Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.269
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1400068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310788

RESUMEN

Complement C3 (C3) is usually deposited spontaneously on the surfaces of invading bacteria prior to internalization, but the impact of C3 coating on cellular responses is largely unknown. Staphylococcus aureus (S. aureus) is a facultative intracellular pathogen that subverts autophagy and replicates in both phagocytic and nonphagocytic cells. In the present study, we deposited C3 components on the surface of S. aureus by complement opsonization before cell infection and confirmed that C3-coatings remained on the surface of the bacteria after they have invaded the cells, suggesting S. aureus cannot escape or degrade C3 labeling. We found that the C3 deposition on S. aureus notably enhanced cellular autophagic responses, and distinguished these responses as xenophagy, in contrast to LC3-associated phagocytosis (LAP). Furthermore, this upregulation was due to the recruitment of and direct interaction with autophagy-related 16-like 1 (ATG16L1), thereby resulting in autophagy-dependent resistance to bacterial growth within cells. Interestingly, this autophagic effect occurred only after C3 activation by enzymatic cleavage because full-length C3 without cleavage of the complement cascade reaction, although capable of binding to ATG16L1, failed to promote autophagy. These findings demonstrate the biological function of intracellular C3 upon bacterial infection in enhancing autophagy against internalized S. aureus.


Asunto(s)
Autofagia , Complemento C3 , Fagocitosis , Infecciones Estafilocócicas , Staphylococcus aureus , Staphylococcus aureus/inmunología , Staphylococcus aureus/fisiología , Complemento C3/metabolismo , Humanos , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Animales , Interacciones Huésped-Patógeno , Ratones , Opsonización , Activación de Complemento
3.
Cell Rep ; 43(8): 114607, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39126652

RESUMEN

Macrophage metabolic plasticity is central to inflammatory programming, yet mechanisms of coordinating metabolic and inflammatory programs during infection are poorly defined. Here, we show that type I interferon (IFN) temporally guides metabolic control of inflammation during methicillin-resistant Staphylococcus aureus (MRSA) infection. We find that staggered Toll-like receptor and type I IFN signaling in macrophages permit a transient energetic state of combined oxidative phosphorylation (OXPHOS) and aerobic glycolysis followed by inducible nitric oxide synthase (iNOS)-mediated OXPHOS disruption. This disruption promotes type I IFN, suppressing other pro-inflammatory cytokines, notably interleukin-1ß. Upon infection, iNOS expression peaks at 24 h, followed by lactate-driven Nos2 repression via histone lactylation. Type I IFN pre-conditioning prolongs infection-induced iNOS expression, amplifying type I IFN. Cutaneous MRSA infection in mice constitutively expressing epidermal type I IFN results in elevated iNOS levels, impaired wound healing, vasculopathy, and lung infection. Thus, kinetically regulated type I IFN signaling coordinates immunometabolic checkpoints that control infection-induced inflammation.


Asunto(s)
Inflamación , Interferón Tipo I , Macrófagos , Staphylococcus aureus Resistente a Meticilina , Óxido Nítrico Sintasa de Tipo II , Transducción de Señal , Infecciones Estafilocócicas , Animales , Interferón Tipo I/metabolismo , Inflamación/patología , Inflamación/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/patología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Glucólisis , Interleucina-1beta/metabolismo
4.
PLoS Pathog ; 20(8): e1012437, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102432

RESUMEN

The ability of Staphylococcus aureus (S. aureus) to survive within macrophages is a critical strategy for immune evasion, contributing to the pathogenesis and progression of osteomyelitis. However, the underlying mechanisms remain poorly characterized. This study discovered that inhibiting the MEK1/2 pathway reduced bacterial load and mitigated bone destruction in a mouse model of S. aureus osteomyelitis. Histological staining revealed increased phosphorylated MEK1/2 levels in bone marrow macrophages surrounding abscess in the mouse model of S. aureus osteomyelitis. Activation of MEK1/2 pathway and its roles in impairing macrophage bactericidal function were confirmed in primary mouse bone marrow-derived macrophages (BMDMs). Transcriptome analysis and in vitro experiments demonstrated that S. aureus activates the MEK1/2 pathway through EGFR signaling. Moreover, we found that excessive activation of EGFR-MEK1/2 cascade downregulates mitochondrial reactive oxygen species (mtROS) levels by suppressing Chek2 expression, thereby impairing macrophage bactericidal function. Furthermore, pharmacological inhibition of EGFR signaling prevented upregulation of phosphorylated MEK1/2 and restored Chek2 expression in macrophages, significantly enhancing S. aureus clearance and improving bone microstructure in vivo. These findings highlight the critical role of the EGFR-MEK1/2 cascade in host immune defense against S. aureus, suggesting that S. aureus may reduce mtROS levels by overactivating the EGFR-MEK1/2 cascade, thereby suppressing macrophage bactericidal function. Therefore, combining EGFR-MEK1/2 pathway blockade with antibiotics could represent an effective therapeutic approach for the treatment of S. aureus osteomyelitis.


Asunto(s)
Receptores ErbB , MAP Quinasa Quinasa 1 , Macrófagos , Osteomielitis , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Osteomielitis/microbiología , Osteomielitis/inmunología , Osteomielitis/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Ratones , Staphylococcus aureus/inmunología , Receptores ErbB/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Transducción de Señal
5.
FASEB J ; 38(16): e23881, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39166718

RESUMEN

During infection, the host employs nutritional immunity to restrict access to iron. Staphylococcus lugdunensis has been recognized for its ability to utilize host-derived heme to overcome iron restriction. However, the mechanism behind this process involves the release of hemoglobin from erythrocytes, and the hemolytic factors of S. lugdunensis remain poorly understood. S. lugdunensis encodes four phenol-soluble modulins (PSMs), short peptides with hemolytic activity. The peptides SLUSH A, SLUSH B, and SLUSH C are ß-type PSMs, and OrfX is an α-type PSM. Our study shows the SLUSH locus to be essential for the hemolytic phenotype of S. lugdunensis. All four peptides individually exhibited hemolytic activity against human and sheep erythrocytes, but synergism with sphingomyelinase was observed exclusively against sheep erythrocytes. Furthermore, our findings demonstrate that SLUSH is crucial for allowing the utilization of erythrocytes as the sole source of nutritional iron and confirm the transcriptional regulation of SLUSH by Agr. Additionally, our study reveals that SLUSH peptides stimulate the human immune system. Our analysis identifies SLUSH as a pivotal hemolytic factor of S. lugdunensis and demonstrates its concerted action with heme acquisition systems to overcome iron limitation in the presence of host erythrocytes.


Asunto(s)
Eritrocitos , Hemólisis , Hierro , Staphylococcus lugdunensis , Eritrocitos/metabolismo , Staphylococcus lugdunensis/metabolismo , Humanos , Hierro/metabolismo , Animales , Ovinos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Péptidos/metabolismo , Péptidos/química , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/metabolismo , Toxinas Bacterianas
6.
PLoS Pathog ; 20(8): e1012056, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39208402

RESUMEN

The Staphylococcus sp. are a dominant part of the human skin microbiome and present across the body. Staphylococcus epidermidis is a ubiquitous skin commensal, while S. aureus is thought to colonize at least 30% of the population. S. aureus are not only colonizers but a leading cause of skin and soft tissue infections and a critical healthcare concern. To understand how healthy human skin may differentiate commensal bacteria, such as S. epidermidis, from the potential pathogen methicillin-resistant S. aureus (MRSA), we use ex vivo human skin models that allow us to study this host-bacterial interaction in the most clinically relevant environment. Our work highlights the role of the outer stratum corneum as a protective physical barrier against invasion by colonizing Staphylococci. We show how the structural cells of the skin can internalize and respond to different Staphylococci with increasing sensitivity. In intact human skin, a discriminatory IL-1ß response was identified, while disruption of the protective stratum corneum triggered an increased and more diverse immune response. We identified and localized tissue resident Langerhans cells (LCs) as a potential source of IL-1ß and go on to show a dose-dependent response of MUTZ-LCs to S. aureus but not S. epidermidis. This suggests an important role of LCs in sensing and discriminating between bacteria in healthy human skin, particularly in intact skin and provides a detailed snapshot of how human skin differentiates between friend and potential foe. With the rise in antibiotic resistance, understanding the innate immune response of healthy skin may help us find ways to enhance or manipulate these natural defenses to prevent invasive infection.


Asunto(s)
Interleucina-1beta , Piel , Staphylococcus aureus , Staphylococcus epidermidis , Humanos , Interleucina-1beta/metabolismo , Piel/microbiología , Piel/inmunología , Staphylococcus aureus/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/metabolismo , Células de Langerhans/inmunología , Células de Langerhans/microbiología , Staphylococcus aureus Resistente a Meticilina/inmunología , Infecciones Cutáneas Estafilocócicas/microbiología , Infecciones Cutáneas Estafilocócicas/inmunología , Microbiota/inmunología
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167482, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39213794

RESUMEN

Two distinct defense strategies, disease resistance (DR) and disease tolerance (DT), enable a host to survive infectious diseases. Newborns, constrained by limited energy reserves, predominantly rely on DT to cope with infection. However, this approach may fail when pathogen levels surpass a critical threshold, prompting a shift to DR that can lead to dysregulated immune responses and sepsis. The mechanisms governing the interplay between DR and DT in newborns remain poorly understood. Here, we compare metabolic traits and defense strategies between survivors and non-survivors in Staphylococcus epidermidis (S. epidermidis)-infected preterm piglets, mimicking infection in preterm infants. Compared to non-survivors, survivors displayed elevated DR during the initial phase of infection, followed by stronger DT in later stages. In contrast, non-survivors showed clear signs of respiratory and metabolic acidosis and hyperglycemia, together with exaggerated inflammation and organ dysfunctions. Hepatic transcriptomics revealed a strong association between the DT phenotype and heightened oxidative phosphorylation in survivors, coupled with suppressed glycolysis and immune signaling. Plasma metabolomics confirmed the findings of metabolic regulations associated with DT phenotype in survivors. Our study suggests a significant association between the initial DR and subsequent DT, which collectively contributes to improved infection survival. The regulation of metabolic processes that optimize the timing and balance between DR and DT holds significant potential for developing novel therapeutic strategies for neonatal infection.


Asunto(s)
Animales Recién Nacidos , Infecciones Estafilocócicas , Staphylococcus epidermidis , Animales , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Porcinos , Resistencia a la Enfermedad , Humanos , Fosforilación Oxidativa , Recién Nacido , Glucólisis , Sepsis/metabolismo , Sepsis/inmunología , Sepsis/microbiología , Interacciones Huésped-Patógeno/inmunología , Hígado/metabolismo , Hígado/patología
8.
J Mater Chem B ; 12(34): 8357-8365, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39101217

RESUMEN

Skin infections are a major threat to human health. Early diagnosis of bacterial infections is of great significance for implementing protective measures on the skin. Therefore, in this study, we designed an electrospun membrane (PPBT) for visual monitoring of colonized bacteria and responsive antibacterial ability. Specifically, the acidity of the microenvironment caused by bacterial metabolism was applied to drive the color change of bromothymol blue (BTB) on the PPBT membrane from green to yellow, thereby facilitating the early warning of infection and timely treatment. Within 4 h, different concentrations of Staphylococcus aureus (∼105 CFU mL-1), Escherichia coli (∼105 CFU mL-1), Pseudomonas aeruginosa (∼105 CFU mL-1) and Candida albicans (∼104 CFU mL-1) were visually monitored. Moreover, as the local acidity was enhanced via microbial metabolism, ZIF-8 nanoparticles loaded with TCS (TCS@ZIF-8) on the PPBT membrane could release TCS in an acid-responsive manner. At the same time, ROS were generated under 405 nm irradiation to achieve synergistic antibacterial ability. Experiments confirmed that the PPBT membrane has ideal and controllable antibacterial features based on acid responsive release and a synergistic photocatalytic antibacterial mechanism after monitoring. Therefore, the PPBT membrane developed in this work provides a feasible solution for bacterial monitoring and inactivation devices. More importantly, it can be beneficial for meeting the needs of clinical diagnosis and timely treatment of bacterial infection.


Asunto(s)
Membranas Artificiales , Electrones , Staphylococcus aureus , Candida albicans , Pseudomonas aeruginosa/metabolismo , Escherichia coli/metabolismo , Infecciones Estafilocócicas/metabolismo , Candidiasis/metabolismo , Infecciones por Pseudomonas , Infecciones por Escherichia coli , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Imidazoles/química , Imidazoles/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Adenosina Trifosfato/metabolismo , Sistemas de Liberación de Medicamentos , Nanopartículas del Metal/química , Nanofibras/química
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159558, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39173873

RESUMEN

Despite Staphylococcus aureus (S. aureus) being a highly studied zoontic bacterium, its enteropathogenicity remains elusive. Herein, our findings demonstrated that S. aureus infection led to the accumulation of lipid droplets (LDs) in intestinal epithelial cells, accompanied by marked elevation inflammatory response that ultimately decreases intracellular bacterial load. The aforestated phenomenon may be partly attributed to the up-regulation of hypoxia-inducible lipid droplet-associated protein (HILPDA) and the concomitant down-regulation of cystathionine ß-synthase (CBS) protein. Moreover, S. aureus infection up-regulated the expression of HILPDA, thereby promoting LDs accumulation, and down-regulated that of CBS, consequently inhibiting microsomal triglyceride transfer protein (MTTP) expression. This process may suppress the transport of LDs to the extracellular environment, further contributing to the formation of intracellular LDs. In summary, the results of this study provide significant insights into the intricate mechanisms through which the host organism combats pathogens and maintains the balance of sulfur and lipid metabolism. These findings not only enhance our understanding of the host's defense mechanisms but also offer promising avenues for the development of novel strategies to combat intestinal infectious diseases.


Asunto(s)
Cistationina betasintasa , Células Epiteliales , Gotas Lipídicas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Gotas Lipídicas/metabolismo , Cistationina betasintasa/metabolismo , Cistationina betasintasa/genética , Humanos , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Animales , Metabolismo de los Lípidos , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Células CACO-2 , Ratones
10.
FASEB J ; 38(14): e23801, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39018106

RESUMEN

Intracellular pathogens including Staphylococcus aureus contribute to the non-healing phenotype of chronic wounds. Lactobacilli, well known as beneficial bacteria, are also reported to modulate the immune system, yet their role in cutaneous immunity remains largely unknown. We explored the therapeutic potential of bacteria-free postbiotics, bioactive lysates of lactobacilli, to reduce intracellular S. aureus colonization and promote healing. Fourteen postbiotics derived from various lactobacilli species were screened, and Latilactobacillus curvatus BGMK2-41 was selected for further analysis based on the most efficient ability to reduce intracellular infection by S. aureus diabetic foot ulcer clinical isolate and S. aureus USA300. Treatment of both infected keratinocytes in vitro and infected human skin ex vivo with BGMK2-41 postbiotic cleared S. aureus. Keratinocytes treated in vitro with BGMK2-41 upregulated expression of antimicrobial response genes, of which DEFB4, ANG, and RNASE7 were also found upregulated in treated ex vivo human skin together with CAMP exclusively upregulated ex vivo. Furthermore, BGMK2-41 postbiotic treatment has a multifaceted impact on the wound healing process. Treatment of keratinocytes stimulated cell migration and the expression of tight junction proteins, while in ex vivo human skin BGMK2-41 increased expression of anti-inflammatory cytokine IL-10, promoted re-epithelialization, and restored the epidermal barrier via upregulation of tight junction proteins. Together, this provides a potential therapeutic approach for persistent intracellular S. aureus infections.


Asunto(s)
Queratinocitos , Lactobacillus , Staphylococcus aureus , Humanos , Queratinocitos/microbiología , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Piel/microbiología , Piel/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Probióticos/farmacología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo , Ribonucleasas/metabolismo
11.
Nat Commun ; 15(1): 5583, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961085

RESUMEN

The function of many bacterial processes depends on the formation of functional membrane microdomains (FMMs), which resemble the lipid rafts of eukaryotic cells. However, the mechanism and the biological function of these membrane microdomains remain unclear. Here, we show that FMMs in the pathogen methicillin-resistant Staphylococcus aureus (MRSA) are dedicated to confining and stabilizing proteins unfolded due to cellular stress. The FMM scaffold protein flotillin forms a clamp-shaped oligomer that holds unfolded proteins, stabilizing them and favoring their correct folding. This process does not impose a direct energy cost on the cell and is crucial to survival of ATP-depleted bacteria, and thus to pathogenesis. Consequently, FMM disassembling causes the accumulation of unfolded proteins, which compromise MRSA viability during infection and cause penicillin re-sensitization due to PBP2a unfolding. Thus, our results indicate that FMMs mediate ATP-independent stabilization of unfolded proteins, which is essential for bacterial viability during infection.


Asunto(s)
Proteínas Bacterianas , Microdominios de Membrana , Proteínas de la Membrana , Staphylococcus aureus Resistente a Meticilina , Proteínas de la Membrana/metabolismo , Microdominios de Membrana/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Proteínas Bacterianas/metabolismo , Desplegamiento Proteico , Adenosina Trifosfato/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/química , Humanos , Estabilidad Proteica , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/metabolismo , Animales , Ratones
12.
J Neuroinflammation ; 21(1): 179, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044282

RESUMEN

BACKGROUND: Craniotomy is a common neurosurgery used to treat intracranial pathologies. Nearly 5% of the 14 million craniotomies performed worldwide each year become infected, most often with Staphylococcus aureus (S. aureus), which forms a biofilm on the surface of the resected bone segment to establish a chronic infection that is recalcitrant to antibiotics and immune-mediated clearance. Tumor necrosis factor (TNF), a prototypical proinflammatory cytokine, has been implicated in generating protective immunity to various infections. Although TNF is elevated during S. aureus craniotomy infection, its functional importance in regulating disease pathogenesis has not been explored. METHODS: A mouse model of S. aureus craniotomy infection was used to investigate the functional importance of TNF signaling using TNF, TNFR1, and TNFR2 knockout (KO) mice by quantifying bacterial burden, immune infiltrates, inflammatory mediators, and transcriptional changes by RNA-seq. Complementary experiments examined neutrophil extracellular trap formation, leukocyte apoptosis, phagocytosis, and bactericidal activity. RESULTS: TNF transiently regulated neutrophil and granulocytic myeloid-derived suppressor cell recruitment to the brain, subcutaneous galea, and bone flap as evident by significant reductions in both cell types between days 7 to 14 post-infection coinciding with significant decreases in several chemokines, which recovered to wild type levels by day 28. Despite these defects, bacterial burdens were similar in TNF KO and WT mice. RNA-seq revealed enhanced lymphotoxin-α (Lta) expression in TNF KO granulocytes. Since both TNF and LTα signal through TNFR1 and TNFR2, KO mice for each receptor were examined to assess potential redundancy; however, neither strain had any impact on S. aureus burden. In vitro studies revealed that TNF loss selectively altered macrophage responses to S. aureus since TNF KO macrophages displayed significant reductions in phagocytosis, apoptosis, IL-6 production, and bactericidal activity in response to live S. aureus, whereas granulocytes were not affected. CONCLUSION: These findings implicate TNF in modulating granulocyte recruitment during acute craniotomy infection via secondary effects on chemokine production and identify macrophages as a key cellular target of TNF action. However, the lack of changes in bacterial burden in TNF KO animals suggests the involvement of additional signals that dictate S. aureus pathogenesis during craniotomy infection.


Asunto(s)
Craneotomía , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones Estafilocócicas , Staphylococcus aureus , Factor de Necrosis Tumoral alfa , Animales , Ratones , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Factor de Necrosis Tumoral alfa/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Leucocitos/metabolismo , Modelos Animales de Enfermedad , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo
13.
Bone ; 187: 117181, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38960295

RESUMEN

Staphylococcus aureus osteomyelitis leads to extensive bone destruction. Osteoclasts are bone resorbing cells that are often increased in bone infected with S. aureus. The cytokine RANKL is essential for osteoclast formation under physiological conditions but in vitro evidence suggests that inflammatory cytokines may by-pass the requirement for RANKL. The goal of this study was to determine whether RANKL-dependent osteoclast formation is essential for the bone loss that occurs in a murine model of S. aureus osteomyelitis. To this end, humanized-RANKL mice were infected by direct inoculation of S. aureus into a unicortical defect in the femur. Mice were treated with vehicle or denosumab, a human monoclonal antibody that inhibits RANKL, both before and during a 14-day infection period. The severe cortical bone destruction caused by infection was completely prevented by denosumab administration even though the bacterial burden in the femur was not affected. Osteoclasts were abundant near the inoculation site in vehicle-treated mice but absent in denosumab-treated mice. In situ hybridization demonstrated that S. aureus infection potently stimulated RANKL expression in bone marrow stromal cells. The extensive reactive bone formation that occurs in this osteomyelitis model was also reduced by denosumab administration. Lastly, there was a notable lack of osteoblasts near the infection site suggesting that the normal coupling of bone formation to bone resorption was disrupted by S. aureus infection. These results demonstrate that RANKL-mediated osteoclast formation is required for the bone loss that occurs in S. aureus infection and suggest that disruption of the coupling of bone formation to bone resorption may also contribute to bone loss in this condition.


Asunto(s)
Resorción Ósea , Denosumab , Modelos Animales de Enfermedad , Osteoclastos , Osteomielitis , Ligando RANK , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Osteomielitis/microbiología , Osteomielitis/patología , Osteomielitis/metabolismo , Ligando RANK/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Ratones , Resorción Ósea/patología , Resorción Ósea/microbiología , Resorción Ósea/metabolismo , Denosumab/farmacología , Humanos , Fémur/patología , Fémur/microbiología , Anticuerpos Monoclonales Humanizados/farmacología
14.
Cell Rep ; 43(7): 114486, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38990718

RESUMEN

Skin/soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) pose a major healthcare burden. Distinct inflammatory and resolution phases comprise the host immune response to SSTIs. Resolution is a myeloid PPARγ-dependent anti-inflammatory phase that is essential for the clearance of MRSA. However, the signals activating PPARγ to induce resolution remain unknown. Here, we demonstrate that myeloid glucose transporter 1 (GLUT-1) is essential for the onset of resolution. MRSA-challenged macrophages are unsuccessful in generating an oxidative burst or immune radicals in the absence of GLUT-1 due to a reduction in the cellular NADPH pool. This translates in vivo as a significant reduction in lipid peroxidation products required for the activation of PPARγ in MRSA-infected mice lacking myeloid GLUT-1. Chemical induction of PPARγ during infection circumvents this GLUT-1 requirement and improves resolution. Thus, GLUT-1-dependent oxidative burst is essential for the activation of PPARγ and subsequent resolution of SSTIs.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Staphylococcus aureus Resistente a Meticilina , Infecciones de los Tejidos Blandos , Animales , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Ratones , Infecciones de los Tejidos Blandos/microbiología , Infecciones de los Tejidos Blandos/metabolismo , Infecciones de los Tejidos Blandos/patología , PPAR gamma/metabolismo , Infecciones Cutáneas Estafilocócicas/microbiología , Infecciones Cutáneas Estafilocócicas/metabolismo , Infecciones Cutáneas Estafilocócicas/patología , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Macrófagos/microbiología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología
15.
J Cell Mol Med ; 28(14): e18550, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39042561

RESUMEN

Endometritis is one of the important causes of infertility. Puerarin (PU) can inhibit oxidative stress and reduce inflammation; however, it is unclear whether PU has a protective effect on the endometritis. In our study, we used Staphylococcus aureus to induce mouse endometritis. The PU group (100 mg/kg PU) and the S. aureus + PU group received daily intraperitoneal injection of PU (25, 50 or 100 mg/kg PU). The results showed that S. aureus significantly increased the levels of MPO, TNF-α, IL-1ß and IL-6 in uterine tissue, and increased the expression of p-p65 and p-IκBα proteins in uterine tissue to induce endometritis in mice (p < 0.05). Furthermore, it has been found that S. aureus promotes the occurrence of ferroptosis by reducing GSH and ATP content, increasing MDA and iron content and reducing GPX4 and SLC7A11 protein expression levels (p < 0.05). S. aureus significantly increase the expression of NLRP3, ASC, caspase-1 and P2X7 proteins in uterine tissue (p < 0.05). However, PU obviously reduced the inflammatory response and reversed the changes of ferroptosis and the expression of P2X7 receptor/NLRP3 pathway associated proteins of the uterus induced by S. aureus (p < 0.05). Taken together, these findings emphasize the protective effect of PU on endometritis by regulating the P2X7 receptor/NLRP3 signalling pathway and inhibiting ferroptosis.


Asunto(s)
Endometritis , Ferroptosis , Isoflavonas , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores Purinérgicos P2X7 , Transducción de Señal , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Femenino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Ferroptosis/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Endometritis/metabolismo , Endometritis/microbiología , Endometritis/tratamiento farmacológico , Endometritis/patología , Transducción de Señal/efectos de los fármacos , Ratones , Receptores Purinérgicos P2X7/metabolismo , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Útero/metabolismo , Útero/patología , Útero/efectos de los fármacos , Útero/microbiología , Estrés Oxidativo/efectos de los fármacos
16.
Cell Rep ; 43(7): 114453, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38985677

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infection, a major cause of hospital- and community-acquired pneumonia, still has a high mortality rate. Extracellular vesicles (EVs), as crucial mediators of intercellular communication, have a significant impact on infectious diseases. However, the role of EVs from alveolar macrophages (AMs) in MRSA pneumonia remains unclear. We report that AMs phagocytose MRSA and release more EVs in mice with MRSA pneumonia. EVs from AMs harboring phagocytosed MRSA exhibit significant proinflammatory effects and induce necroptosis by delivering tumor necrosis factor α (TNF-α) and miR-146a-5p. Mechanically, the upregulated miR-146a-5p in these EVs enhances the phosphorylation of RIPK1, RIPK3, and MLKL by targeting TNF receptor-associated factor 6 (TRAF6), thereby promoting TNF-α-induced necroptosis. The combination of a TNF-α antagonist and an miR-146a-5p antagomir effectively improves the outcomes of mice with MRSA pneumonia. Overall, we reveal the pronecrotic effect of EVs from MRSA-infected AMs and provide a promising target for the prevention and treatment of MRSA pneumonia.


Asunto(s)
Vesículas Extracelulares , Macrófagos Alveolares , Staphylococcus aureus Resistente a Meticilina , MicroARNs , Necroptosis , Animales , Vesículas Extracelulares/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Ratones , MicroARNs/metabolismo , MicroARNs/genética , Fagocitosis , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/patología , Infecciones Estafilocócicas/metabolismo , Masculino , Humanos
17.
Cell Mol Life Sci ; 81(1): 300, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001897

RESUMEN

BACKGROUND: Age-associated impairments in innate immunity are believed to be a causative factor responsible for severe pathogenesis of Staphylococcus aureus (S. aureus) infection in the bone tissue. However, the basis for age-associated decline in innate immune response upon S. aureus infection remains poorly understood. RESULTS: Our transcriptional data (GEO: GSE166522) from a mouse model of S. aureus osteomyelitis show up-regulated CXCL9 and CXCL10 (CXCL9/10), which is further confirmed in vitro and in vivo by the present study. Notably, monocytes are a main source for CXCL9/10 production in bone marrow upon S. aureus challenge, but this response declines in middle-aged mice. Interestingly, conditional medium of bone marrow monocytes from middle-aged mice has a strikingly decreased effect on bactericidal functions of neutrophils and macrophages compares with that from young mice. We further show that activation of CXCL9/10-CXCR3 axis between monocytes and macrophages/neutrophils promotes the bactericidal function of the cells, whereas blocking the axis impairs such function. Importantly, treatment with either exogenous CXCL9 or CXCL10 in a middle-aged mice model enhances, while pharmacological inhibition of CXCR3 in young mice model impairs, bacterial clearance and bone marrow structure. CONCLUSIONS: These findings demonstrate that bone marrow monocytes act as a critical promotor of innate immune response via the CXLCL9/10-CXCR3 axis upon S. aureus infection, and that the increased susceptibility to S. aureus infection in skeleton in an aged host may be largely attributable to the declined induction of CXCR9/10 in monocytes.


Asunto(s)
Quimiocina CXCL10 , Quimiocina CXCL9 , Modelos Animales de Enfermedad , Inmunidad Innata , Monocitos , Osteomielitis , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Osteomielitis/microbiología , Osteomielitis/inmunología , Osteomielitis/metabolismo , Osteomielitis/patología , Monocitos/inmunología , Monocitos/metabolismo , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/genética , Staphylococcus aureus/inmunología , Ratones , Quimiocina CXCL10/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Infecciones Estafilocócicas/metabolismo , Ratones Endogámicos C57BL , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Envejecimiento/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo
18.
PLoS Pathog ; 20(7): e1012425, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39078849

RESUMEN

Pathogenic bacteria's metabolic adaptation for survival and proliferation within hosts is a crucial aspect of bacterial pathogenesis. Here, we demonstrate that citrate, the first intermediate of the tricarboxylic acid (TCA) cycle, plays a key role as a regulator of gene expression in Staphylococcus aureus. We show that citrate activates the transcriptional regulator CcpE and thus modulates the expression of numerous genes involved in key cellular pathways such as central carbon metabolism, iron uptake and the synthesis and export of virulence factors. Citrate can also suppress the transcriptional regulatory activity of ferric uptake regulator. Moreover, we determined that accumulated intracellular citrate, partly through the activation of CcpE, decreases the pathogenic potential of S. aureus in animal infection models. Therefore, citrate plays a pivotal role in coordinating carbon metabolism, iron homeostasis, and bacterial pathogenicity at the transcriptional level in S. aureus, going beyond its established role as a TCA cycle intermediate.


Asunto(s)
Carbono , Ácido Cítrico , Regulación Bacteriana de la Expresión Génica , Homeostasis , Hierro , Infecciones Estafilocócicas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Hierro/metabolismo , Carbono/metabolismo , Ácido Cítrico/metabolismo , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ciclo del Ácido Cítrico , Ratones , Transducción de Señal
19.
Nat Commun ; 15(1): 5746, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982056

RESUMEN

Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) demonstrates that synergistic lethality is driven by Candida-induced upregulation of functional S. aureus α-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken revealing that zcf13Δ/Δ fails to drive augmented α-toxin or lethal synergism during co-infection. A combination of transcriptional and phenotypic profiling approaches shows that ZCF13 regulates genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments reveal that ribose inhibits the staphylococcal agr quorum sensing system and concomitantly represses toxicity. Unlike wild-type C. albicans, zcf13Δ/Δ did not effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13Δ/Δ mutant fully restores pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.


Asunto(s)
Candida albicans , Candidiasis , Coinfección , Infecciones Intraabdominales , Infecciones Estafilocócicas , Staphylococcus aureus , Ratones , Candida albicans/fisiología , Staphylococcus aureus/fisiología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/patología , Candidiasis/metabolismo , Candidiasis/patología , Coinfección/metabolismo , Coinfección/patología , Toxoide Estafilocócico/metabolismo , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/metabolismo , Transactivadores/metabolismo , Percepción de Quorum , Infecciones Intraabdominales/metabolismo , Infecciones Intraabdominales/microbiología , Infecciones Intraabdominales/patología , Azúcares/metabolismo , Ribosa/metabolismo , Modelos Animales de Enfermedad
20.
J Biochem Mol Toxicol ; 38(7): e23753, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923626

RESUMEN

Osteomyelitis is an invasive bone infection that can lead to severe pain and even disability, posing a challenge for orthopedic surgery. Naringin can reduce bone-related inflammatory conditions. This study aimed to elucidate the function and mechanism of naringin in a Staphylococcus aureus-induced mouse model of osteomyelitis. Femurs of S. aureus-infected mice were collected after naringin administration and subjected to microcomputed tomography to analyze cortical bone destruction and bone loss. Bacterial growth in femurs was also assessed. Proinflammatory cytokine levels in mouse femurs were measured using enzyme-linked immunosorbent assays. Pathological changes and bone resorption were analyzed using hematoxylin and eosin staining and tartrate-resistant acid phosphatase staining, respectively. Quantitative reverse transcription polymerase chain reaction and western blot analysis were used to quantify the messenger RNA and protein expression of osteogenic differentiation-associated genes in the femurs. The viability of human bone marrow-derived stem cells (hBMSCs) was determined using cell counting kit-8. Alizarin Red S staining and alkaline phosphatase staining were performed to assess the formation of mineralization nodules and bone formation in vitro. Notch signaling-related protein levels in femur tissues and hBMSCs were assessed using western blot analysis. Experimental results revealed that naringin alleviated S. aureus-induced cortical bone destruction and bone loss in mice by increasing the bone volume/total volume ratio. Naringin suppressed S. aureus-induced bacterial growth and inflammation in femurs. Moreover, it alleviated histopathological changes, inhibited bone resorption, and increased the expression of osteogenic markers in osteomyelitic mice. It increased the viability of hBMSCs and promoted their differentiation and bone mineralization in vitro. Furthermore, naringin activated Notch signaling by upregulating the protein levels of Notch1, Jagged1, and Hes1 in the femurs of model mice and S. aureus-stimulated hBMSCs. In conclusion, naringin reduces bacterial growth, inflammation, and bone resorption while upregulating the expression of osteogenic markers in S. aureus-infected mice and hBMSCs by activating Notch signaling.


Asunto(s)
Antibacterianos , Antiinflamatorios , Flavanonas , Osteomielitis , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Flavanonas/farmacología , Ratones , Osteomielitis/tratamiento farmacológico , Osteomielitis/microbiología , Osteomielitis/metabolismo , Osteomielitis/patología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Humanos , Masculino , Osteogénesis/efectos de los fármacos , Fémur/patología , Fémur/metabolismo , Fémur/microbiología , Fémur/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA