Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 748
Filtrar
1.
PLoS One ; 19(9): e0298232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39298396

RESUMEN

The objective of this study was to develop pyrazolidine-3,5-dione derivatives with potential as environmentally friendly pesticides for pest control, specifically focusing on their efficacy as larvicidal agents. A novel one-pot synthesis of multicomponent pyrazolidine-3,5-dione derivatives (1a-m) was accomplished via the grindstone method using Cu(II)tyrosinase enzyme as a catalyst under mild reaction conditions, yielding 84%-96%. The synthesised derivatives (1a-m) were characterized using various spectroscopic methods (mass spectrometry, elemental analysis, FT-IR, and 1H and 13C NMR). NMR characterisation using DMSO-d6 as a solvent. The larvicidal and antifeedant activities of the synthesised compounds were screened and in silico computational studies were performed. The larvicidal activity against Culex quinquefasciatus and antifeedant activity against Oreochromis mossambicus were evaluated. Among the synthesised compounds, compound 1c demonstrated superior efficacy (LD50: 9.7 µg/mL) against C. quinquefasciatus compared to permethrin (LD50: 17.1 µg/mL). Regarding antifeedant activity, compounds 1a, 1e, 1f, 1j, and 1k exhibited 100% mortality at 100 µg/mL. Molecular docking analysis was performed to assess the binding capacity of a mosquito odorant-binding protein (3OGN) from Culex quinquefasciatus to compound 1c. The results revealed that compound 1c had a docking score of -10.4 kcal/mol, surpassing that of standard permethrin (-9.5 kcal/mol). Furthermore, DFT calculations were conducted to acquire theoretical data aligned with the experimental FT-IR results. According to experimental research, compound 1c demonstrates promising larvicidal activity against mosquito larvae of C. quinquefasciatus.


Asunto(s)
Cobre , Culex , Insecticidas , Larva , Simulación del Acoplamiento Molecular , Animales , Larva/efectos de los fármacos , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Culex/efectos de los fármacos , Culex/enzimología , Cobre/química , Tilapia , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Catálisis
2.
Pestic Biochem Physiol ; 204: 106109, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277414

RESUMEN

Isoxazoline insecticides have shown broad-spectrum insecticidal activity against a variety of insect pests. However, the high toxicity of isoxazoline compounds towards honeybees restricts their application in crop protection. To mitigate this issue, a series of isoxazoline derivatives containing 2-phenyloxazoline were designed and synthesized. Bioassays revealed that several compounds exhibited promising insecticidal activities against Plutella xylostella, with G28 showing particularly excellent insecticidal activity, reflected by an LC50 value of 0.675 mg/L, which is comparable to that of fluxametamide (LC50 = 0.593 mg/L). Furthermore, G28 also exhibited effective insecticidal activity against Solenopsis invicta. Importantly, bee toxicity experiments indicated that G28 had significantly lower acute oral toxicity (LD50 = 2.866 µg/adult) compared to fluxametamide (LD50 = 1.083 µg/adult) and fluralaner (LD50 = 0.022 µg/adult), positioning it as a promising candidate with reduced toxicity to bees. Theoretical simulation further elucidated the reasons for the selective differences in the ability of isoxazoline to achieve higher insecticidal activity while maintaining lower bee toxicity. This research suggests that isoxazoline compounds containing 2-phenyloxazoline group hold potential as new insecticide candidates and offers insights into the development of novel isoxazoline insecticides with both high efficacy and environmental safety.


Asunto(s)
Diseño de Fármacos , Insecticidas , Isoxazoles , Mariposas Nocturnas , Oxazoles , Insecticidas/síntesis química , Insecticidas/química , Insecticidas/farmacología , Insecticidas/toxicidad , Animales , Oxazoles/química , Oxazoles/toxicidad , Isoxazoles/farmacología , Isoxazoles/química , Mariposas Nocturnas/efectos de los fármacos , Abejas/efectos de los fármacos , Relación Estructura-Actividad
3.
Sci Rep ; 14(1): 18393, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117743

RESUMEN

A new series of substituted benzo[h]chromene, benzochromenopyrimidine, and benzochromenotriazolopyrimidine derivatives were synthesized via chemical transformations of iminonitrile, ethoxymethylene amino, and cyanomethylene functionalities. The chemical structures of the synthesized compounds were assured by spectroscopic data and elemental analysis. The larvicidal efficacy of these compounds against Culex pipiens L. larvae was investigated, revealing potent insecticidal activity, particularly for compounds 6, 10, and 16, exceeding that of the standard insecticide chlorpyrifos. The mode of action of these compounds was explored through molecular docking studies, indicating their potential as acetylcholine esterase (AChE) inhibitors and nicotinic acetylcholine receptors (nAChR) blockers. The structure-activity relationship analysis highlighted the influence of substituents and fused heterocyclic rings on larvicidal potency. These findings suggest that the synthesized compounds hold promise as potential candidates for developing novel and effective mosquito control agents.


Asunto(s)
Benzopiranos , Culex , Insecticidas , Larva , Simulación del Acoplamiento Molecular , Animales , Culex/efectos de los fármacos , Larva/efectos de los fármacos , Insecticidas/farmacología , Insecticidas/química , Insecticidas/síntesis química , Relación Estructura-Actividad , Benzopiranos/farmacología , Benzopiranos/química , Benzopiranos/síntesis química , Modelos Moleculares , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Receptores Nicotínicos/metabolismo , Estructura Molecular
4.
Bioorg Chem ; 150: 107591, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964147

RESUMEN

Some heterocycles bearing a benzo[h]quinoline moiety were synthesized through treating a 3-((2-chlorobenzo[h]quinolin-3-yl)methylene)-5-(p-tolyl)furan-2(3H)-one with four nitrogen nucleophiles comprising ammonium acetate, benzylamine, dodecan-1-amine, and 1,2-diaminoethane. Also, thiation reactions of furanone and pyrrolinone derivatives were investigated. The insecticidal activity of these compounds against mosquito larvae (Culex pipiens L.) was evaluated. All tested compounds exhibited significant larvicidal activity, surpassing that of the conventional insecticide chlorpyrifos. In silico docking analysis revealed that these compounds may act as acetyl cholinesterase (AChE) inhibitors, potentially explaining their larvicidal effect. Additionally, interactions with other neuroreceptors, such as nicotinic acetylcholine receptor and sodium channel voltage-gated alpha subunit were also predicted. The results obtained from this study reflected the potential of benzo[h]quinoline derivatives as promising candidates for developing more effective and sustainable mosquito control strategies. The ADME (absorption, distribution, metabolism, and excretion) analyses displayed their desirable drug-likeness and oral bioavailability properties.


Asunto(s)
Culex , Insecticidas , Larva , Simulación del Acoplamiento Molecular , Quinolinas , Animales , Culex/efectos de los fármacos , Insecticidas/farmacología , Insecticidas/química , Insecticidas/síntesis química , Larva/efectos de los fármacos , Relación Estructura-Actividad , Quinolinas/farmacología , Quinolinas/química , Quinolinas/síntesis química , Estructura Molecular , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Acetilcolinesterasa/metabolismo
5.
J Agric Food Chem ; 72(28): 15552-15560, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950523

RESUMEN

To synthesize the fundamental framework of dihydroagarofuran, a novel strategy was devised for constructing the C-ring through a dearomatization reaction using 6-methoxy-1-tetralone as the initial substrate. Subsequently, the dihydroagarofuran skeleton was assembled via two consecutive Michael addition reactions. The conjugated diene and trans-dihydroagarofuran skeleton were modified. The insecticidal activities of 33 compounds against Mythimna separata were evaluated. Compounds 11-5 exhibited an LC50 value of 0.378 mg/mL. The activity exhibited a remarkable 29-fold increase compared to positive control Celangulin V, which was widely recognized as the most renowned natural dihydroagarofuran polyol ester insecticidal active compound. Docking experiments between synthetic compounds and target proteins revealed the shared binding sites with Celangulin V. Structure-activity relationship studies indicated that methyl groups at positions C4 and C10 significantly improved insecticidal activity, while ether groups with linear chains displayed enhanced activity; in particular, the allyl ether group demonstrated optimal efficacy. Furthermore, a three-dimensional quantitative structure-activity relationship model was established to investigate the correlation between the skeletal structure and activity. These research findings provide valuable insights for discovering and developing dihydroagarofuran-like compounds.


Asunto(s)
Insecticidas , Simulación del Acoplamiento Molecular , Mariposas Nocturnas , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Animales , Mariposas Nocturnas/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Relación Estructura-Actividad Cuantitativa , Lignanos/química , Lignanos/farmacología , Sesquiterpenos
6.
J Agric Food Chem ; 72(31): 17271-17282, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39052523

RESUMEN

Ethyl 5-cyano-1,6-dihydro-2-methyl-4-(2'-thienyl)-6-thioxonicotinate (A) was synthesized and reacted with ethyl chloroacetate in the presence of sodium acetate or sodium carbonate to give ethyl 5-cyano-6-((2-ethoxy-2-oxoethyl)thio)-2-methyl-4-(2'-thienyl)nicotinate (1a) or its isomeric thieno[2,3-b]pyridine 2a. 3-Aminothieno[2,3-b]pyridine-2-carboxamide 2b was also synthesized by the reaction of A with 2-chloroacetamide. The reaction of 1a with hydrazine hydrate in boiling ethanol gave acethydrazide 3. Heating ester 1a with hydrazine hydrate under neat conditions afforded 3-amino-1H-pyrazolo[3,4-b]pyridine 10. Compounds 2b, 3, and 10 were used as precursors for synthesizing other new thieno[2,3-b]pyridines and pyrazolo[3,4-b]pyridines containing mainly the ethyl nicotinate scaffold. Structures of all new compounds were confirmed by elemental and spectral analyses. Most of the obtained compounds were evaluated for their insecticidal activity toward the nymphs and adults of Aphis gossypii (Glover,1887). Some compounds such as 4, 9b, and 9c showed promising results. The effect of some sublethal concentrations, less than LC50, of compounds 4, 9b, and 9c on the examined Aphis was subjected to a further study. The results demonstrated that exposure of A. gossypii nymphs to sublethal concentrations of compounds 4, 9b, and 9c had noticeable effects on their biological parameters, i.e., nymphal instar duration, generation time, and adult longevity. The highest concentration C1 of all three compounds increased the nymphal instar duration and generation time and decreased adult longevity and vice versa.


Asunto(s)
Áfidos , Insecticidas , Piridinas , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Animales , Piridinas/química , Áfidos/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Ácidos Nicotínicos/química , Ácidos Nicotínicos/farmacología
7.
J Agric Food Chem ; 72(27): 15077-15091, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920088

RESUMEN

In recent decades, the unique structural attributes and purported insecticidal properties of oximes have garnered increasing attention. A variety of insecticides, encompassing fluxametamide, fluhexafon, and lepimectin, have been synthesized, all of which incorporate oximes. This review endeavors to encapsulate the insecticidal efficacy, structure-activity correlations, and operative mechanisms of oxime-containing compounds. Furthermore, it delves into the conceptual frameworks underpinning the design of innovative oxime-based insecticides, thereby shedding light on prospective advancements in this field.


Asunto(s)
Insecticidas , Oximas , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Oximas/química , Animales , Relación Estructura-Actividad , Estructura Molecular , Insectos/efectos de los fármacos , Insectos/química
8.
J Agric Food Chem ; 72(27): 15142-15150, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38926152

RESUMEN

Celangulin V is a novel botanical insecticide with significant bioactivity and a unique molecular target, but its complex polyol ester structure hinders its broader application in agriculture. To discover new analogues of celangulin V with a simpler structure and enhanced biological activities, we initiated a research project aimed at simplifying its structure and assessing insecticidal efficacy. In this study, a series of novel 1-tetralone derivatives were designed via a structure-based rational design approach and synthesized by a facile method. The biological activities of the target compounds were determined against Mythimna separata (M. separata), Plutella xylostella, and Rhopalosiphum padi. The results revealed that most of the synthesized compounds exhibited superior activities compared to celangulin V. Remarkably, the insecticidal activity of compound 6.16 demonstrated 102-fold greater stomach toxicity than celangulin V against M. separata. In addition, certain compounds showed significant contact toxicity against M. separata, a finding not reported previously in the structural optimization studies of celangulin V. Molecular docking analysis illustrated that the binding pocket of compound 6.16 with the H subunit of V-ATPase was the same as celangulin V. This study presents novel insights into the structural optimization of botanical pesticides.


Asunto(s)
Diseño de Fármacos , Insecticidas , Simulación del Acoplamiento Molecular , Mariposas Nocturnas , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Animales , Mariposas Nocturnas/efectos de los fármacos , Relación Estructura-Actividad , Áfidos/efectos de los fármacos , Estructura Molecular , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Proteínas de Insectos/química , Haptenos
9.
J Agric Food Chem ; 72(27): 15276-15283, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38943575

RESUMEN

Using nicofluprole as the lead compound, we designed and synthesized a series of new phenylpyrazole analogues through substituting the methyl group on the nitrogen atom of the amide with an acyl group. Bioassay results showed that compounds A12-A17 with a 1-cyanocyclopropimide group exhibited outstanding insecticidal activity. The LC50 values for compounds A12-A17 against Tetranychus cinnabarinus ranged from 0.58 to 0.91 mg/L. Compound A15 showed an LC50 value of 0.29 and 3.10 mg/L against Plutella xylostella and Myzus persicae, respectively. Molecular docking indicated the potential binding interactions of compound A15 with a gamma-aminobutyric acid receptor. Additionally, density functional theory calculations implied that the 1-cyanocyclopropimide structure might be essential for its biological activity. Phenylpyrazole derivatives, containing a 1-cyanocyclopropimide fragment, have the potential for further development as potential insecticides.


Asunto(s)
Acaricidas , Diseño de Fármacos , Insecticidas , Simulación del Acoplamiento Molecular , Pirazoles , Animales , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Acaricidas/química , Acaricidas/farmacología , Acaricidas/síntesis química , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Relación Estructura-Actividad , Imidas/química , Imidas/farmacología , Imidas/síntesis química , Áfidos/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Tetranychidae/efectos de los fármacos , Estructura Molecular
10.
Colloids Surf B Biointerfaces ; 241: 114040, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917668

RESUMEN

The synthesized pyrazolopyrimidine derivatives conjugated with selenium nanoparticles were prepared via a reaction of pyrazolone 1 with aryl-aldehyde and malononitrile or 3-oxo-3-phenylpropanenitrile in the presence ammonium acetate or pipridine using an ultrasonic bath as a modified method in the organic synthesis for such materials. The structure of the synthesized compounds was elucidated through various techniques. All the synthesized pyrazolopyrimidines were used in the synthesis of selenium nanoparticles (SeNPs). These nanoparticles were confirmed using UV-spectra, Dynamic Light scattering and (TEM) techniques. The larvicidal efficiency;of the synthesized;compounds; was investigated against some strains such as Culex pipiens;and Musca domestica larvae. Bioassay test showed pyrazolopyrimide derivatives to exhibit an acceptable larvicidal;bio-efficacy. The derivative (3) exhibited;the highest;efficiency for more than; lab strains of both species. Moreover, C. pipiens larvae were more sensitive towards the examined compounds than M. domestica. The field;strain displayed lower affinity for the 2 folds compounds. Some biochemical changes were tracked through analysis of insect main metabolites (protein, lipid and carbohydrate), in addition to measuring the changes in seven enzymes after treatment. Generally, there was a reduction in the protein, lipids and carbohydrates after treatment with all tested compounds. Moreover, a decrement was noticed for acetylcholine esterase and glutathione;S-transferase; enzymes. There was an increment in the acid;phosphatase; and alkaline phosphatase. In addition, there was elevation in Phenoloxidase level but it noticed the declination in both Cytochrome P450 and Ascorbate peroxidase activity after treatment both flies with derivatives of selenium-nanoparticles in both lab and field strain. Generally, the experiments carried out indicate that antioxidant and detoxification enzymes may play a significant role in mechanism of action of our novel nanocompounds. The cytotoxicity of the synthesized compounds and conjugated with SeNPs showed enhanced compatibility with human normal fibroblast cell line (BJ1) with no toxic effect.


Asunto(s)
Culex , Moscas Domésticas , Insecticidas , Larva , Nanopartículas del Metal , Pirimidinas , Selenio , Animales , Culex/efectos de los fármacos , Culex/crecimiento & desarrollo , Larva/efectos de los fármacos , Moscas Domésticas/efectos de los fármacos , Insecticidas/farmacología , Insecticidas/química , Insecticidas/síntesis química , Selenio/química , Selenio/farmacología , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/síntesis química , Nanopartículas del Metal/química , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Nanopartículas/química
11.
J Agric Food Chem ; 72(31): 17240-17247, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38912665

RESUMEN

To discover novel natural product-based insecticides, a series of (+)-nootkatone-based amine derivatives 3a-t were prepared and evaluated for their insecticidal activities against Mythimna separata Walker, Myzus persicae Sulzer, and Plutella xylostella Linnaeus. Insecticidal assays showed that most of the title (+)-nootkatone derivatives exhibited stronger insecticidal activities against three insect pests than the precursor (+)-nootkatone after the introduction of amine groups on the parent (+)-nootkatone. Compounds 3a, 3d, 3h, 3m, 3n, 3p, and 3r displayed more promising growth inhibitory (GI) effect against M. separata than the commercially available botanical insecticide toosendanin. Compound 3o exhibited the most potent aphicidal activity with an LD50 value of 0.011 µg/larvae, which was 2.09-fold higher than the positive control rotenone. Additionally, compounds 3g and 3n showed more promising larvicidal activity against P. xylostella with LC50 values of 260 and 230 mg/L, respectively, superior to that of rotenone (460 mg/L). Moreover, derivatives 3g and 3n exhibited better control efficacy toward P. xylostella than rotenone under greenhouse conditions. Preliminary mechanistic studies revealed that derivative 3n could inhibit the activity of glutathione S-transferase (GST) in P. xylostella and thus exerted larvicidal activity, and molecular docking further demonstrated that 3n could interact well with some amino acid residues of GST. Finally, the toxicity assay suggested that derivatives 3g and 3n were relatively less toxic to nontarget organisms. These findings will provide insights into the development of (+)-nootkatone derivatives as green pesticides.


Asunto(s)
Áfidos , Insecticidas , Mariposas Nocturnas , Sesquiterpenos Policíclicos , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Animales , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Áfidos/efectos de los fármacos , Relación Estructura-Actividad , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacología , Aminas/química , Aminas/farmacología , Estructura Molecular , Sesquiterpenos/química , Sesquiterpenos/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo
12.
Chem Biodivers ; 21(8): e202400948, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38899798

RESUMEN

Due to its severe damage, Spodoptera frugiperda is receiving attention as one of the biggest dangers to world food security. Although there are numerous insecticides that are widely and successfully used to control S. frugiperda, they do not have an immediate effect. In our work focusing for synthesized twelve novel benzamide derivatives and examined their insecticidal effectiveness against S. frugiperda larvae in their second & fourth larvae instars, with the aim of further improving the insecticidal activity based on combination principles. Several spectroscopic methods, including elemental analysis, NMR & infrared spectroscopy, were employed for confirming the structure of the newly designed products. It has been discovered that most compounds show good of promising efficacy. With an LC50 of 24.8 mg/L for larvae in the second instar & 56.2 mg/L for larvae in the fourth instar, compound 23 was the most active. Among all compounds 11, 22 and 20 exhibited excellent results. Furthermore, a number of biological and histopathological properties of the demonstration compounds of the produced goods under laboratory conditions were also examined. This work further demonstrates the anti-proliferation of S. frugiperda and offers fresh ideas for the manufacture of benzamide derivatives.


Asunto(s)
Benzamidas , Insecticidas , Larva , Spodoptera , Animales , Benzamidas/farmacología , Benzamidas/síntesis química , Benzamidas/química , Insecticidas/farmacología , Insecticidas/química , Insecticidas/síntesis química , Spodoptera/efectos de los fármacos , Larva/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga
13.
Molecules ; 29(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930832

RESUMEN

In this research, with an aim to develop novel pyrazole oxime ether derivatives possessing potential biological activity, thirty-two pyrazole oxime ethers, including a substituted pyridine ring, have been synthesized and structurally identified through 1H NMR, 13C NMR, and HRMS. Bioassay data indicated that most of these compounds owned strong insecticidal properties against Mythimna separata, Tetranychus cinnabarinus, Plutella xylostella, and Aphis medicaginis at a dosage of 500 µg/mL, and some title compounds were active towards Nilaparvata lugens at 500 µg/mL. Furthermore, some of the designed compounds had potent insecticidal effects against M. separata, T. cinnabarinus, or A. medicaginis at 100 µg/mL, with the mortalities of compounds 8a, 8c, 8d, 8e, 8f, 8g, 8o, 8s, 8v, 8x, and 8z against A. medicaginis, in particular, all reaching 100%. Even when the dosage was lowered to 20 µg/mL, compound 8s also expressed 50% insecticidal activity against M. separata, and compounds 8a, 8e, 8f, 8o, 8v, and 8x displayed more than 60% inhibition rates against A. medicaginis. The current results provided a significant basis for the rational design of biologically active pyrazole oxime ethers in future.


Asunto(s)
Diseño de Fármacos , Insecticidas , Oximas , Pirazoles , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Oximas/química , Oximas/farmacología , Oximas/síntesis química , Insecticidas/química , Insecticidas/síntesis química , Insecticidas/farmacología , Animales , Relación Estructura-Actividad , Éteres/química , Estructura Molecular , Piridinas/química , Piridinas/farmacología , Piridinas/síntesis química , Mariposas Nocturnas/efectos de los fármacos
14.
Molecules ; 29(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930912

RESUMEN

The escalating resistance of agricultural pests to chemical insecticides necessitates the development of novel, efficient, and safe biological insecticides. Conus quercinus, a vermivorous cone snail, yields a crude venom rich in peptides for marine worm predation. This study screened six α-conotoxins with insecticidal potential from a previously constructed transcriptome database of C. quercinus, characterized by two disulfide bonds. These conotoxins were derived via solid-phase peptide synthesis (SPPS) and folded using two-step iodine oxidation for further insecticidal activity validation, such as CCK-8 assay and insect bioassay. The final results confirmed the insecticidal activities of the six α-conotoxins, with Qc1.15 and Qc1.18 exhibiting high insecticidal activity. In addition, structural analysis via homology modeling and functional insights from molecular docking offer a preliminary look into their potential insecticidal mechanisms. In summary, this study provides essential references and foundations for developing novel insecticides.


Asunto(s)
Conotoxinas , Caracol Conus , Insecticidas , Simulación del Acoplamiento Molecular , Conotoxinas/química , Conotoxinas/farmacología , Conotoxinas/síntesis química , Insecticidas/química , Insecticidas/síntesis química , Insecticidas/farmacología , Animales , Caracol Conus/química , Secuencia de Aminoácidos , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos
15.
Pestic Biochem Physiol ; 202: 105943, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879303

RESUMEN

In this study, a new series of thiazolo[4,5-b]quinoxaline derivatives 3-8 were synthesized by treating 2,3-dichloroquinoxaline with thiosemicarbazone and thiourea derivatives under reflux conditions. The chemical structure of the newly designed derivatives was conducted using spectroscopic techniques. The insecticidal bioassay of the designed derivatives was evaluated against the 2nd and 4th larvae of S. litura after five days as toxicity agents via median lethal concentration (LC50) and the lethal time values (LT50). The results indicated that all the tested compounds had insecticidal effects against both instar larvae of S. litura with variable values. Among them, thiazolo[4,5-b]quinoxaline derivative 3 was the most toxic, with LC50 = 261.88 and 433.68 ppm against 2nd and 4th instar larvae, respectively. Moreover, the thiazolo[4,5-b]quinoxaline derivative 3 required the least time to kill the 50% population (LT50) of 2nd larvae were 20.88, 13.2, and 15.84 hs with 625, 1250, and 2500 ppm, respectively, while for the 4th larval instar were 2.75, 2.08, and 1.76 days with concentrations of 625, 1250, and 2500 ppm, respectively. Larvae's morphological and histological studies for the most active derivative 3 were investigated. According to SEM analysis, the exterior morphology of the cuticle and head capsule was affected. In addition, there were some histological alterations in the cuticle layers and the midgut tissues. Columnar cells began breaking down, and vacuolization occurred in the peritrophic membrane. Moreover, treating 4th S litura larvae hemolymph with compound 3 showed significant changes in biochemical analysis, such as total proteins, GPT, GOT, acetylcholinesterase (AChE), and alkaline phosphatase (AlP). Finally, the toxicity prediction of the most active derivative revealed non-corrosive, non-irritant to the eye, non-respiratory toxicity, non-sensitivity to the skin, non-hepatotoxic, and don't have toxicity on minnow toxicity and T. pyriformis indicating a good toxicity profile for human.


Asunto(s)
Insecticidas , Larva , Quinoxalinas , Spodoptera , Animales , Insecticidas/síntesis química , Insecticidas/farmacología , Insecticidas/toxicidad , Insecticidas/química , Quinoxalinas/toxicidad , Quinoxalinas/farmacología , Quinoxalinas/síntesis química , Quinoxalinas/química , Larva/efectos de los fármacos , Spodoptera/efectos de los fármacos , Spodoptera/crecimiento & desarrollo , Tiazoles/química
16.
Chem Biodivers ; 21(7): e202400776, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733168

RESUMEN

A significant reason for developing innovative insecticidal active agents is the exponential rise in resistance to traditional chemical pesticides. Exploring new classes of insecticidal compounds with distinct mechanisms of action is one way to address this difficulty. So that, novel aryl thioamides derivatives 3-15 has been synthesized viaone-pot, three-component reaction of aroyl chloride, ammonium thiocyanate, and aromatic amines in dry acetone. The newly synthesized compounds' structures were validated by various spectroscopic methods, including elemental analysis, 1H-NMR, 13C NMR, and infrared spectroscopy. Under laboratory circumstances, the synthesized compounds showed good and broad-spectrum insecticidal activities toward S. littorali. When compared to other synthetic target compounds, 2,4-dichloro-N-[(3-fluorophenyl)carbamothioyl]benzamide 11, 2,4-dichloro-N-[(3-fluorophenyl)carbamothioyl]benzenecarbothioamide 13 showed good insecticidal activity, with 46.33 mg/L and LC50 values of 49.25 mg/L for 2nd instar larvae. Furthermore, the compound 3 was the least toxic in controlling the second and fourth instar larvae of S. littoralis on tomato leaves. Additionally, several histopathological and biochemical features of the some synthesized compounds under laboratory circumstances were also examined.


Asunto(s)
Diseño de Fármacos , Insecticidas , Spodoptera , Tioamidas , Animales , Insecticidas/farmacología , Insecticidas/síntesis química , Insecticidas/química , Spodoptera/efectos de los fármacos , Relación Estructura-Actividad , Tioamidas/química , Tioamidas/farmacología , Tioamidas/síntesis química , Larva/efectos de los fármacos , Estructura Molecular , Hormonas Juveniles/farmacología , Hormonas Juveniles/química , Hormonas Juveniles/síntesis química , Relación Dosis-Respuesta a Droga
17.
J Agric Food Chem ; 72(21): 11949-11957, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38757770

RESUMEN

As the first marketed phenylpyrazole insecticide, fipronil exhibited remarkable broad-spectrum insecticidal activity. However, it poses a significant threat to aquatic organisms and bees due to its high toxicity. Herein, 35 phenylpyrazole derivatives containing a trifluoroethylthio group on the 4 position of the pyrazole ring were designed and synthesized. The predicted physicochemical properties of all of the compounds were within a reasonable range. The biological assay results revealed that compound 7 showed 69.7% lethality against Aedes albopictus (A. albopictus) at the concentration of 0.125 mg/L. Compounds 7, 7g, 8d, and 10j showed superior insecticidal activity for the control of Plutella xylostella (P. xylostella). Notably, compound 7 showed similar insecticidal activity against Aphis craccivora (A. craccivora) compared with fipronil. Potential surface calculation and molecular docking suggested that different lipophilicity and binding models to the Musca domestica (M. domestica) gamma-aminobutyric acid receptors may be responsible for the decreased activity of the tested derivatives. Toxicity tests indicated that compound 8d (LC50 = 14.28 mg/L) induced obviously 14-fold lower toxicity than fipronil (LC50 = 1.05 mg/L) on embryonic-juvenile zebrafish development.


Asunto(s)
Aedes , Diseño de Fármacos , Moscas Domésticas , Insecticidas , Simulación del Acoplamiento Molecular , Pirazoles , Animales , Insecticidas/química , Insecticidas/síntesis química , Insecticidas/farmacología , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Aedes/efectos de los fármacos , Aedes/crecimiento & desarrollo , Relación Estructura-Actividad , Moscas Domésticas/efectos de los fármacos , Moscas Domésticas/crecimiento & desarrollo , Áfidos/efectos de los fármacos , Áfidos/crecimiento & desarrollo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Estructura Molecular , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Pez Cebra/embriología
18.
Pak J Pharm Sci ; 37(2): 297-305, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38767096

RESUMEN

The field of bio-fabricated noble metallic nanoparticles (NPs) has gained significant attention in applied research due to their eco-friendly and biocompatible nature. This study focuses on employing a green synthesis method to produce silver and gold nanoparticles (bio-fabricated) using a Mangrove plant extract and assessing their insecticidal and growth-inhibitory effects for environmentally friendly pest control. The resulting NPs underwent comprehensive characterization through various spectroscopy techniques. The morphology of both silver and gold mediated nanoparticles of Avicennia marina leaf extract displayed a spherical shape, with average sizes measuring around 70-80 nm and 95-100 nm, respectively. Regarding cytotoxicity, the inhibitory effects of silver nanoparticles were less than that observed by the extract alone while gold nanoparticles showed stronger cell growth inhibitory effects on splenic cells. The hepatic toxicity of silver and gold nanoparticles showed significant toxic effects as compared to A. marina extract alone. Notably, as prepared silver nanoparticles exhibited substantial larvicidal toxicity as compared to gold nanoparticles, when tested against fourth instar Culex pipiens larvae. These biocompatible silver and gold nanoparticles prepared from A. marina leaf extract hold promise for future applications as larvicides to effectively control mosquito species.


Asunto(s)
Avicennia , Culex , Oro , Insecticidas , Larva , Nanopartículas del Metal , Extractos Vegetales , Hojas de la Planta , Plata , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Oro/química , Oro/toxicidad , Oro/farmacología , Plata/química , Plata/toxicidad , Plata/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Animales , Insecticidas/síntesis química , Insecticidas/farmacología , Insecticidas/química , Insecticidas/toxicidad , Larva/efectos de los fármacos , Culex/efectos de los fármacos , Culex/crecimiento & desarrollo , Tecnología Química Verde/métodos , Ratones , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula
19.
J Agric Food Chem ; 72(20): 11341-11350, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38713071

RESUMEN

Insect neuropeptides play an essential role in regulating growth, development, reproduction, nerve conduction, metabolism, and behavior in insects; therefore, G protein-coupled receptors of neuropeptides are considered important targets for designing green insecticides. Cockroach-type allatostatins (ASTs) (FGLamides allatostatins) are important insect neuropeptides in Diploptera punctata that inhibit juvenile hormone (JH) synthesis in the corpora allata and affect growth, development, and reproduction of insects. Therefore, the pursuit of novel insecticides targeting the allatostatin receptor (AstR) holds significant importance. Previously, we identified an AST analogue, H17, as a promising candidate for pest control. Herein, we first modeled the 3D structure of AstR in D. punctata (Dippu-AstR) and predicted the binding mode of H17 with Dippu-AstR to study the critical interactions and residues favorable to its bioactivity. Based on this binding mode, we designed and synthesized a series of H17 derivatives and assessed their insecticidal activity against D. punctata. Among them, compound Q6 showed higher insecticidal activity than H17 against D. punctata by inhibiting JH biosynthesis, indicating that Q6 is a potential candidate for a novel insect growth regulator (IGR)-based insecticide. Moreover, Q6 exhibited insecticidal activity against Plutella xylostella, indicating that these AST analogs may have a wider insecticidal spectrum. The underlying mechanisms and molecular conformations mediating the interactions of Q6 with Dippu-AstR were explored to understand its effects on the bioactivity. The present work clarifies how a target-based strategy facilitates the discovery of new peptide mimics with better bioactivity, enabling improved IGR-based insecticide potency in sustainable agriculture.


Asunto(s)
Proteínas de Insectos , Insecticidas , Neuropéptidos , Peptidomiméticos , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Animales , Neuropéptidos/química , Neuropéptidos/farmacología , Neuropéptidos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Peptidomiméticos/química , Peptidomiméticos/farmacología , Peptidomiméticos/síntesis química , Diseño de Fármacos , Hormonas Juveniles/química , Hormonas Juveniles/farmacología , Hormonas Juveniles/metabolismo , Cucarachas/efectos de los fármacos , Cucarachas/química
20.
J Agric Food Chem ; 72(20): 11331-11340, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38721769

RESUMEN

Research on mesoionic structures in pesticide design has gained significant attention in recent years. However, the 1-position of pyridino[1,2-a]pyrimidine is usually designed with 2-chlorothiazole, 2-chloropyridine, or cyano moieties commonly found in neonicotinoid insecticides. In order to enrich the available pharmacophore library, here, we disclose a series of new pyridino[1,2-a]pyrimidine mesoionics bearing indole-containing substituents at the 1-position. Most of these target compounds are confirmed to have good insecticidal activity against aphids through bioevaluation. In addition, a three-dimensional structure-activity relationship model is established to allow access to optimal compound F45 with an LC50 value of 2.97 mg/L. This value is comparable to the property achieved by the positive control triflumezopyrim (LC50 = 2.94 mg/L). Proteomics and molecular docking analysis suggest that compound F45 has the potential to modulate the functioning of the aphid nervous system through its interaction with neuronal nicotinic acetylcholine receptors. This study expands the existing pharmacophore library for the future development of new mesoionic insecticides based on 1-position modifications of the pyridino[1,2-a]pyrimidine scaffold.


Asunto(s)
Áfidos , Diseño de Fármacos , Indoles , Insecticidas , Simulación del Acoplamiento Molecular , Pirimidinas , Insecticidas/química , Insecticidas/síntesis química , Insecticidas/farmacología , Animales , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Áfidos/efectos de los fármacos , Indoles/química , Indoles/farmacología , Indoles/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA