Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO J ; 43(5): 806-835, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38287188

RESUMEN

In mammalian somatic cells, the relative contribution of RNAi and the type I interferon response during viral infection is unclear. The apparent inefficiency of antiviral RNAi might be due to self-limiting properties and mitigating co-factors of the key enzyme Dicer. In particular, the helicase domain of human Dicer appears to be an important restriction factor of its activity. Here, we study the involvement of several helicase-truncated mutants of human Dicer in the antiviral response. All deletion mutants display a PKR-dependent antiviral phenotype against certain viruses, and one of them, Dicer N1, acts in a completely RNAi-independent manner. Transcriptomic analyses show that many genes from the interferon and inflammatory response pathways are upregulated in Dicer N1 expressing cells. We show that some of these genes are controlled by NF-kB and that blocking this pathway abrogates the antiviral phenotype of Dicer N1. Our findings highlight the crosstalk between Dicer, PKR, and the NF-kB pathway, and suggest that human Dicer may have repurposed its helicase domain to prevent basal activation of antiviral and inflammatory pathways.


Asunto(s)
ARN Helicasas DEAD-box , Interferón Tipo I , FN-kappa B , Infecciones por Virus ARN , Ribonucleasa III , Animales , Humanos , FN-kappa B/genética , Interferencia de ARN , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Ribonucleasa III/química , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Infecciones por Virus ARN/enzimología
2.
Science ; 373(6551): 231-236, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244417

RESUMEN

In mammals, early resistance to viruses relies on interferons, which protect differentiated cells but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialized Dicer protein that cleaves viral double-stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. We identified an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses-including Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity, in which different cell-intrinsic antiviral pathways can be tailored to the differentiation status of cells.


Asunto(s)
ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Interferencia de ARN , Virus ARN/fisiología , ARN Viral/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Células Madre/enzimología , Células Madre/virología , Empalme Alternativo , Animales , Encéfalo/enzimología , Encéfalo/virología , Línea Celular , ARN Helicasas DEAD-box/química , Humanos , Inmunidad Innata , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Organoides/enzimología , Organoides/virología , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Virus ARN/genética , Virus ARN/inmunología , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/química , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Replicación Viral , Virus Zika/genética , Virus Zika/inmunología , Virus Zika/fisiología , Infección por el Virus Zika/enzimología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
3.
Nat Commun ; 12(1): 2681, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976210

RESUMEN

Innate immune cells are critical in protective immunity against viral infections, involved in sensing foreign viral nucleic acids. Here we report that the poly(ADP-ribose) polymerase 9 (PARP9), a member of PARP family, serves as a non-canonical sensor for RNA virus to initiate and amplify type I interferon (IFN) production. We find knockdown or deletion of PARP9 in human or mouse dendritic cells and macrophages inhibits type I IFN production in response to double strand RNA stimulation or RNA virus infection. Furthermore, mice deficient for PARP9 show enhanced susceptibility to infections with RNA viruses because of the impaired type I IFN production. Mechanistically, we show that PARP9 recognizes and binds viral RNA, with resultant recruitment and activation of the phosphoinositide 3-kinase (PI3K) and AKT3 pathway, independent of mitochondrial antiviral-signaling (MAVS). PI3K/AKT3 then activates the IRF3 and IRF7 by phosphorylating IRF3 at Ser385 and IRF7 at Ser437/438 mediating type I IFN production. Together, we reveal a critical role for PARP9 as a non-canonical RNA sensor that depends on the PI3K/AKT3 pathway to produce type I IFN. These findings may have important clinical implications in controlling viral infections and viral-induced diseases by targeting PARP9.


Asunto(s)
Células Dendríticas/enzimología , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Infecciones por Virus ARN/enzimología , ARN Viral/metabolismo , Animales , Chlorocebus aethiops , Células Dendríticas/virología , Humanos , Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Infecciones por Virus ARN/virología , Virus ARN/genética , Virus ARN/fisiología , Transducción de Señal , Células THP-1 , Células Vero
4.
Curr Issues Mol Biol ; 40: 221-230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32609093

RESUMEN

The interaction between pattern-recognition receptors (PRRs) and pathogen- associated molecular patterns (PAMPs) induces type I interferon (IFN) responses. IFNs stimulates hundreds of genes to exert its biological effects. OASs are the members of IFN-stimulate genes (ISGs). Among them, OAS1 activates RNase L to cleave RNA viruses genome, OAS2 activates downstream immune signaling pathways of IFNs, OAS3 induces RNase L to cut the genome of RNA virus and activate IFN I response to enhance the immune effect, and OASL inhibits the survival of RNA viruses by activating RIG-I signaling pathway but promotes the reproduction of DNA viruses by inhibiting the cGAS signaling pathway. However, the role of OASs in mycobacterial infection remains incomprehensible. In this review, we summarized the latest literature regarding the roles of OASs in mycobacterial infection.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Interacciones Huésped-Patógeno/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/enzimología , Tuberculosis/inmunología , Humanos , Interferón Tipo I/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Virus ARN/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal/inmunología , Tuberculosis/microbiología
5.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396899

RESUMEN

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins' functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


Asunto(s)
Procesamiento Proteico-Postraduccional , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/virología , Virus ARN/metabolismo , Virus ARN/patogenicidad , Proteínas Virales/metabolismo , Acetilación , Virus Chikungunya/metabolismo , Coronavirus/metabolismo , Coronavirus/patogenicidad , Efecto Citopatogénico Viral , Glicosilación , VIH/metabolismo , VIH/patogenicidad , Interacciones Microbiota-Huesped , Humanos , Fosforilación , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Virus ARN/inmunología , Ubiquitinación , Replicación Viral/fisiología , Virus Zika/metabolismo , Virus Zika/patogenicidad
6.
Nat Commun ; 7: 10680, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26893169

RESUMEN

Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.


Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/enzimología , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Infecciones por Virus ARN/enzimología , Animales , Humanos , Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/metabolismo , Gripe Humana/virología , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Proteínas de la Membrana/genética , Ratones , Nucleotidiltransferasas/genética , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , Virus ARN/genética , Virus ARN/fisiología
7.
Cell Host Microbe ; 13(3): 336-46, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23498958

RESUMEN

Host defense to RNA viruses depends on rapid intracellular recognition of viral RNA by two cytoplasmic RNA helicases: RIG-I and MDA5. RNA transfection experiments indicate that RIG-I responds to naked double-stranded RNAs (dsRNAs) with a triphosphorylated 5' (5'ppp) terminus. However, the identity of the RIG-I stimulating viral structures in an authentic infection context remains unresolved. We show that incoming viral nucleocapsids containing a 5'ppp dsRNA "panhandle" structure trigger antiviral signaling that commences with RIG-I, is mediated through the adaptor protein MAVS, and terminates with transcription factor IRF-3. Independent of mammalian cofactors or viral polymerase activity, RIG-I bound to viral nucleocapsids, underwent a conformational switch, and homo-oligomerized. Enzymatic probing and superresolution microscopy suggest that RIG-I interacts with the panhandle structure of the viral nucleocapsids. These results define cytoplasmic entry of nucleocapsids as the proximal RIG-I-sensitive step during infection and establish viral nucleocapsids with a 5'ppp dsRNA panhandle as a RIG-I activator.


Asunto(s)
ARN Helicasas DEAD-box/inmunología , Nucleocápside/inmunología , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Genoma Viral , Interacciones Huésped-Patógeno , Humanos , Nucleocápside/química , Nucleocápside/genética , Polifosfatos/metabolismo , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/virología , Virus ARN/química , Virus ARN/genética , ARN Viral/química , ARN Viral/genética , ARN Viral/inmunología , Receptores Inmunológicos , Transducción de Señal
8.
Cell Death Dis ; 3: e277, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-22402601

RESUMEN

Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand, while they completely depend on the host molecular machinery, viruses also need to evade the cellular responses that are meant to destroy them. The existence of numerous antiapoptotic products within the viral kingdom proves that apoptosis constitutes a major threat that should better be bypassed. Among the different strategies developed to deal with apoptosis, one is based on what viruses do best: backfiring the cell on itself. Several unrelated viruses have been described to take advantage of apoptosis induction by expressing proteins targeted by caspases, the key effectors of apoptotic cell death. Caspase cleavage of these proteins results in various consequences, from logical apoptosis inhibition to more surprising enhancement or attenuation of viral replication. The present review aims at discussing the characterization and relevance of this post-translational modification that adds a new complexity in the already intricate host-apoptosis-virus triangle.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Infecciones por Virus ADN/enzimología , Virus ADN/fisiología , Infecciones por Virus ARN/enzimología , Virus ARN/fisiología , Proteínas Virales/metabolismo , Animales , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/virología , Activación Enzimática , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune/fisiología , Procesamiento Proteico-Postraduccional , Proteolisis , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Replicación Viral/fisiología
9.
Viruses ; 3(3): 272-277, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21994731

RESUMEN

Some cellular editing functions can restrict the replication of some viruses but contribute to completion of the life cycle of others. A recent study has identified an isoform of the adenosine deaminase acting on RNA type 1 (ADAR 1) as required for embryogenesis, and as a restriction factor for a number of important RNA virus pathogens. The dual implication of key cellular functions in the innate immunity against viruses, or, paradoxically, as mediators of virus replication is interpreted in the light of the concept of virus-host coevolution and tinkering proposed for general evolution by François Jacob decades ago.


Asunto(s)
Adenosina Desaminasa/metabolismo , Infecciones por Virus ARN/enzimología , Virus ARN/genética , Humanos , Edición de ARN , Infecciones por Virus ARN/virología , Virus ARN/fisiología , Replicación Viral , Virus/genética
10.
J Interferon Cytokine Res ; 29(9): 477-87, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19715457

RESUMEN

The protein kinase regulated by RNA (PKR) and the adenosine deaminase acting on RNA (ADAR1) are interferon-inducible enzymes that play important roles in biologic processes including the antiviral actions of interferons, signal transduction, and apoptosis. PKR catalyzes the RNA-dependent phosphorylation of protein synthesis initiation factor eIF-2 alpha, thereby leading to altered translational patterns in interferon-treated and virus-infected cells. PKR also modulates signal transduction responses, including the induction of interferon. ADAR1 catalyzes the deamination of adenosine (A) to generate inosine (I) in RNAs with double-stranded character. Because I is recognized as G instead of A, A-to-I editing by ADAR1 can lead to genetic recoding and altered RNA structures. The importance of PKR and ADAR1 in innate antiviral immunity is illustrated by a number of viruses that encode either RNA or protein viral gene products that antagonize PKR and ADAR1 enzymatic activity, localization, or stability.


Asunto(s)
Adenosina Desaminasa/metabolismo , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/genética , Virus ARN/fisiología , eIF-2 Quinasa/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/inmunología , Animales , Antivirales/inmunología , Antivirales/metabolismo , Apoptosis , Inhibidores Enzimáticos/inmunología , Inhibidores Enzimáticos/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/inmunología , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Inmunidad Innata , Interferones/inmunología , Edición de ARN , Infecciones por Virus ARN/inmunología , Virus ARN/patogenicidad , Proteínas de Unión al ARN , Transducción de Señal , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/inmunología
11.
Eur J Immunol ; 39(5): 1271-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19337998

RESUMEN

B-cell-activating factor (BAFF) plays a key role in promoting activation of autoimmune B cells. This cytokine may be expressed in and secreted by salivary gland epithelial cells (SGEC) after stimulation with type I IFN or viral or synthetic dsRNA. Because this BAFF expression depends only in part on endosomal TLR and type I IFN, we investigated whether other dsRNA sensors could be implicated in BAFF expression. Using human SGEC, we confirmed the partial dependence of BAFF expression on TLR-3 by replicating the partial inhibition of BAFF expression observed upon endosomal inhibition using TLR-3 or Toll/IL-1R domain-containing protein inducing IFN-beta silencing mRNA, but not with TLR-7 silencing mRNA. Melanoma differentiation-associated gene 5 silencing mRNA had no effect on BAFF expression, but retinoic acid-inducible gene I silencing mRNA had a slight effect observed following infection with dsRNA reovirus-1. Inhibition of RNA-activated protein kinase (PKR) by 2-aminopurine completely abolished both BAFF mRNA and protein production after reovirus-1 infection and poly(I:C) stimulation through NF-kappaB and p38 MAPK pathways, with the latter implicated only after poly(I:C) stimulation. Thus, PKR is the dsRNA sensor implicated in BAFF induction in SGEC after dsRNA stimulation. In autoimmune diseases, PKR may be an interesting target for preventing BAFF following the induction of innate immunity.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Factor Activador de Células B/inmunología , Infecciones por Virus ARN/inmunología , ARN Bicatenario/inmunología , Glándulas Salivales/inmunología , eIF-2 Quinasa/inmunología , Enfermedades Autoinmunes/enzimología , Factor Activador de Células B/biosíntesis , Factor Activador de Células B/sangre , Factor Activador de Células B/genética , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/inmunología , Activación Enzimática , Humanos , Helicasa Inducida por Interferón IFIH1 , Células K562 , FN-kappa B/inmunología , Poli I-C/inmunología , Poli I-C/farmacología , Infecciones por Virus ARN/enzimología , Virus ARN , ARN Bicatenario/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Receptores Inmunológicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Glándulas Salivales/enzimología , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/inmunología , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/inmunología , Transfección , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología
12.
Immunol Rev ; 227(1): 176-88, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19120484

RESUMEN

Suppression of viral infection by RNA in a nucleotide sequence homology-dependent manner was first reported in plants in early 1990 s. Studies in the past 15 years have established a completely new RNA-based immune system against viruses that is mechanistically related to RNA silencing or RNA interference (RNAi). This viral immunity begins with recognition of viral double-stranded or structured RNA by the Dicer nuclease family of host immune receptors. In fungi, plants and invertebrates, the viral RNA trigger is processed into small interfering RNAs (siRNAs) to direct specific silencing of the homologous viral genomic and/or messenger RNAs by an RNaseH-like Argonaute protein. Deep sequencing of virus-derived siRNAs indicates that the immunity against viruses with a positive-strand RNA genome is induced by Dicer recognition of dsRNA formed during the initiation of viral progeny (+)RNA synthesis. The RNA-based immune pathway in these organisms overlaps the canonical dsRNA-siRNA pathway of RNAi and may require amplification of viral siRNAs by host RNA-dependent RNA polymerase in plants and nematodes. Production of virus-derived small RNAs is undetectable in mammalian cells infected with RNA viruses. However, infection of mammals with several nucleus-replicating DNA viruses induces production of virus-derived microRNAs capable of silencing host and viral mRNAs as found for viral siRNAs. Remarkably, recent studies indicate that prokaryotes also produce virus-derived small RNAs known as CRISPR RNAs to guide antiviral defense in a manner that has yet to be defined. In this article, we review the recent progress on the identification and mechanism of the key components including viral sensors, viral triggers, effectors, and amplifiers, of the small RNA-directed viral immunity. We also highlight some of the many unresolved questions.


Asunto(s)
Inmunidad , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , ARN Interferente Pequeño/metabolismo , ARN Viral/inmunología , Ribonucleasa III/metabolismo , Animales , Proteínas Argonautas , Células Eucariotas/enzimología , Células Eucariotas/virología , Factores Eucarióticos de Iniciación/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad/genética , Células Procariotas/enzimología , Células Procariotas/virología , Interferencia de ARN/inmunología , Procesamiento Postranscripcional del ARN/inmunología , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/prevención & control , ARN Interferente Pequeño/inmunología , ARN Viral/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Ribonucleasa III/química , Ribonucleasa III/genética , Ribonucleasa III/inmunología , Virosis/inmunología
13.
Biol Chem ; 389(10): 1273-82, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18713014

RESUMEN

The Raf/MEK/ERK signal transduction cascade belongs to the mitogen-activated protein kinase (MAPK) cascades. Raf/MEK/ERK signaling leads to stimulus-specific changes in gene expression, alterations in cell metabolism or induction of programmed cell death (apoptosis), and thus controls cell differentiation and proliferation. It is induced by extracellular agents, including pathogens such as RNA viruses. Many DNA viruses are known to induce cellular signaling via this pathway. As these pathogens partly use the DNA synthesis machinery for their replication, they aim to drive cells into a proliferative state. In contrast, the consequences of RNA virus-induced Raf/MEK/ERK signaling were less clear for a long time, but since the turn of the century the number of publications on this topic has rapidly increased. Research on this virus/host-interaction will broaden our understanding of its relevance in viral replication. This important control center of cellular responses is differently employed to support the replication of several important human pathogenic RNA viruses including influenza, Ebola, hepatitis C and SARS corona viruses.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Infecciones por Virus ARN/enzimología , Virus ARN/metabolismo , Quinasas raf/metabolismo , Animales , Humanos , Infecciones por Virus ARN/virología , Transducción de Señal
14.
Immunity ; 27(1): 1-3, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17663977

RESUMEN

In plants and invertebrates, Dicer genes play a critical role against infections by RNA viruses. In this issue, Otsuka et al. (2007) report that Dicer mutant mice are hypersusceptible to infection by the RNA virus VSV.


Asunto(s)
ARN Helicasas DEAD-box/fisiología , Endorribonucleasas/fisiología , MicroARNs/fisiología , Interferencia de ARN/fisiología , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/prevención & control , Ribonucleasa III/fisiología , Animales , Infecciones por Virus ARN/virología , Ribonucleasa III/biosíntesis
15.
Immunity ; 23(1): 19-28, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16039576

RESUMEN

Toll-like receptors (TLRs) play an important role in antiviral response by recognizing viral components. Recently, a RNA helicase, RIG-I, was also suggested to recognize viral double-stranded RNA. However, how these molecules contribute to viral recognition in vivo is poorly understood. We show by gene targeting that RIG-I is essential for induction of type I interferons (IFNs) after infection with RNA viruses in fibroblasts and conventional dendritic cells (DCs). RIG-I induces type I IFNs by activating IRF3 via IkappaB kinase-related kinases. In contrast, plasmacytoid DCs, which produce large amounts of IFN-alpha, use the TLR system rather than RIG-I for viral detection. Taken together, RIG-I and the TLR system exert antiviral responses in a cell type-specific manner.


Asunto(s)
Células Dendríticas/inmunología , Fibroblastos/inmunología , Glicoproteínas de Membrana/fisiología , ARN Helicasas/fisiología , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/inmunología , Receptores de Superficie Celular/fisiología , Animales , Proteína 58 DEAD Box , ARN Helicasas DEAD-box , Proteínas de Unión al ADN/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/virología , Fibroblastos/metabolismo , Fibroblastos/virología , Marcación de Gen , Quinasa I-kappa B , Factor 3 Regulador del Interferón , Interferón Tipo I/metabolismo , Interferón-alfa/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Enfermedad de Newcastle/enzimología , Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Helicasas/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Receptores Toll-Like , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA