Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Fish Shellfish Immunol ; 149: 109553, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615704

RESUMEN

Viral diseases have caused great economic losses to the aquaculture industry. However, there are currently no specific drugs to treat these diseases. Herein, we utilized Siniperca chuatsi as an experimental model, and successfully extracted two tissue factor pathway inhibitors (TFPIs) that were highly distributed in different tissues. We then designed four novel peptides based on the TFPIs, named TS20, TS25, TS16, and TS30. Among them, TS25 and TS30 showed good biosafety and high antiviral activity. Further studies showed that TS25 and TS30 exerted their antiviral functions by preventing viruses from invading Chinese perch brain (CPB) cells and disrupting Siniperca chuatsi rhabdovirus (SCRV)/Siniperca chuatsi ranairidovirus (SCRIV) viral structures. Additionally, compared with the control group, TS25 and TS30 could significantly reduce the mortality of Siniperca chuatsi, the relative protection rates of TS25 against SCRV and SCRIV were 71.25 % and 53.85 % respectively, and the relative protection rate of TS30 against SCRIV was 69.23 %, indicating that they also had significant antiviral activity in vivo. This study provided an approach for designing peptides with biosafety and antiviral activity based on host proteins, which had potential applications in the prevention and treatment of viral diseases.


Asunto(s)
Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/prevención & control , Rhabdoviridae/fisiología , Antivirales/farmacología , Antivirales/química , Percas , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Péptidos/farmacología , Péptidos/química , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/prevención & control
2.
J Fish Dis ; 47(7): e13945, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523313

RESUMEN

The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Nodaviridae , Infecciones por Virus ARN , Vacunas de Productos Inactivados , Vacunas Virales , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Peces Planos/inmunología , Peces Planos/virología , Nodaviridae/inmunología , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunación/veterinaria , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes de Vacunas/administración & dosificación
3.
J Virol ; 97(4): e0005023, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36975794

RESUMEN

Antigen epitope identification is a critical step in the vaccine development process and is a momentous cornerstone for the development of safe and efficient epitope vaccines. In particular, vaccine design is difficult when the function of the protein encoded by the pathogen is unknown. The genome of Tilapia lake virus (TiLV), an emerging virus from fish, encodes protein functions that have not been elucidated, resulting in a lag and uncertainty in vaccine development. Here, we propose a feasible strategy for emerging viral disease epitope vaccine development using TiLV. We determined the targets of specific antibodies in serum from a TiLV survivor by panning a Ph.D.-12 phage library, and we identified a mimotope, TYTTRMHITLPI, referred to as Pep3, which provided protection against TiLV after prime-boost vaccination; its immune protection rate was 57.6%. Based on amino acid sequence alignment and structure analysis of the target protein from TiLV, we further identified a protective antigenic site (399TYTTRNEDFLPT410) which is located on TiLV segment 1 (S1). The epitope vaccine with keyhole limpet hemocyanin (KLH-S1399-410) corresponding to the mimotope induced the tilapia to produce a durable and effective antibody response after immunization, and the antibody depletion test confirmed that the specific antibody against S1399-410 was necessary to neutralize TiLV. Surprisingly, the challenge studies in tilapia demonstrated that the epitope vaccine elicited a robust protective response against TiLV challenge, and the survival rate reached 81.8%. In conclusion, this study revealed a concept for screening antigen epitopes of emerging viral diseases, providing promising approaches for development and evaluation of protective epitope vaccines against viral diseases. IMPORTANCE Antigen epitope determination is an important cornerstone for developing efficient vaccines. In this study, we attempted to explore a novel approach for epitope discovery of TiLV, which is a new virus in fish. We investigated the immunogenicity and protective efficacy of all antigenic sites (mimotopes) identified in serum of primary TiLV survivors by using a Ph.D.-12 phage library. We also recognized and identified the natural epitope of TiLV by bioinformatics, evaluated the immunogenicity and protective effect of this antigenic site by immunization, and revealed 2 amino acid residues that play important roles in this epitope. Both Pep3 and S1399-410 (a natural epitope identified by Pep3) elicited antibody titers in tilapia, but S1399-410 was more prominent. Antibody depletion studies showed that anti-S1399-410-specific antibodies were essential for neutralizing TiLV. Our study demonstrated a model for combining experimental and computational screens to identify antigen epitopes, which is attractive for epitope-based vaccine development.


Asunto(s)
Formación de Anticuerpos , Enfermedades de los Peces , Infecciones por Virus ARN , Tilapia , Vacunas Virales , Técnicas de Visualización de Superficie Celular , Simulación por Computador , Epítopos/inmunología , Vacunas Virales/inmunología , Formación de Anticuerpos/inmunología , Tilapia/virología , Línea Celular , Virus ARN/inmunología , Animales , Anticuerpos Antivirales/sangre , Inmunidad Humoral/inmunología , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/virología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología
4.
Fish Shellfish Immunol ; 136: 108709, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36972841

RESUMEN

Nervous necrosis virus (NNV) is one of the most important fish viral pathogens infecting more than 120 fish species worldwide. Due to the mass mortality rates often seen among larvae and juveniles, few effective vaccines against NNV were developed up to now. Here, the protective effect of recombinant coat protein (CP) from red-spotted grouper nervous necrosis virus (RGNNV) fused with grouper ß-defensin (DEFB) as an oral vaccine was evaluated using Artemia as a biocarrier delivery system in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Feeding with Artemia encapsulated with E. coli expressing control vector (control group), CP, or CP-DEFB showed no obvious side effects on the growth of groupers. ELISA and antibody neutralization assay showed that CP-DEFB oral vaccination group induced higher anti-RGNNV CP specific antibodies and exhibited higher neutralization potency than the CP and control group. Meanwhile, the expression levels of several immune and inflammatory factors in the spleen and kidney after feeding with CP-DEFB were also significantly increased compared with the CP group. Consistently, after challenge with RGNNV, groupers fed CP-DEFB and CP exhibited 100% and 88.23% relative percentage survival (RPS), respectively. Moreover, the lower transcription levels of viral genes and milder pathological changes in CP-DEFB group were detected compared with the CP and control group. Thus, we proposed that grouper ß-defensin functioned as an efficient molecular adjuvant for an improved oral vaccine against nervous necrosis virus infection.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Vacunas Virales , beta-Defensinas , Animales , beta-Defensinas/genética , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/veterinaria , Escherichia coli , Adyuvantes Inmunológicos/farmacología , Proteínas Recombinantes , Nodaviridae/fisiología , Necrosis , Proteínas de Peces/genética
5.
J Fish Dis ; 45(11): 1711-1719, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35916773

RESUMEN

Nervous necrosis virus (NNV) is one of the most destructive pathogens in marine fish aquaculture and is capable of infecting more than 50 fish species worldwide, which resulted in great economic losses. Effective drugs for managing NNV infection are urgently required. Medicinal plants have been known for thousands of years and benefit of medicinal plants against pathogens in aquaculture have emerged. Nowadays, the most commonly used method for detecting virus infection and assessing antiviral drugs efficacy is reverse transcription-quantitative real-time PCR. However, the application is limited on account of high reagent costs, complex time-consuming operations and long detection time. Aptamers have been widely applied in application of pathogens or diseases diagnosis and treatments because of high specificity, strong affinity, good stability, easy synthesized and low costs. This study aimed to establish an aptamer (GBN34)-based high-throughput screening (GBN34-AHTS) model for efficient selection and evaluation of natural ingredients against NNV infection. GBN34-AHTS is an expeditious rapid method for selecting natural ingredients against NNV, which is characterized with high-speed, dram, sensitive and accurate. AHTS strategy could reduce work intensity and experimental costs and shorten the whole screening cycle of effective ingredients. AHTS should be suitable for rapid selection of effective ingredients against other viruses, which is important for improving the prevention and controlling of aquatic diseases.


Asunto(s)
Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/prevención & control , Nodaviridae/fisiología , Infecciones por Virus ARN/tratamiento farmacológico , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/veterinaria
6.
Fish Shellfish Immunol ; 121: 163-171, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35017048

RESUMEN

In the present study, we studied the effect of ß-glucan on the activation of antiviral immune responses against nervous necrosis virus (NNV) taking into consideration the role of innate immune training. Sevenband grouper primary macrophages showed an attenuated proinflammatory response and elevated antiviral response to NNV infection. In vitro, priming of ß-glucan enhanced macrophage viability against NNV infection which is associated with the activation of sustained inflammatory cytokines gene expression. Observations were clear to understand that NLR Family CARD Domain Containing 3 (NLRC3) and caspase-1 activation and subsequent IL-1ß production were reduced in ß-glucan-primed macrophages. Subsequent markers for training including Lactate and abundance of HIF-1α were elevated in the cells following training. However, the lactate dehydrogenase (LDH) concentrations remained stable among the ß-glucan stimulated infected and uninfected groups suggesting similar macrophage health in both groups. In vivo, the NNV-infected fish primed with ß-glucan had a higher survival rate (60%) than the control NNV-infected group (40%). Our findings demonstrate that ß-glucan induced protective responses against NNV infection and studies are underway to harness its potential applicability for prime and boost vaccination strategies.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , beta-Glucanos , Animales , Antivirales/uso terapéutico , Lubina/inmunología , Lubina/virología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/veterinaria , beta-Glucanos/farmacología
7.
J Fish Dis ; 44(12): 2097-2109, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34477227

RESUMEN

Tilapia tilapinevirus (also known as tilapia lake virus, TiLV) is considered to be a new threat to the global tilapia industry. The objective of this study was to develop simple cell culture-based heat-killed (HKV) and formalin-killed (FKV) vaccines for the prevention of disease caused by TiLV. The fish were immunized with 100 µl of either HKV or FKV by intraperitoneal injection with each vaccine containing 1.8 × 106 TCID50- inactivated virus. A booster vaccination was carried out at 21-day post-vaccination (dpv) using the same protocol. The fish were then challenged with a lethal dose of TiLV at 28 dpv. The expression of five immune genes (IgM, IgD, IgT, CD4 and CD8) in the head kidney and spleen of experimental fish was assessed at 14 and 21 dpv and again after the booster vaccination at 28 dpv. TiLV-specific IgM responses were measured by ELISA at the same time points. The results showed that both vaccines conferred significant protection, with relative percentage survival of 71.3% and 79.6% for HKV and FKV, respectively. Significant up-regulation of IgM and IgT was observed in the head kidney of fish vaccinated with HKV at 21 dpv, while IgM, IgD and CD4 expression increased in the head kidney of fish receiving FKV at the same time point. After booster vaccination, IgT and CD8 transcripts were significantly increased in the spleen of fish vaccinated with the HKV, but not with FKV. Both vaccines induced a specific IgM response in both serum and mucus. In summary, this study showed that both HKV and FKV are promising injectable vaccines for the prevention of disease caused by TiLV in Nile tilapia.


Asunto(s)
Enfermedades de los Peces/prevención & control , Infecciones por Virus ARN/prevención & control , Virus ARN/inmunología , Vacunas Virales/inmunología , Animales , Cíclidos/genética , Cíclidos/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Inyecciones Intraperitoneales , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/administración & dosificación
8.
mBio ; 12(4): e0163821, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34399612

RESUMEN

RNA viruses cause numerous emerging diseases, mostly due to transmission from mammalian and avian reservoirs. Large-scale surveillance of RNA viral infections in these animals is a fundamental step for controlling viral infectious diseases. Metagenomic analysis is a powerful method for virus identification with low bias and has contributed substantially to the discovery of novel viruses. Deep-sequencing data have been collected from diverse animals and accumulated in public databases, which can be valuable resources for identifying unknown viral sequences. Here, we screened for infections of 33 RNA viral families in publicly available mammalian and avian sequencing data and found approximately 900 hidden viral infections. We also discovered six nearly complete viral genomes in livestock, wild, and experimental animals: hepatovirus in a goat, hepeviruses in blind mole-rats and a galago, astrovirus in macaque monkeys, parechovirus in a cow, and pegivirus in tree shrews. Some of these viruses were phylogenetically close to human-pathogenic viruses, suggesting the potential risk of causing disease in humans upon infection. Furthermore, infections of five novel viruses were identified in several different individuals, indicating that their infections may have already spread in the natural host population. Our findings demonstrate the reusability of public sequencing data for surveying viral infections and identifying novel viral sequences, presenting a warning about a new threat of viral infectious disease to public health. IMPORTANCE Monitoring the spread of viral infections and identifying novel viruses capable of infecting humans through animal reservoirs are necessary to control emerging viral diseases. Massive amounts of sequencing data collected from various animals are publicly available, and these data may contain sequences originating from a wide variety of viruses. Here, we analyzed more than 46,000 public sequencing data and identified approximately 900 hidden RNA viral infections in mammalian and avian samples. Some viruses discovered in this study were genetically similar to pathogens that cause hepatitis, diarrhea, or encephalitis in humans, suggesting the presence of new threats to public health. Our study demonstrates the effectiveness of reusing public sequencing data to identify known and unknown viral infections, indicating that future continuous monitoring of public sequencing data by metagenomic analyses would help prepare and mitigate future viral pandemics.


Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Metagenómica , Infecciones por Virus ARN/prevención & control , Virus ARN/genética , Virus ARN/patogenicidad , Análisis de Secuencia de ADN/estadística & datos numéricos , Animales , Aves/virología , Bovinos , Análisis de Datos , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Infecciones por Virus ARN/virología , Virus ARN/clasificación , Análisis de Secuencia de ADN/métodos
9.
Viruses ; 13(8)2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34452467

RESUMEN

Type III interferons (lambda IFNs) are a quite new, small family of three closely related cytokines with interferon-like activity. Attention to IFN-λ is mainly focused on direct antiviral activity in which, as with IFN-α, viral genome replication is inhibited without the participation of immune system cells. The heterodimeric receptor for lambda interferons is exposed mainly on epithelial cells, which limits its possible action on other cells, thus reducing the likelihood of developing undesirable side effects compared to type I IFN. In this study, we examined the antiviral potential of exogenous human IFN-λ1 in cellular models of viral infection. To study the protective effects of IFN-λ1, three administration schemes were used: 'preventive' (pretreatment); 'preventive/therapeutic' (pre/post); and 'therapeutic' (post). Three IFN-λ1 concentrations (from 10 to 500 ng/mL) were used. We have shown that human IFN-λ1 restricts SARS-CoV-2 replication in Vero cells with all three treatment schemes. In addition, we have shown a decrease in the viral loads of CHIKV and IVA with the 'preventive' and 'preventive/therapeutic' regimes. No significant antiviral effect of IFN-λ1 against AdV was detected. Our study highlights the potential for using IFN-λ as a broad-spectrum therapeutic agent against respiratory RNA viruses.


Asunto(s)
Adenovirus Humanos/efectos de los fármacos , Virus Chikungunya/efectos de los fármacos , Virus de la Influenza A/efectos de los fármacos , Interferones/farmacología , SARS-CoV-2/efectos de los fármacos , Células A549 , Adenovirus Humanos/fisiología , Animales , Virus Chikungunya/fisiología , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Humanos , Virus de la Influenza A/fisiología , Interferones/uso terapéutico , Interleucinas , Infecciones por Virus ARN/tratamiento farmacológico , Infecciones por Virus ARN/prevención & control , Proteínas Recombinantes/farmacología , SARS-CoV-2/fisiología , Células Vero , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Interferón lambda
10.
Fish Shellfish Immunol ; 116: 91-97, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34224855

RESUMEN

The objective of this study was to analyze the efficiency of the killed vaccine against nervous necrosis virus on Acipenser stellutus. Heat inactivated VNN vaccine was administrated in 7 g juveniles of Acipenser stellutus as a laboratory model and it was included in three different adjuvants that were used as injection and immersion forms with different doses. Ten groups consisting of 30 A. stellutus fish in each group (group 1-4 with 3 replications, others with no replicate) were divided totally into 18 aquariums. Two steps of vaccination were done with a one-month interval and after that, all treatments and control groups were challenged by the virulent VNN virus. The mortality rate of immersion and injection groups were 12.9% and 19.8% respectively, compared to 100% mortality in the control group. Histopathology and immunohistochemistry findings were evaluated. According to the mortality rate one month after challenging, a low range mortality of 12.5% was seen in group 2 with no pathological lesion and negative IHC test in the brain and eye tissues, whereas 100% of the control group (unvaccinated group) died with severe vacuolation in the brain and eye tissues and also positive IHC test. The correlation assay between these results concluded that the immersion form with 75% of aquatic-specific Montanide IMS 1312 Seppic adjuvant made better immunization with no pathological sign or forming the complex of antigen-antibody in IHC assay. These findings are important because of the impossibility of injection in the larval stage and also due to the occurrence of the disease in the first stage of sturgeon life which could cause high mortality in susceptible fish in the larval stage.


Asunto(s)
Enfermedades de los Peces/prevención & control , Nodaviridae/inmunología , Infecciones por Virus ARN/prevención & control , Vacunas de Productos Inactivados/administración & dosificación , Vacunas Virales/administración & dosificación , Animales , Complejo Antígeno-Anticuerpo , Encéfalo/inmunología , Encéfalo/patología , Ojo/inmunología , Ojo/patología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/patología , Peces/inmunología , Inmunohistoquímica , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/patología , Infecciones por Virus ARN/veterinaria
11.
J Microbiol Biotechnol ; 31(8): 1088-1097, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34226401

RESUMEN

Grouper nervous necrosis virus (GNNV) infection causes mass grouper mortality, leading to substantial economic loss in Taiwan. Traditional methods of controlling GNNV infections involve the challenge of controlling disinfectant doses; low doses are ineffective, whereas high doses may cause environmental damage. Identifying potential methods to safely control GNNV infection to prevent viral outbreaks is essential. We engineered a virus-binding bacterium expressing a myxovirus resistance (Mx) protein on its surface for GNNV removal from phosphate-buffered saline (PBS), thus increasing the survival of grouper fin (GF-1) cells. We fused the grouper Mx protein (which recognizes and binds to the coat protein of GNNV) to the C-terminus of outer membrane lipoprotein A (lpp-Mx) and to the N-terminus of a bacterial autotransporter adhesin (Mx-AIDA); these constructs were expressed on the surfaces of Escherichia coli BL21 (BL21/lpp-Mx and BL21/Mx-AIDA). We examined bacterial surface expression capacity and GNNV binding activity through enzyme-linked immunosorbent assay; we also evaluated the GNNV removal efficacy of the bacteria and viral cytotoxicity after bacterial adsorption treatment. Although both constructs were successfully expressed, only BL21/lpp-Mx exhibited GNNV binding activity; BL21/lpp-Mx cells removed GNNV and protected GF-1 cells from GNNV infection more efficiently. Moreover, salinity affected the GNNV removal efficacy of BL21/lpp-Mx. Thus, our GNNV-binding bacterium is an efficient microparticle for removing GNNV from 10‰ brackish water and for preventing GNNV infection in groupers.


Asunto(s)
Bacterias/metabolismo , Enfermedades de los Peces/prevención & control , Proteínas de Peces/metabolismo , Proteínas de Resistencia a Mixovirus/metabolismo , Infecciones por Virus ARN/veterinaria , Animales , Antivirales/metabolismo , Bacterias/genética , Lubina , Línea Celular , Membrana Celular/metabolismo , Técnicas de Visualización de Superficie Celular , Supervivencia Celular , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Resistencia a Mixovirus/genética , Nodaviridae/aislamiento & purificación , Nodaviridae/metabolismo , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/virología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salinidad , Acoplamiento Viral
12.
Antiviral Res ; 192: 105104, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34087253

RESUMEN

Antimicrobial peptides (AMP) comprise a wide range of small molecules with direct antibacterial activity and immunostimulatory role and are proposed as promising substitutes of the antibiotics. Additionally, they also exert a role against other pathogens such as viruses and fungi less evaluated. NK-lysin, a human granulysin orthologue, possess a double function, taking part in the innate immunity as AMP and also as direct effector in the cell-mediated cytotoxic (CMC) response. This molecule is suggested as a pivotal molecule involved in the defence upon nervous necrosis virus (NNV), an epizootic virus provoking serious problems in welfare and health status in Asian and Mediterranean fish destined to human consumption. Having proved that NK-lysin derived peptides (NKLPs) have a direct antiviral activity against NNV in vitro, we aimed to evaluate their potential use as a prophylactic treatment for European sea bass (Dicentrarchus labrax), one of the most susceptible cultured-fish species. Thus, intramuscular injection of synthetic NKLPs resulted in a very low transcriptional response of some innate and adaptive immune markers. However, the injection of NKLPs ameliorated disease signs and increased fish survival upon challenge with pathogenic NNV. Although NKLPs showed promising results in treatments against NNV, more efforts are needed to understand their mechanisms of action and their applicability to the aquaculture industry.


Asunto(s)
Lubina/virología , Encefalopatías/veterinaria , Enfermedades de los Peces/prevención & control , Nodaviridae/efectos de los fármacos , Péptidos/uso terapéutico , Proteolípidos/uso terapéutico , Enfermedades de la Retina/veterinaria , Animales , Antivirales/administración & dosificación , Antivirales/síntesis química , Acuicultura , Encefalopatías/mortalidad , Encefalopatías/prevención & control , Encefalopatías/virología , Resistencia a la Enfermedad/efectos de los fármacos , Enfermedades de los Peces/mortalidad , Enfermedades de los Peces/virología , Inyecciones Intramusculares , Nodaviridae/patogenicidad , Péptidos/administración & dosificación , Péptidos/síntesis química , Proteolípidos/administración & dosificación , Proteolípidos/síntesis química , Infecciones por Virus ARN/mortalidad , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/virología , Enfermedades de la Retina/mortalidad , Enfermedades de la Retina/prevención & control , Enfermedades de la Retina/virología , Tasa de Supervivencia
13.
Virus Res ; 292: 198227, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33186642

RESUMEN

The objective of this study was to investigate safety and efficacy using a low-temperature immunization protocol with NNV in sevenband grouper, Epinephelus septemfasciatus. Further, NNV specific antibody post immunization and intramuscularly challenge was also evaluated. Immunization at low temperature resulted in a low titer virus infection in brain tissues without any clinical symptoms of infection such as sluggish behavior and/or spinning, rotating swimming being observed, and no mortality was observed. Post challenge, NNV titer NNV giving an RPS of 100 %, increased in brain tissues of naïve (non-immunized) sevenband grouper NNV giving an RPS of 100 %, with a cumulative mortality of 100 % at 25 days post-infection. No mortality or disease symptoms NNV giving an RPS of 100 %, as NNV giving and of 100 %, observed in the groups immunized at low temperature with live NNV giving an RPS of 100 %. NNV giving an RPS of 100 %. NNV specific antibody was not detected in live NNV vaccinated sevenband grouper. This is the first study that confirms that field-scale NNV immersion vaccine can protect sevenband grouper against lethal infection with NNV at natural seawater temperature under the gradually increased from 14.3-24.8 °C.


Asunto(s)
Enfermedades de los Peces/prevención & control , Nodaviridae/inmunología , Infecciones por Virus ARN/veterinaria , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Antivirales/inmunología , Lubina/inmunología , Lubina/virología , Frío , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Inmunización/veterinaria , Nodaviridae/genética , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/virología , Vacunas Virales/inmunología
14.
J Vet Med Sci ; 82(12): 1793-1797, 2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33055455

RESUMEN

Rotavirus A (RVA), bovine torovirus (BToV), bovine enterovirus (BEV) and bovine coronavirus (BCV) at a bovine farm in Ibaraki prefecture were monitored by one-step multiplex reverse transcription polymerase chain reaction (RT-PCR), with the aim of confirming the reduction of "viral pathogen indicators". A total of 960 bovine fecal samples were collected from calves less than 2 month-old within the period from October 2016 to October 2018 every 2 months at the bovine farm. In each sampling, 40 samples were taken from calves 3 week-old or less, and 40 samples from calves over 3 week-old, in principle. At the end of September 2017, the farm introduced improvement of hygiene protocols on boots by exchanging boots and appropriate usage of a footbath at the entrance of calf sheds. In the comparison of the virus detection by RT-PCR, prevalence of all 4 viruses was significantly reduced (P<0.01) in calves 3 week-old or less after the improvement. The mortality of calves less than 2 month-old was also significantly reduced after the improvement of hygiene protocols. These data suggest that the proper control of boots at calf sheds is important, perhaps even vital, for rearing hygiene measures at bovine farms so as to attain substantial decrease in the prevalence of pathogens.


Asunto(s)
Crianza de Animales Domésticos/métodos , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/virología , Virus ARN Monocatenarios Positivos/aislamiento & purificación , Zapatos , Animales , Bovinos , Granjas , Heces/virología , Japón , Reacción en Cadena de la Polimerasa Multiplex , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/veterinaria
15.
J Fish Dis ; 43(10): 1155-1165, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32720332

RESUMEN

Nervous necrosis virus (NNV) infection in susceptible grouper larvae has been reported to cause high mortalities, leading to great economic losses in aquaculture industry. Although the effects of NNV vaccines on grouper have been broadly investigated, vaccination strategies have not been fully established. To this end, we introduced the parsimonious epidemiological models that explored the assessment of key epidemiological parameters and how they changed when vaccinations showed the effects. We showed that the models capture the published cumulative mortality data accurately. We estimated a basic reproduction number R0  = 2.44 for NNV transmission in grouper larvae without vaccination. To effectively control NNV transmission by vaccination, a model for disease control was also generalized to attain the goals of controlled reproduction number less than 1. Our results indicated that at least 60% of grouper population needed to be immunized for ~75 min. Our data-driven modelling approach that links the transmission dynamics of NNV and vaccination strategies for grouper has the potential to support evidence-based planning and adaptation of integrated control measures. We encourage that the epidemiology-based framework introduced here can be further implemented for establishing effective vaccination and mitigation actions aimed at controlling diseases in fish farming practices.


Asunto(s)
Lubina/virología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología , Nodaviridae/patogenicidad , Infecciones por Virus ARN/prevención & control , Vacunación/veterinaria , Animales , Acuicultura , Número Básico de Reproducción , Enfermedades de los Peces/transmisión , Larva/virología , Modelos Teóricos , Infecciones por Virus ARN/transmisión , Taiwán
16.
Fish Shellfish Immunol ; 99: 578-586, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32105827

RESUMEN

Nervous necrosis virus (NNV) reassortant strains RGNNV/SJNNV have emerged as a potent threat to the Mediterranean marine aquaculture industry, causing viral encephalopathy and retinopathy (VER) in Senegalese sole (Solea senegalensis). In this study, a cheap and practical vaccine strategy using bacterial inclusion bodies made of the coat protein of a virulent reassortant strain of this betanodavirus was devised. The nanostructured recombinant protein nanoparticles, VNNV-CNP, were administered without adjuvant to two groups of juvenile sole, one by intraperitoneal injection and the other by oral intubation. Specific antibodies were raised in vivo against the NNV coat protein via both routes, with a substantial specific antibody expansion in the injected group 30 days post homologous prime boost. Expression levels of five adaptive immune-related genes, cd8a, cd4, igm, igt and arg2, were also quantified in intestine, spleen and head kidney. Results showed cd4 and igm were upregulated in the head kidney of injected fish, indicating activation of an adaptive systemic response, while intubated fish exhibited a mucosal response in the intestine. Neither route showed significant differential expression of cd8a. The specific antibody response elicited in vivo and the lack of any signs of toxicity over the 6-week study period in young fish (n = 100), evidences the potential of the nanoparticle as a vaccine candidate.


Asunto(s)
Proteínas de la Cápside/inmunología , Peces Planos/inmunología , Nanoestructuras/administración & dosificación , Infecciones por Virus ARN/veterinaria , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Acuicultura , Proteínas de la Cápside/administración & dosificación , Femenino , Enfermedades de los Peces/prevención & control , Riñón Cefálico/inmunología , Inmunidad Mucosa , Masculino , Nodaviridae , Infecciones por Virus ARN/prevención & control , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Vacunas Virales/administración & dosificación
17.
Viruses ; 11(9)2019 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-31450611

RESUMEN

Following the Ebola outbreak in Western Africa in 2013-16, a global effort has taken place for preparedness for future outbreaks. As part of this response, the development of vaccines, treatments and diagnostic tools has been accelerated, especially towards pathogens listed as likely to cause an epidemic and for which there are no current treatments. Several of the priority pathogens identified by the World Health Organisation are haemorrhagic fever viruses. This review provides information on the role of reference materials as an enabling tool for the development and evaluation of assays, and ultimately vaccines and treatments. The types of standards available are described, along with how they can be applied for assay harmonisation through calibration as a relative potency to a common arbitrary unitage system (WHO International Unit). This assures that assay metrology is accurate and robust. We describe reference materials that have been or are being developed for haemorrhagic fever viruses and consider the issues surrounding their production, particularly that of biosafety where the viruses require specialised containment facilities. Finally, we advocate the use of reference materials at early stages, including research and development, as this helps produce reliable assays and can smooth the path to regulatory approval.


Asunto(s)
Técnicas y Procedimientos Diagnósticos , Fiebre Hemorrágica Ebola , Servicios de Información , Infecciones por Virus ARN , Vacunas/normas , África Occidental/epidemiología , Animales , Antígenos Virales/sangre , Virus del Dengue/inmunología , Virus del Dengue/aislamiento & purificación , Virus del Dengue/patogenicidad , Brotes de Enfermedades/prevención & control , Ebolavirus/inmunología , Ebolavirus/aislamiento & purificación , Ebolavirus/patogenicidad , Epidemias/prevención & control , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , Virus de la Fiebre Hemorrágica de Crimea-Congo/patogenicidad , Fiebre Hemorrágica de Crimea/diagnóstico , Fiebre Hemorrágica de Crimea/inmunología , Fiebre Hemorrágica de Crimea/prevención & control , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Fiebre de Lassa/diagnóstico , Fiebre de Lassa/inmunología , Fiebre de Lassa/prevención & control , Virus Lassa/inmunología , Virus Lassa/aislamiento & purificación , Virus Lassa/patogenicidad , Enfermedad del Virus de Marburg/diagnóstico , Enfermedad del Virus de Marburg/inmunología , Enfermedad del Virus de Marburg/prevención & control , Marburgvirus/inmunología , Marburgvirus/aislamiento & purificación , Marburgvirus/patogenicidad , Infecciones por Virus ARN/diagnóstico , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/prevención & control , Virus ARN/inmunología , Virus ARN/aislamiento & purificación , Virus ARN/patogenicidad , ARN Viral/aislamiento & purificación , Fiebre del Valle del Rift/diagnóstico , Fiebre del Valle del Rift/inmunología , Fiebre del Valle del Rift/prevención & control , Virus de la Fiebre del Valle del Rift/inmunología , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Virus de la Fiebre del Valle del Rift/patogenicidad , Dengue Grave/diagnóstico , Dengue Grave/inmunología , Dengue Grave/prevención & control , Organización Mundial de la Salud
18.
J Med Virol ; 91(11): 1960-1969, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31317546

RESUMEN

Hepatitis E is an important global disease, causing outbreaks of acute hepatitis in many developing countries and sporadic cases in industrialized countries. Hepatitis E virus (HEV) infection typically causes self-limiting acute hepatitis but can also progress to chronic disease in immunocompromised individuals. The immune response necessary for the prevention of chronic infection is T cell-dependent; however, the arm of cellular immunity responsible for this protection is not currently known. To investigate the contribution of humoral immunity in control of HEV infection and prevention of chronicity, we experimentally infected 20 wild-type (WT) and 18 immunoglobulin knockout (JH-KO) chickens with a chicken strain of HEV (avian HEV). Four weeks postinfection (wpi) with avian HEV, JH-KO chickens were unable to elicit anti-HEV antibody but had statistically significantly lower liver lesion scores than the WT chickens. At 16 wpi, viral RNA in fecal material and liver, and severe liver lesions were undetectable in both groups. To determine the role of cytotoxic lymphocytes in the prevention of chronicity, we infected 20 WT and 20 cyclosporine and CD8+ antibody-treated chickens with the same strain of avian HEV. The CD8 + lymphocyte-depleted, HEV-infected chickens had higher incidences of prolonged fecal viral shedding and statistically significantly higher liver lesion scores than the untreated, HEV-infected birds at 16 wpi. The results indicate that CD8 + lymphocytes are required for viral clearance and reduction of liver lesions in HEV infection while antibodies are not necessary for viral clearance but may contribute to the development of liver lesions in acute HEV infection.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Anticuerpos Antihepatitis/sangre , Hepatitis Viral Animal/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Infecciones por Virus ARN/veterinaria , Animales , Pollos/inmunología , Heces/virología , Técnicas de Inactivación de Genes , Hepatitis Viral Animal/inmunología , Hepevirus , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulinas/genética , Hígado/patología , Hígado/virología , Depleción Linfocítica , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/prevención & control , ARN Viral/análisis , Esparcimiento de Virus
19.
Fish Shellfish Immunol ; 88: 458-463, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30877059

RESUMEN

Viral necrosis virus (NNV) or nodavirus causes fish viral encephalopathy and retinopathy worldwide. In some cases, mortalities in aquaculture industry can reach up to 100%, some species being especially sensitive as is the case of European sea bass (Dicentrarchus labrax), one of the main cultured species in the Mediterranean, with the consequent economical loses. Development of new vaccines against NNV is in the spotlight though few researches have focused in European sea bass. In this study we have generated a recombinant NNV (rNNV) vaccine produced in Escherichia coli expressing the capsid protein and administered it to European sea bass juveniles by two different routes (intraperitoneal and oral). The last being considered non-stressful and desired for fish farming of small fish, which in fact are the most affected by NNV. Oral vaccine was composed of feed pellets containing the recombinant whole bacteria, and injected vaccine was composed of recombinant bacteria previously lysed. Our results revealed production of specific anti-NNV IgM following the two vaccination procedures, levels that were further increased in orally-vaccinated group after challenge with NNV. Genes related to interferon (IFN), T-cell and immunoglobulin markers were scarcely regulated in head-kidney (HK), gut or brain. Vaccination by either route elicited a relative survival response of 100% after NNV challenge. To our knowledge, this is the first report of a recombinant vaccine followed by no purification steps which resulted in a complete protection in European sea bass when challenged with NNV.


Asunto(s)
Lubina/inmunología , Enfermedades de los Peces/prevención & control , Inmunidad Humoral , Nodaviridae , Infecciones por Virus ARN/veterinaria , Vacunas Virales/inmunología , Administración Oral , Animales , Anticuerpos Antivirales/sangre , Acuicultura , Lubina/virología , Escherichia coli/genética , Enfermedades de los Peces/inmunología , Inyecciones Intraperitoneales , Infecciones por Virus ARN/prevención & control , Vacunación/veterinaria , Vacunas Sintéticas/inmunología
20.
Fish Shellfish Immunol ; 85: 78-84, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29175472

RESUMEN

This review summarizes the available knowledge on the immune defences of European sea bass against antigenic preparations derived from the viral encephalopathy and retinopathy virus (betanodavirus), which represents a major threat to the health of this fish species. The nodavirus is widely present and differentiates into several strains that infect invertebrates (in insects, alphanodavirus) and teleost fish, and thus may represent a great problem for farmed fish species. Many efforts have been directed to discovering new immunizations to induce protection in sea bass, especially at young stages, and these efforts have included employing diverse betanodavirus strains, antigen preparation, vaccination routes, and the addition of adjuvants and/or immunostimulants. The obtained results showed that inactivated preparations of betanodavirus that were administered intraperitoneally may induce both immune recognition and protection. Attempts at performing mucosal immunization by immersion and/or oral administration, which is a vaccination route that is highly preferred for sea bass, have shown intriguing results, and more studies are necessary for its improvement. Overall, the objective of identifying a reliable vaccine that also cross-protects against different genotypes or reassortant viruses for use in European sea bass against betanodavirus appears to be an attainable goal in the near future.


Asunto(s)
Lubina , Enfermedades de los Peces/prevención & control , Inmunidad Innata , Inmunidad Mucosa , Nodaviridae/inmunología , Infecciones por Virus ARN/veterinaria , Vacunación/veterinaria , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA