caused by maternal UPD14, imprinting defects or paternal microdeletions which lead to an increase in the maternal expressed genes and a silencing the paternally expressed genes in the 14q32 imprinted domain. Classical TS14 phenotypic features include pre- and postnatal short stature, small hands and feet, muscular hypotonia, motor delay, feeding difficulties, weight gain, premature puberty along and precocious puberty. METHODS: An exon array comparative genomic hybridization was performed on a patient affected by psychomotor and language delay, muscular hypotonia, relative macrocephaly, and small hand and feet at two years old. At 6 years of age, the proband presented with precocious thelarche. Genes dosage and methylation within the 14q32 region were analyzed by MS-MLPA. Bisulfite PCR and pyrosequencing were employed to quantification methylation at the four known imprinted differentially methylated regions (DMR) within the 14q32 domain: DLK1 DMR, IG-DMR, MEG3 DMR and MEG8 DMR. RESULTS: The patient had inherited a 69 Kb deletion, encompassing the entire DLK1 gene, on the paternal allele. Relative hypermethylation of the two maternally methylated intervals, DLK1 and MEG8 DMRs, was observed along with normal methylation level at IG-DMR and MEG3 DMR, resulting in a phenotype consistent with TS14. Additional family members with the deletion showed modest methylation changes at both the DLK1 and MEG8 DMRs consistent with parental transmission. CONCLUSION: We describe a girl with clinical presentation suggestive of Temple syndrome resulting from a small paternal 14q32 deletion that led to DLK1 whole-gene deletion, as well as hypermethylation of the maternally methylated DLK1-DMR.


Asunto(s)
Proteínas de Unión al Calcio , Cromosomas Humanos Par 14 , Metilación de ADN , Impresión Genómica , Péptidos y Proteínas de Señalización Intercelular , Niño , Humanos , Anomalías Múltiples/genética , Proteínas de Unión al Calcio/genética , Deleción Cromosómica , Cromosomas Humanos Par 14/genética , Hibridación Genómica Comparativa/métodos , Metilación de ADN/genética , Facies , Impresión Genómica/genética , Trastornos de Impronta , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Hipotonía Muscular , Fenotipo
16.
J Genet Genomics ; 51(8): 855-865, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38599515

RESUMEN

The early development of the endosperm is crucial for balancing the allocation of maternal nutrients to offspring. This process is believed to be evolutionarily associated with genomic imprinting, resulting in parentally biased allelic gene expression. Beyond FertilizationIndependentSeed (FIS) genes, the number of imprinted genes involved in early endosperm development and seed size determination remains limited. This study introduces early endosperm-expressed HAIKU (IKU) downstream Candidate F-box 1 (ICF1) and ICF2 as maternally expressed imprinted genes (MEGs) in Arabidopsis thaliana. Although these genes are also demethylated by DEMETER (DME) in the central cell, their activation differs from the direct DME-mediated activation seen in classical MEGs such as the FIS genes. Instead, ICF maternal alleles carry pre-established hypomethylation in their promoters, priming them for activation by the WRKY10 transcription factor in the endosperm. On the contrary, paternal alleles are predominantly suppressed by CG methylation. Furthermore, we find that ICF genes partially contribute to the small seed size observed in iku mutants. Our discovery reveals a two-step regulatory mechanism that highlights the important role of conventional transcription factors in the activation of imprinted genes, which was previously not fully recognized. Therefore, the mechanism provides a new dimension to understand the transcriptional regulation of imprinting in plant reproduction and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , Endospermo , Regulación de la Expresión Génica de las Plantas , Impresión Genómica , Factores de Transcripción , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilación de ADN/genética , Endospermo/genética , Regulación de la Expresión Génica de las Plantas/genética , Impresión Genómica/genética , N-Glicosil Hidrolasas , Semillas/genética , Semillas/crecimiento & desarrollo , Transactivadores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Clin Epigenetics ; 16(1): 58, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658973

RESUMEN

Alzheimer's disease (AD) prevalence is twice as high in non-Hispanic Blacks (NHBs) as in non-Hispanic Whites (NHWs). The objective of this study was to determine whether aberrant methylation at imprint control regions (ICRs) is associated with AD. Differentially methylated regions (DMRs) were bioinformatically identified from whole-genome bisulfite sequenced DNA derived from brain tissue of 9 AD (5 NHBs and 4 NHWs) and 8 controls (4 NHBs and 4 NHWs). We identified DMRs located within 120 regions defined as candidate ICRs in the human imprintome ( https://genome.ucsc.edu/s/imprintome/hg38.AD.Brain_track ). Eighty-one ICRs were differentially methylated in NHB-AD, and 27 ICRs were differentially methylated in NHW-AD, with two regions common to both populations that are proximal to the inflammasome gene, NLRP1, and a known imprinted gene, MEST/MESTIT1. These findings indicate that early developmental alterations in DNA methylation of regions regulating genomic imprinting may contribute to AD risk and that this epigenetic risk differs between NHBs and NHWs.


Asunto(s)
Enfermedad de Alzheimer , Metilación de ADN , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/etnología , Negro o Afroamericano/genética , Estudios de Casos y Controles , Metilación de ADN/genética , Epigénesis Genética/genética , Impresión Genómica/genética , Proteínas NLR/genética , Blanco/genética
18.
Am J Hum Genet ; 111(4): 654-667, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38471507

RESUMEN

Allele-specific methylation (ASM) is an epigenetic modification whereby one parental allele becomes methylated and the other unmethylated at a specific locus. ASM is most often driven by the presence of nearby heterozygous variants that influence methylation, but also occurs somatically in the context of genomic imprinting. In this study, we investigate ASM using publicly available single-cell reduced representation bisulfite sequencing (scRRBS) data on 608 B cells sampled from six healthy B cell samples and 1,230 cells from 11 chronic lymphocytic leukemia (CLL) samples. We developed a likelihood-based criterion to test whether a CpG exhibited ASM, based on the distributions of methylated and unmethylated reads both within and across cells. Applying our likelihood ratio test, 65,998 CpG sites exhibited ASM in healthy B cell samples according to a Bonferroni criterion (p < 8.4 × 10-9), and 32,862 CpG sites exhibited ASM in CLL samples (p < 8.5 × 10-9). We also called ASM at the sample level. To evaluate the accuracy of our method, we called heterozygous variants from the scRRBS data, which enabled variant-based calls of ASM within each cell. Comparing sample-level ASM calls to the variant-based measures of ASM, we observed a positive predictive value of 76%-100% across samples. We observed high concordance of ASM across samples and an overrepresentation of ASM in previously reported imprinted genes and genes with imprinting binding motifs. Our study demonstrates that single-cell bisulfite sequencing is a potentially powerful tool to investigate ASM, especially as studies expand to increase the number of samples and cells sequenced.


Asunto(s)
Metilación de ADN , Leucemia Linfocítica Crónica de Células B , Sulfitos , Humanos , Metilación de ADN/genética , Alelos , Leucemia Linfocítica Crónica de Células B/genética , Funciones de Verosimilitud , Impresión Genómica/genética , Islas de CpG/genética
19.
Nature ; 628(8006): 122-129, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448590

RESUMEN

Genomic imprinting-the non-equivalence of maternal and paternal genomes-is a critical process that has evolved independently in many plant and mammalian species1,2. According to kinship theory, imprinting is the inevitable consequence of conflictive selective forces acting on differentially expressed parental alleles3,4. Yet, how these epigenetic differences evolve in the first place is poorly understood3,5,6. Here we report the identification and molecular dissection of a parent-of-origin effect on gene expression that might help to clarify this fundamental question. Toxin-antidote elements (TAs) are selfish elements that spread in populations by poisoning non-carrier individuals7-9. In reciprocal crosses between two Caenorhabditis tropicalis wild isolates, we found that the slow-1/grow-1 TA is specifically inactive when paternally inherited. This parent-of-origin effect stems from transcriptional repression of the slow-1 toxin by the PIWI-interacting RNA (piRNA) host defence pathway. The repression requires PIWI Argonaute and SET-32 histone methyltransferase activities and is transgenerationally inherited via small RNAs. Remarkably, when slow-1/grow-1 is maternally inherited, slow-1 repression is halted by a translation-independent role of its maternal mRNA. That is, slow-1 transcripts loaded into eggs-but not SLOW-1 protein-are necessary and sufficient to counteract piRNA-mediated repression. Our findings show that parent-of-origin effects can evolve by co-option of the piRNA pathway and hinder the spread of selfish genes that require sex for their propagation.


Asunto(s)
Caenorhabditis , Impresión Genómica , ARN de Interacción con Piwi , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Femenino , Masculino , Alelos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis/genética , Caenorhabditis/metabolismo , Cruzamientos Genéticos , Padre , Genoma/genética , Impresión Genómica/genética , Organismos Hermafroditas/genética , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Madres , Oocitos/metabolismo , ARN de Interacción con Piwi/genética , Biosíntesis de Proteínas , Secuencias Repetitivas de Ácidos Nucleicos/genética , ARN Mensajero/genética , Toxinas Biológicas/genética , Transcripción Genética
20.
Mol Genet Genomics ; 299(1): 40, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546894

RESUMEN

Genomic imprinting is an epigenetic regulation mechanism in mammals resulting in the parentally dependent monoallelic expression of genes. Imprinting disorders in humans are associated with several congenital syndromes and cancers and remain the focus of many medical studies. Cattle is a better model organism for investigating human embryo development than mice. Imprinted genes usually cluster on chromosomes and are regulated by different methylation regions (DMRs) located in imprinting control regions that control gene expression in cis. There is an imprinted locus on human chromosome 16q24.1 associated with congenital lethal developmental lung disease in newborns. However, genomic imprinting on bovine chromosome 18, which is homologous with human chromosome 16 has not been systematically studied. The aim of this study was to analyze the allelic expressions of eight genes (CDH13, ATP2C2, TLDC1, COTL1, CRISPLD2, ZDHHC7, KIAA0513, and GSE1) on bovine chromosome 18 and to search the DMRs associated gene allelic expression. Three transcript variants of the ZDHHC7 gene (X1, X2, and X5) showed maternal imprinting in bovine placentas. In addition, the monoallelic expression of X2 and X5 was tissue-specific. Five transcripts of the KIAA0513 gene showed tissue- and isoform-specific monoallelic expression. The CDH13, ATP2C2, and TLDC1 genes exhibited tissue-specific imprinting, however, COTL1, CRISLPLD2, and GSE1 escaped imprinting. Four DMRs, established after fertilization, were found in this region. Two DMRs were located between the ZDHHC7 and KIAA0513 genes, and two were in exon 1 of the CDH13 and ATP2C2 genes, respectively. The results from this study support future studies on the molecular mechanism to regulate the imprinting of candidate genes on bovine chromosome 18.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Recién Nacido , Embarazo , Femenino , Humanos , Bovinos/genética , Animales , Ratones , Metilación de ADN/genética , Cromosomas Humanos Par 18 , Impresión Genómica/genética , Cromosomas , Mamíferos/genética , Proteínas del Tejido Nervioso/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA