Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.152
Filtrar
1.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984541

RESUMEN

The cardiac extracellular matrix (cECM) is fundamental for organ morphogenesis and maturation, during which time it undergoes remodeling, yet little is known about whether mechanical forces generated by the heartbeat regulate this remodeling process. Using zebrafish as a model and focusing on stages when cardiac valves and trabeculae form, we found that altering cardiac contraction impairs cECM remodeling. Longitudinal volumetric quantifications in wild-type animals revealed region-specific dynamics: cECM volume decreases in the atrium but not in the ventricle or atrioventricular canal. Reducing cardiac contraction resulted in opposite effects on the ventricular and atrial ECM, whereas increasing the heart rate affected the ventricular ECM but had no effect on the atrial ECM, together indicating that mechanical forces regulate the cECM in a chamber-specific manner. Among the ECM remodelers highly expressed during cardiac morphogenesis, we found one that was upregulated in non-contractile hearts, namely tissue inhibitor of matrix metalloproteinase 2 (timp2). Loss- and gain-of-function analyses of timp2 revealed its crucial role in cECM remodeling. Altogether, our results indicate that mechanical forces control cECM remodeling in part through timp2 downregulation.


Asunto(s)
Matriz Extracelular , Corazón , Inhibidor Tisular de Metaloproteinasa-2 , Pez Cebra , Animales , Pez Cebra/embriología , Pez Cebra/metabolismo , Matriz Extracelular/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Corazón/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Morfogénesis , Atrios Cardíacos/embriología , Atrios Cardíacos/metabolismo , Fenómenos Biomecánicos , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/embriología
2.
J Cancer Res Clin Oncol ; 150(6): 323, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38914806

RESUMEN

PURPOSE: Circular RNAs (circRNAs) are increasingly recognized for their important roles in various cancers, including papillary thyroid cancer (PTC). The specific mechanisms by which the circLIF receptor subunit alpha (circLIFR, hsa_circ_0072309) influences PTC progression remain largely unknown. METHODS: In our study, CircLIFR, miR-429, and TIMP2 levels were assessed using reverse transcription-quantitative PCR. The roles of circLIFR and miR-429 in PTC cells were determined using Cell Counting Kit-8, colony formation, wound healing, and Transwell assays. Western blotting was utilized to examine the levels of TIMP2. The direct interaction between circLIFR, TIMP2, and miR-429 was confirmed using dual-luciferase reporter, RNA immunoprecipitation, and fluorescence in situ hybridization assays. RESULTS: In PTC tissues and cells, a decrease in circLIFR and TIMP2 levels, accompanied by an increase in miR-429 levels, was observed. Overexpression of circLIFR or downregulation of miR-429 effectively suppressed the proliferation and migration of PTC cells. Conversely, the knockdown of circLIFR or overexpression of miR-429 had the opposite effect. Furthermore, circLIFR overexpression suppressed tumor growth in vivo. Mechanistically, circLIFR modulated TIMP2 expression by serving as a sponge for miR-429. Rescue experiments indicated that the antitumor effect of circLIFR could be reversed by miR-429. CONCLUSION: This study confirmed circLIFR as a novel tumor suppressor delayed PTC progression through the miR-429/TIMP2 axis. These findings suggested that circLIFR held promise as a potential therapeutic target for PTC.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , MicroARNs , ARN Circular , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Inhibidor Tisular de Metaloproteinasa-2 , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , ARN Circular/genética , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
3.
Eur J Histochem ; 68(3)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934084

RESUMEN

Artificial light can affect eyeball development and increase myopia rate. Matrix metalloproteinase 2 (MMP-2) degrades the extracellular matrix, and induces its remodeling, while tissue inhibitor of matrix MMP-2 (TIMP-2) inhibits active MMP-2. The present study aimed to look into how refractive development and the expression of MMP-2 and TIMP-2 in the guinea pigs' remodeled sclerae are affected by artificial light with varying spectral compositions. Three weeks old guinea pigs were randomly assigned to groups exposed to five different types of light: natural light, LED light with a low color temperature, three full spectrum artificial lights, i.e. E light (continuous spectrum in the range of ~390-780 nm), G light (a blue peak at 450 nm and a small valley 480 nm) and F light (continuous spectrum and wavelength of 400 nm below filtered). A-scan ultrasonography was used to measure the axial lengths of their eyes, every two weeks throughout the experiment. Following twelve weeks of exposure to light, the sclerae were observed by optical and transmission electron microscopy. Immunohistochemistry, Western blot and RT-qPCR were used to detect the MMP-2 and TIMP-2 protein and mRNA expression levels in the sclerae. After four, six, eight, ten, and twelve weeks of illumination, the guinea pigs in the LED and G light groups had axial lengths that were considerably longer than the animals in the natural light group while the guinea pigs in the E and F light groups had considerably shorter axial lengths than those in the LED group. Following twelve weeks of exposure to light, the expression of the scleral MMP-2 protein and mRNA were, from low to high, N group, E group, F group, G group, LED group; however, the expression of the scleral TIMP-2 protein and mRNA were, from high to low, N group, E group, F group, G group, LED group. The comparison between groups was statistically significant (p<0.01). Continuous, peaks-free or valleys-free artificial light with full-spectrum preserves remodeling of scleral extracellular matrix in guinea pigs by downregulating MMP-2 and upregulating TIMP-2, controlling eye axis elongation, and inhibiting the onset and progression of myopia.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Esclerótica , Inhibidor Tisular de Metaloproteinasa-2 , Animales , Cobayas , Metaloproteinasa 2 de la Matriz/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Esclerótica/metabolismo , Luz , Miopía/metabolismo , Refracción Ocular
4.
Differentiation ; 138: 100792, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935992

RESUMEN

The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm and is regulated by transcription factor Pax6 and secreted BMP4. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2, a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.


Asunto(s)
Matriz Extracelular , Regulación del Desarrollo de la Expresión Génica , Cristalino , Factor de Transcripción PAX6 , Animales , Matriz Extracelular/metabolismo , Ratones , Cristalino/metabolismo , Cristalino/crecimiento & desarrollo , Cristalino/citología , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción PAX6/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/genética , Embrión de Pollo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción Paired Box/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Pollos/genética , Ojo/metabolismo , Ojo/crecimiento & desarrollo , Ojo/embriología
5.
Mol Biol Rep ; 51(1): 667, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780696

RESUMEN

BACKGROUND: The extracellular matrix (ECM) of skeletal muscle plays a pivotal role in tissue repair and growth, and its remodeling tightly regulated by matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and inflammatory cytokines. This study aimed to investigate changes in the mRNA expression of MMPs (Mmp-2 and Mmp-14), TIMPs (Timp-1 and Timp-2), and inflammatory cytokines (Il-1ß, Tnf-α, and Tgfß1) in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats following acute treadmill exercise. Additionally, muscle morphology was examined using hematoxylin and eosin (H&E) staining. METHODS AND RESULTS: Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min with a %0 slope. The mRNA expression of ECM components and muscle morphology in the SOL and EDL were assessed in both sedentary and exercise groups at various time points (immediately (0) and 1, 3, 6, 12, and 24 h post-exercise). Our results revealed a muscle-specific response, with early upregulation of the mRNA expression of Mmp-2, Mmp-14, Timp-1, Timp-2, Il-1ß, and Tnf-α observed in the SOL compared to the EDL. A decrease in Tgfß1 mRNA expression was evident in the SOL at all post-exercise time points. Conversely, Tgfß1 mRNA expression increased at 0 and 3 h post-exercise in the EDL. Histological analysis also revealed earlier cell infiltration in the SOL than in the EDL following acute exercise. CONCLUSIONS: Our results highlight how acute exercise modulates ECM components and muscle structure differently in the SOL and EDL muscles, leading to distinct muscle-specific responses.


Asunto(s)
Citocinas , Metaloproteinasas de la Matriz , Músculo Esquelético , Condicionamiento Físico Animal , Animales , Condicionamiento Físico Animal/fisiología , Masculino , Ratas , Músculo Esquelético/metabolismo , Citocinas/metabolismo , Citocinas/genética , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Matriz Extracelular/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Regulación de la Expresión Génica
6.
Genes Genomics ; 46(7): 763-774, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733517

RESUMEN

BACKGROUND: In a previous study, we found that the expression of microRNA 429 (MIR429) was decreased in dextran sodium sulfate (DSS)-induced mouse colitis tissues. OBJECTIVE: In this study, we aimed to investigate the interaction of MIR429 with TIMP metallopeptidase inhibitor 2 (TIMP2), one of its candidate target genes, in human colorectal cancer (CRC) cells and DSS-induced mouse colitis tissues. METHODS: A luciferase reporter system was used to confirm the effect of MIR429 on TIMP2 expression. The expression levels of MIR429 and target genes in cells or tissues were evaluated through quantitative RT-PCR, western blotting, or immunohistochemistry. RESULTS: We found that the expression level of MIR429 was downregulated in human CRC tissues, and also showed that TIMP2 is a direct target gene of MIR429 in CRC cell lines. Furthermore, MIR429 regulate TIMP2-mediated matrix metallopeptidases (MMPs) expression in CRC cells. We also generated cell lines stably expressing MIR429 in CRC cell lines and showed that MIR429 regulates the expression of MMPs by mediating TIMP2 expression. In addition to human CRC tissues, we found that TIMP2 was highly expressed in mouse colitis tissues and human ulcerative colitis (UC) tissues. CONCLUSIONS: Our findings suggest that the expression of endogenous MIR429 was reduced in human CRC tissues and colitis, leading to upregulation of its target gene TIMP2. The upregulation of TIMP2 by decreased MIR429 expression in CRC tissues and inflamed tissues suggests that it may affect extracellular matrix (ECM) remodeling through downregulation of MMPs. Therefore, MIR429 may have therapeutic value for human CRC and colitis.


Asunto(s)
Colitis , MicroARNs , Inhibidor Tisular de Metaloproteinasa-2 , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Animales , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Ratones , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Colitis/patología , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Sulfato de Dextran , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Masculino , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones Endogámicos C57BL , Regulación hacia Abajo
7.
Discov Med ; 36(184): 971-980, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798256

RESUMEN

OBJECTIVE: Tissue inhibitors of matrix metalloproteinases (TIMPs) are prognostic markers in cancers. However, the role of TIMPs in DNA methylation during invasive pituitary adenoma (PA) remains unclear. The purpose of this study was to assess the effects of TIMP2 and TIMP3 promoter demethylation on the proliferation, migration, and invasion of invasive PA cells. METHODS: Methylation-specific polymerase chain reaction (PCR), quantitative PCR, and western blots were used to analyze the promoter methylation and expression of TIMP1-3. Cell counting kit-8 (CCK-8), wound healing, and transwell assays were carried out to determine the effects of TIMP2 and TIMP3 demethylation. RESULTS: TIMP1-3 showed downregulated expression in invasive PA tissues and cell lines (p < 0.05). The low expression of TIMP1-3 was due to promoter methylation of these genes (p < 0.05). The results showed that downregulation of TIMP2 and TIMP3 can promote cell proliferation, migration, and invasion (p < 0.05), whereas overexpression of TIMP2 and TIMP3 can inhibit cell proliferation, migration, and invasion (p < 0.05). After treatment with 5-azacytidine (5-AzaC), the cell activity decreased, the proliferation rate decreased, and the invasion ability weakened (p < 0.05). Treatment with 5-AzaC increased TIMP2 and TIMP3 expression and decreased DNA (cytosine-5-)-methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b expression (p < 0.05). CONCLUSIONS: We showed that DNA methylation causes the silencing of TIMP2 and TIMP3 in invasive PA, it can also lead to malignant cell proliferation and cause pathological changes, whereas the use of 5-AzaC can inhibit the methylation process and can inhibit cell proliferation. Our results provide a novel method for clinical diagnosis and prevention of invasive PA.


Asunto(s)
Adenoma , Movimiento Celular , Proliferación Celular , Metilación de ADN , Invasividad Neoplásica , Neoplasias Hipofisarias , Inhibidor Tisular de Metaloproteinasa-2 , Inhibidor Tisular de Metaloproteinasa-3 , Humanos , Inhibidor Tisular de Metaloproteinasa-3/genética , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Proliferación Celular/genética , Proliferación Celular/efectos de los fármacos , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/metabolismo , Movimiento Celular/genética , Movimiento Celular/efectos de los fármacos , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Adenoma/genética , Adenoma/patología , Adenoma/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino , Regiones Promotoras Genéticas/genética , Persona de Mediana Edad , Adulto , Azacitidina/farmacología , ADN Metiltransferasa 3A/metabolismo
8.
Genet Test Mol Biomarkers ; 28(3): 83-90, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38478803

RESUMEN

Aim: The matrix metalloproteinases (MMPs) inhibit tissue inhibitors of metalloproteinases (TIMPs), playing a notable role in various biological processes, and mutations in TIMP2 genes impact a variety of urinary cancers. In this study, we analyze and evaluate the potential involvement of the TIMP2 418 G/C and MMP gene polymorphism in the etiology of urinary cancer. Methodology: For suitable case-control studies, a literature search was undertaken from various database sources such as PubMed, EMBASE, and Google Scholar. Incorporated into the analysis were case-control or cohort studies that documented the correlation between TIMP2 418 G/C and urological cancers. MetaGenyo served as the tool for conducting the meta-analysis, employing a fixed-effects model. The collective odds ratios, along with their corresponding 95% confidence intervals, were calculated and presented to assess the robustness of the observed associations. Results: A total of seven studies involving controls and cases out of recorded 1265 controls and 1154 cases were analyzed to ascertain the significant association of the TIMP2 gene with urologic cancer. No statistically significant correlation was observed between allelic, recessive, dominant, and overdominant models for the genetic variant under investigation. A 95% confidence interval (CI) and odds ratio (OR) were computed for each model, considering p-values <0.05. The OR and 95% CI for the allelic model were 0.99 and 0.77-1.27, respectively, whereas the respective values were 1.00 and 0.76-1.32 for the recessive model. In the dominant contrast model, OR and 95% CI were 1.09 and 0.62-1.90, while the same were 0.93 and 0.77-1.12 for the overdominant model. A funnel plot was used to reanalyze and detect the results as statically satisfactory. Conclusions: As a result of the data obtained, the TIMP2 gene polymorphism does not correlate statistically with cancer risk. The significance of this finding can only be confirmed using a large population, extensive epidemiological research, a comprehensive survey, and a better understanding of the molecular pathways associated.


Asunto(s)
Polimorfismo de Nucleótido Simple , Inhibidor Tisular de Metaloproteinasa-2 , Neoplasias Urológicas , Humanos , Alelos , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Inhibidor Tisular de Metaloproteinasa-2/genética , Neoplasias Urológicas/genética
9.
Am J Physiol Cell Physiol ; 326(5): C1353-C1366, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497110

RESUMEN

The tissue inhibitor of metalloproteinases 2 (TIMP2) has emerged as a promising biomarker for predicting the risk of sepsis-associated acute kidney injury (SA-AKI). However, its exact role in SA-AKI and the underlying mechanism remains unclear. In this study, we investigated the impact of kidney tubule-specific Timp2 knockout mice on kidney injury and inflammation. Our findings demonstrated that Timp2-knockout mice exhibited more severe kidney injury than wild-type mice, along with elevated levels of pyroptosis markers NOD-like receptor protein 3 (NLRP3), Caspase1, and gasdermin D (GSDMD) in the early stage of SA-AKI. Conversely, the expression of exogenous TIMP2 in TIMP2-knockout mice still protected against kidney damage and inflammation. In in vitro experiments, using recombinant TIMP2 protein, TIMP2 knockdown demonstrated that exogenous TIMP2 inhibited pyroptosis of renal tubular cells stimulated by lipopolysaccharide (LPS). Mechanistically, TIMP2 promoted the ubiquitination and autophagy-dependent degradation of NLRP3 by increasing intracellular cyclic adenosine monophosphate (cAMP), which mediated NLRP3 degradation through recruiting the E3 ligase MARCH7, attenuating downstream pyroptosis, and thus alleviating primary tubular cell damage. These results revealed the renoprotective role of extracellular TIMP2 in SA-AKI by attenuating tubular pyroptosis, and suggested that exogenous administration of TIMP2 could be a promising therapeutic intervention for SA-AKI treatment.NEW & NOTEWORTHY Tissue inhibitor of metalloproteinase 2 (TIMP-2) has been found to be the best biomarker for predicting the risk of sepsis-associated acute kidney injury (SA-AKI). However, its role and the underlying mechanism in SA-AKI remain elusive. The authors demonstrated in this study using kidney tubule-specific knockout mice model of SA-AKI and primary renal tubule cells stimulated with lipopolysaccharide (LPS) that extracellular TIMP-2 promoted NOD-like receptor protein 3 (NLRP3) ubiquitination and autophagy-dependent degradation by increasing intracellular cyclic adenosine monophosphate (cAMP), thus attenuated pyroptosis and alleviated renal damage.


Asunto(s)
Lesión Renal Aguda , AMP Cíclico , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Sepsis , Inhibidor Tisular de Metaloproteinasa-2 , Animales , Ratones , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Autofagia , AMP Cíclico/metabolismo , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Sepsis/complicaciones , Sepsis/metabolismo , Transducción de Señal , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética
10.
Transpl Immunol ; 82: 101984, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38184210

RESUMEN

PURPOSE: The tissue inhibitor of metalloproteinase 2 (TIMP2), a natural inhibitor of matrix metalloproteinase (MMP), regulates inflammation, fibrosis, and cell proliferation. Chronic renal allograft dysfunction (CRAD) is a primary factor affecting the long-term survival of renal allografts. We assessed whether up-regulation of TIMP2 expression may affect the ERK1/2-NF-κB signaling pathway and CRAD development. METHODS: Lewis rats received orthotopic F344 kidney allografts to establish the classical CRAD model. The treatment group was injected with a lentivirus encoding a TIMP2-targeting small hairpin (sh)RNA (LTS) at 5 × 108 TU/ml monthly after kidney transplantation. A second CRAD group was injected with a lentivirus TIMP2-control vector (LTC). After 12 weeks, blood, urine, and kidney tissue were harvested to evaluate renal function and pathological examinations. Hematoxylin and eosin staining, Masson staining, and Periodic acid-Schiff staining were performed for renal histopathological evaluation according to the Banff criteria. TIMP2, phospho (p)-ERK1/2, p-p65 (NF-κB) expression levels were measured via immunohistochemical and Western blot analyses. RESULTS: Compared to the F344 and Lewis control groups, the expression of TIMP2, p-ERK1/2, and p-p65 were significantly higher in the CRAD and CRAD+LTC renal tissues (p < 0.05). There were also increased levels of serum creatinine, nitrogen, and 24 h urinary protein in these two groups (p < 0.05). Typical histopathological changes of CRAD were observed in the CRAD and CRAD+LTC groups. Administration of LTS effectively decreased the expression of TIMP2, p-ERK1/2, and p-P65, and reduced interstitial fibrosis and macrophage infiltration in the treatment group (p < 0.05). Additionally, MCP1 and ICAM-1, which are downstream cytokines of the NF-κB pathway, were also inhibited in the renal rat kidney from the LTS group (p < 0.05). Furthermore, renal function was well preserved in the LTS group compared to the CRAD group and CRAD+LTC group. CONCLUSION: A decrease of TIMP2 can alleviate the progression of inflammation in CRAD via inhibition of the ERK1/2-NF-κB signaling pathway.


Asunto(s)
Trasplante de Riñón , FN-kappa B , Animales , Ratas , Aloinjertos/metabolismo , Fibrosis , Inflamación , Sistema de Señalización de MAP Quinasas , FN-kappa B/metabolismo , Ratas Endogámicas F344 , Ratas Endogámicas Lew , Transducción de Señal , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
11.
Mol Cell Biochem ; 479(4): 831-841, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37199893

RESUMEN

Metastasis is the cause of poor prognosis in ovarian cancer (OC). Enhancer of Zeste homolog 2 (EZH2), a histone-lysine N-methyltransferase enzyme, promotes OC cell migration and invasion by regulating the expression of tissue inhibitor of metalloproteinase-2 (TIMP2) and matrix metalloproteinases-9 (MMP9). Hence, we speculated that EZH2-targeting therapy might suppress OC migration and invasion. In this study, the expression of EZH2, TIMP2, and MMP9 in OC tissues and cell lines was analyzed using The Cancer Genome Atlas (TCGA) database and western blotting, respectively. The effects of SKLB-03220, an EZH2 covalent inhibitor, on OC cell migration and invasion were investigated using wound-healing assays, Transwell assays, and immunohistochemistry. TCGA database analysis confirmed that the EZH2 and MMP9 mRNA expression was significantly higher in OC tissues, whereas TIMP2 expression was significantly lower than that in normal ovarian tissues. Moreover, EZH2 negatively correlated with TIMP2 and positively correlated with MMP9 expression. In addition to the anti-tumor activity of SKLB-03220 in a PA-1 xenograft model, immunohistochemistry results showed that SKLB-03220 markedly increased the expression of TIMP2 and decreased the expression of MMP9. Additionally, wound-healing and Transwell assays showed that SKLB-03220 significantly inhibited the migration and invasion of both A2780 and PA-1 cells in a concentration-dependent manner. SKLB-03220 inhibited H3K27me3 and MMP9 expression and increased TIMP2 expression in PA-1 cells. Taken together, these results indicate that the EZH2 covalent inhibitor SKLB-03220 inhibits metastasis of OC cells by upregulating TIMP2 and downregulating MMP9, and could thus serve as a therapeutic agent for OC.


Asunto(s)
Acrilamidas , Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias Ováricas , Humanos , Femenino , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias Ováricas/genética , Línea Celular Tumoral , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Movimiento Celular/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
12.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 26-32, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38063122

RESUMEN

It was to study trophoblast cell (TC) adhesion molecules regulated by different genes in the placental tissue (PT) of patients with pregnancy-induced hypertension (PIH), and the correlation with the severity of PIH. 42 patients with PIH (13 cases in the mild PIH group, 11 cases in the moderate PIH group, and 18 cases in the severe PIH group) and 40 patients with normal pregnancy (NP group) were included. mRNA and protein levels in matrix metalloproteinase (MMP)-9, MMP-2, tissue inhibitor of metalloproteinases (TIMP)-1, and TIMP-2 of all patients were determined by semi-quantitative polymerase chain reaction (PCR) and Western blotting (WB), respectively. Compared to the NP group, MMP-9 and MMP-2 mRNA levels as well as their proteins in PT significantly decreased in PIH groups (P<0.05). MMP-9 mRNA was greatly lower in the severe PIH group than mild PIH group (P<0.05). MMP-2 mRNA in moderate and severe PIH groups was much lower than NP and mild PIH groups, and that in the severe PIH group was considerably lower than the moderate PIH group (P<0.05). TIMP-1 mRNA and its protein highly increased in PT in PIH groups than NP group (P<0.05). TIMP-2 mRNA was remarkably higher in the severe PIH group than in the NP group (P<0.05). mRNA and proteins of MMP-9 and MMP-2 decreased in PT of PIH patients, while TIMP-1 mRNA and its protein increased, which were correlated with the severity of PIH. MMP-9, MMP-2, and TIMP-1 were involved in the pathogenesis of PIH by regulating the infiltration of TCs.


Asunto(s)
Hipertensión Inducida en el Embarazo , Inhibidor Tisular de Metaloproteinasa-1 , Embarazo , Humanos , Femenino , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Placenta/metabolismo , Hipertensión Inducida en el Embarazo/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Trofoblastos/química , Trofoblastos/metabolismo , Moléculas de Adhesión Celular/metabolismo , ARN Mensajero/metabolismo
13.
J Clin Invest ; 134(3)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015626

RESUMEN

Blood-brain barrier (BBB) disruption is a serious pathological consequence of traumatic brain injury (TBI), for which there are limited therapeutic strategies. Tissue inhibitor of metalloproteinase-2 (TIMP2), a molecule with dual functions of inhibiting MMP activity and displaying cytokine-like activity through receptor binding, has been reported to inhibit VEGF-induced vascular hyperpermeability. Here, we investigate the ability of TIMP2 to ameliorate BBB disruption in TBI and the underlying molecular mechanisms. Both TIMP2 and AlaTIMP2, a TIMP2 mutant without MMP-inhibiting activity, attenuated neurological deficits and BBB leakage in TBI mice; they also inhibited junctional protein degradation and translocation to reduce paracellular permeability in human brain microvascular endothelial cells (ECs) exposed to hypoxic plus inflammatory insult. Mechanistic studies revealed that TIMP2 interacted with α3ß1 integrin on ECs, inhibiting Src activation-dependent VE-cadherin phosphorylation, VE-cadherin/catenin complex destabilization, and subsequent VE-cadherin internalization. Notably, localization of VE-cadherin on the membrane was critical for TIMP2-mediated EC barrier integrity. Furthermore, TIMP2-mediated increased membrane localization of VE-cadherin enhanced the level of active Rac1, thereby inhibiting stress fiber formation. All together, our studies have identified an MMP-independent mechanism by which TIMP2 regulates EC barrier integrity after TBI. TIMP2 may be a therapeutic agent for TBI and other neurological disorders involving BBB breakdown.


Asunto(s)
Antígenos CD , Barrera Hematoencefálica , Lesiones Traumáticas del Encéfalo , Animales , Humanos , Ratones , Barrera Hematoencefálica/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Células Endoteliales/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo
14.
Mol Psychiatry ; 28(9): 3943-3954, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37914840

RESUMEN

Functional output of the hippocampus, a brain region subserving memory function, depends on highly orchestrated cellular and molecular processes that regulate synaptic plasticity throughout life. The structural requirements of such plasticity and molecular events involved in this regulation are poorly understood. Specific molecules, including tissue inhibitor of metalloproteinases-2 (TIMP2) have been implicated in plasticity processes in the hippocampus, a role that decreases with brain aging as expression is lost. Here, we report that TIMP2 is highly expressed by neurons within the hippocampus and its loss drives changes in cellular programs related to adult neurogenesis and dendritic spine turnover with corresponding impairments in hippocampus-dependent memory. Consistent with the accumulation of extracellular matrix (ECM) in the hippocampus we observe with aging, we find that TIMP2 acts to reduce accumulation of ECM around synapses in the hippocampus. Moreover, its deletion results in hindrance of newborn neuron migration through a denser ECM network. A novel conditional TIMP2 knockout (KO) model reveals that neuronal TIMP2 regulates adult neurogenesis, accumulation of ECM, and ultimately hippocampus-dependent memory. Our results define a mechanism whereby hippocampus-dependent function is regulated by TIMP2 and its interactions with the ECM to regulate diverse processes associated with synaptic plasticity.


Asunto(s)
Encéfalo , Plasticidad Neuronal , Recién Nacido , Humanos , Plasticidad Neuronal/fisiología , Encéfalo/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Matriz Extracelular/metabolismo , Sinapsis/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
15.
Physiol Rep ; 11(17): e15810, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37710084

RESUMEN

Epidemiological studies have shown that patients who recovered from acute kidney injury (AKI) may subsequently develop chronic kidney disease (CKD). AKI is primarily caused by renal hypoxia, and it causes epigenetic alterations, known as hypoxic memory. 3-Deazaneplanocin A (Dznep), an inhibitor of histone modification, suppresses renal fibrosis and the expression of tissue inhibitor of metalloproteinases-2 (TIMP2), a profibrotic factor, in mouse ischemia-reperfusion models. The current study investigated the epigenetic regulation of TIMP2 in human kidney 2 (HK-2) cells. The expression of TIMP2 was upregulated in HK-2 cells under hypoxic conditions and was suppressed by Dznep. ChIP-qPCR showed that Dznep reduced the amount of H3K4me3 at the promoter region of the TIMP2 gene under hypoxic condition. Formaldehyde-assisted isolation of regulatory elements-qPCR of the TIMP2 gene showed that Dznep reduced open chromatin area. In addition, based on ChIP-qPCR of hypoxia-inducible factor 1 alpha (HIF1α), Dznep inhibited the binding of HIF1α to the TIMP2 gene under hypoxic conditions. The reporter assays for the binding region of HIF1α showed enhanced transcriptional activity by hypoxia. Dznep suppresses the expression of TIMP2 under hypoxic conditions by inhibiting the binding of HIF1α to the TIMP2 gene.


Asunto(s)
Lesión Renal Aguda , Epigénesis Genética , Animales , Ratones , Humanos , Código de Histonas , Adenosina , Modelos Animales de Enfermedad , Inhibidor Tisular de Metaloproteinasa-2/genética
16.
Clin Obes ; 13(5): e12607, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37340990

RESUMEN

Compromised adipose tissue plasticity is a hallmark finding of obesity orchestrated by the intricate interplay between various extracellular matrix components. Collagen6 (COL6) is well characterized in obese visceral adipose tissue (VAT), not much is known about MMP14 which is hypothesized to be the key player in matrix reorganization. Subjects with obesity (BMI ≥40; n = 50) aged 18-60 years undergoing bariatric surgery and their age-matched controls (BMI < 25; n = 30) were included. MMP14, Col6A3 and Tissue inhibitor of metalloproteinase 2 (TIMP2) mRNA expression was assessed in VAT and their serum levels along with endotrophin were estimated in both groups preoperatively and post-operatively in the obese group. The results were analysed statistically and correlated with anthropometric and glycaemic parameters, namely fasting glucose and insulin, HbA1c, HOMA-IR, HOMA-ß and QUICKI. Circulating levels as well as mRNA expression profiling revealed significant differences between the individuals with and without obesity (p < .05), more so in individuals with diabetes and obesity (p < .05). Follow-up serum analysis revealed significantly raised MMP14 (p < .001), with decreased Col6A3, endotrophin and TIMP2 levels (p < .01, p < .001 and p < .01, respectively). A rise in serum MMP14 protein, simultaneous with post-surgical weight loss and decreased serum levels of associated extracellular matrix (ECM) remodellers, suggests its crucial role in modulating obesity-associated ECM fibrosis and pliability of VAT.


Asunto(s)
Resistencia a la Insulina , Inhibidor Tisular de Metaloproteinasa-2 , Humanos , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Grasa Intraabdominal , Metaloproteinasa 14 de la Matriz/metabolismo , Obesidad/genética , Obesidad/cirugía , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Bull Exp Biol Med ; 174(6): 790-796, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37160599

RESUMEN

The aim of this study was to evaluate the biomarker potential of TIMP-2 in septic-induced acute kidney injury (AKI). Healthy male rats (n=56, age 8-10 weeks, body weight 250-300 g) were randomized into 3 groups: controls (intact rats, n=6), sham-operated (SO, n=24), and sepsis model (cecum ligation and perforation, CLP, n=24). Thirty minutes before and 6, 12, 24, and 48 h after surgery, blood samples were collected to measure serum creatinine, blood urea nitrogen (BUN), and TIMP-2 and the kidneys were isolated for histopathological analysis and Western blotting. The key sepsis-related genes were screened through bioinformatics analysis. In 24 and 48 h after surgery, 2 rats in the SO group reached the diagnostic criteria of AKI (increased levels of serum creatinine and BUN). In the CLP group, serum creatinine in 6 h after the surgery was slightly higher than 30 min before the surgery, but this change did not meet the diagnostic criteria for AKI. In the CLP group, BUN was normal 6 h after the surgery, but increased after 12 h. In more than 50% rats of the CLP group, serum creatinine and BUN significantly increased 12 h after operation, so this can be diagnosed as AKI. In rats of the CLP group, plasma TIMP-2 was elevated 6 h after surgery and increased with time, suggesting that plasma TIMP-2 can be used as an early marker of AKI. Histological examination of the kidneys in this group revealed destruction of the renal tubular structure, swelling of renal tubular epithelium, the disappearance of brush edge and collapse of necrotic epithelial cells, etc., and the degree of damage increased with time. Immunohistochemistry showed that TIMP-2 was expressed in rats of the CLP group at all terms of the experiment. The expression of TIMP-2 and pyroptosis-related proteins (NLRP3, IL-1ß, caspase-1, and GSDMD) in the CLP group was higher than in the SO group (p<0.05) and increased with time, suggesting that pyroptosis is involved in AKI. Thus, plasma TIMP-2 is sensitive indicator for the early detection of kidney injury and can be used as an early biomarker of AKI.


Asunto(s)
Lesión Renal Aguda , Sepsis , Ratas , Masculino , Animales , Inhibidor Tisular de Metaloproteinasa-2/genética , Creatinina , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/patología , Riñón/metabolismo , Sepsis/patología , Biomarcadores
18.
Aging (Albany NY) ; 15(9): 3635-3643, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37178321

RESUMEN

This study aimed to investigate the underlying mechanisms of cerebral ischemia-reperfusion injury (CIRI) in mice using CIR and hypoxia/reoxygenation (H/R) cell models. The study evaluated brain tissue weight, pathological injury, and changes in the expression levels of TIMP2, p-ERK1/2 and NLRP3-mediated pyroptosis-related proteins in brain tissues and hippocampal neurons of CIR mice using established methods such as dry/wet weight measurement, HE staining, qPCR, TUNEL assay, and Western blotting. The results demonstrated a significant increase in brain water content and neuronal apoptosis rate in the experimental groups compared with those in the control group. In particular, the I/R+TIMP2 group showed the highest increase. Additionally, the control group exhibited a clear brain tissue structure, neatly and densely arranged cells with normal morphology, and evenly stained and clear hippocampal tissues. However, the I/R group showed hippocampal structure disorders, interstitial edema, deep nuclear staining, karyopyknosis, and karyorrhexis in brain tissues. The study results further revealed that TIMP2 could aggravate the pathological damage of brain tissues in the I/R+TIMP2 group compared with the I/R group and significantly reduced it in the TIMP2-KD group. Furthermore, the Western blotting results demonstrated that the protein expression levels of TIMP2, p-ERK1/2, t-ERK1/2, NLRP3, IL-1ß, IL-18, GSDMD, Caspase-1, and ASC in brain tissues and hippocampal neurons were significantly higher in the experimental groups than those in the control group. The I/R+TIMP2 group displaying the highest increase and the TIMP2-KD group showing a significant decrease. In conclusion, TIMP2 can contribute to the occurrence and progression of CIRI by activating NLRP3-mediated pyroptosis.


Asunto(s)
Piroptosis , Daño por Reperfusión , Inhibidor Tisular de Metaloproteinasa-2 , Animales , Ratones , Apoptosis , Caspasa 1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Daño por Reperfusión/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
19.
Reprod Domest Anim ; 58(6): 746-753, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932642

RESUMEN

This study aimed to investigate the distribution and expression of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) in yak testes. The testes of healthy yaks at different ages: newborn [3 days], young [1 year], adult [4 years], and old [9 years] were collected for microscopic analyses using hematoxylin and eosin staining, immunohistochemistry and immunofluorescence, as well as western blot to compare the expression of MMP-2 and TIMP-2. Furthermore, the levels of MMP-2mRNA and TIMP-2mRNA was detected by real-time quantitative polymerase chain reaction (qPCR). The results of immunohistochemistry and immunofluorescence demonstrated that MMP-2 and TIMP-2 were mainly located in gonocytes of newborn, Sertoli cells of young, spermatozoa of adult and Leydig cells of old. The protein levels of MMP-2 and TIMP-2 exhibited a downward from newborn to adult, but increased again in old yaks. The analysis of qPCR showed that MMP-2 was higher in young compared with newborn or adult(**p < .01), but a lower expression was detected in adult compared with old yak testicular tissues (*p < .05). Compared with adults, TIMP-2 was significantly higher in newborn and young yaks (**p < .01), and slightly higher in old yaks (*p < .05). Hence, The location of MMP-2 and TIMP-2 in gonocytes were associated with the development of newborn yak testes. The expression of MMP-2 and TIMP-2 in Sertoli cells at young and adult yaks suggested that they provided a clue for the regulation of spermatogenesis. The positive labeling of MMP-2 and TIMP-2 in Leydig cells in old yaks suggested that both may be involved in the interstitial metabolism of the testes during this period. This study revealed the possible role of MMP-2 and TIMP-2 in testicular functionality of yaks at different ages.


Asunto(s)
Testículo , Inhibidor Tisular de Metaloproteinasa-2 , Masculino , Bovinos , Animales , Testículo/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/análisis , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Espermatozoides/metabolismo
20.
Sci Rep ; 13(1): 5186, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997589

RESUMEN

Matrix metalloproteinases (MMPs) regulate the degradation of extracellular matrix (ECM) components in biological processes. MMP activity is controlled by natural tissue inhibitors of metalloproteinases (TIMPs) that non-selectively inhibit the function of multiple MMPs via interaction with the MMPs' Zn2+-containing catalytic pocket. Recent studies suggest that TIMPs engineered to confer MMP specificity could be exploited for therapeutic purposes, but obtaining specific TIMP-2 inhibitors has proved to be challenging. Here, in an effort to improve MMP specificity, we incorporated the metal-binding non-canonical amino acids (NCAAs), 3,4-dihydroxyphenylalanine (L-DOPA) and (8-hydroxyquinolin-3-yl)alanine (HqAla), into the MMP-inhibitory N-terminal domain of TIMP2 (N-TIMP2) at selected positions that interact with the catalytic Zn2+ ion (S2, S69, A70, L100) or with a structural Ca2+ ion (Y36). Evaluation of the inhibitory potency of the NCAA-containing variants towards MMP-2, MMP-9 and MMP-14 in vitro revealed that most showed a significant loss of inhibitory activity towards MMP-14, but not towards MMP-2 and MMP-9, resulting in increased specificity towards the latter proteases. Substitutions at S69 conferred the best improvement in selectivity for both L-DOPA and HqAla variants. Molecular modeling provided an indication of how MMP-2 and MMP-9 are better able to accommodate the bulky NCAA substituents at the intermolecular interface with N-TIMP2. The models also showed that, rather than coordinating to Zn2+, the NCAA side chains formed stabilizing polar interactions at the intermolecular interface with MMP-2 and MMP-9. Our findings illustrate how incorporation of NCAAs can be used to probe-and possibly exploit-differential tolerance for substitution within closely related protein-protein complexes as a means to improve specificity.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Inhibidor Tisular de Metaloproteinasa-2 , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 14 de la Matriz , Levodopa , Inhibidores Tisulares de Metaloproteinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA