Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 538
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L232-L249, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38860845

RESUMEN

COVID-19 syndrome is characterized by acute lung injury, hypoxemic respiratory failure, and high mortality. Alveolar type 2 (AT2) cells are essential for gas exchange, repair, and regeneration of distal lung epithelium. We have shown that the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and other members of the ß-coronavirus genus induce an endoplasmic reticulum (ER) stress response in vitro; however, the consequences for host AT2 cell function in vivo are less understood. To study this, two murine models of coronavirus infection were used-mouse hepatitis virus-1 (MHV-1) in A/J mice and a mouse-adapted SARS-CoV-2 strain. MHV-1-infected mice exhibited dose-dependent weight loss with histological evidence of distal lung injury accompanied by elevated bronchoalveolar lavage fluid (BALF) cell counts and total protein. AT2 cells showed evidence of both viral infection and increased BIP/GRP78 expression, consistent with activation of the unfolded protein response (UPR). The AT2 UPR included increased inositol-requiring enzyme 1α (IRE1α) signaling and a biphasic response in PKR-like ER kinase (PERK) signaling accompanied by marked reductions in AT2 and BALF surfactant protein (SP-B and SP-C) content, increases in surfactant surface tension, and emergence of a reprogrammed epithelial cell population (Krt8+ and Cldn4+). The loss of a homeostatic AT2 cell state was attenuated by treatment with the IRE1α inhibitor OPK-711. As a proof-of-concept, C57BL6 mice infected with mouse-adapted SARS-CoV-2 demonstrated similar lung injury and evidence of disrupted surfactant homeostasis. We conclude that lung injury from ß-coronavirus infection results from an aberrant host response, activating multiple AT2 UPR stress pathways, altering surfactant metabolism/function, and changing AT2 cell state, offering a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and acute respiratory failure.NEW & NOTEWORTHY COVID-19 syndrome is characterized by hypoxemic respiratory failure and high mortality. In this report, we use two murine models to show that ß-coronavirus infection produces acute lung injury, which results from an aberrant host response, activating multiple epithelial endoplasmic reticular stress pathways, disrupting pulmonary surfactant metabolism and function, and forcing emergence of an aberrant epithelial transition state. Our results offer a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and respiratory failure.


Asunto(s)
COVID-19 , Estrés del Retículo Endoplásmico , Endorribonucleasas , Homeostasis , Virus de la Hepatitis Murina , SARS-CoV-2 , Animales , Ratones , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , COVID-19/complicaciones , Virus de la Hepatitis Murina/patogenicidad , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , Células Epiteliales Alveolares/patología , Chaperón BiP del Retículo Endoplásmico , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/complicaciones , Surfactantes Pulmonares/metabolismo , Respuesta de Proteína Desplegada , Betacoronavirus , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/virología , Insuficiencia Respiratoria/patología , Modelos Animales de Enfermedad , eIF-2 Quinasa/metabolismo , Humanos
2.
Nat Commun ; 15(1): 4724, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830855

RESUMEN

Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.


Asunto(s)
Galectina 3 , Lipopolisacáridos , Ratones Endogámicos C57BL , Neutrófilos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Galectina 3/metabolismo , Galectina 3/genética , Neutrófilos/inmunología , Neutrófilos/metabolismo , Humanos , Ratones , Infecciones por Pseudomonas/inmunología , Masculino , Femenino , Insuficiencia Respiratoria/metabolismo , Ratones Noqueados , Fagocitosis , Inmunidad Innata , Galectinas/metabolismo , Galectinas/genética
3.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37373199

RESUMEN

Thoracic surgeries involving resection of lung tissue pose a risk of severe postoperative pulmonary complications, including acute respiratory distress syndrome (ARDS) and respiratory failure. Lung resections require one-lung ventilation (OLV) and, thus, are at higher risk of ventilator-induced lung injury (VILI) attributable to barotrauma and volutrauma in the one ventilated lung, as well as hypoxemia and reperfusion injury on the operated lung. Further, we also aimed to assess the differences in localized and systemic markers of tissue injury/inflammation in those who developed respiratory failure after lung surgery versus matched controls who did not develop respiratory failure. We aimed to assess the different inflammatory/injury marker patterns induced in the operated and ventilated lung and how this compared to the systemic circulating inflammatory/injury marker pattern. A case-control study nested within a prospective cohort study was performed. Patients with postoperative respiratory failure after lung surgery (n = 5) were matched with control patients (n = 6) who did not develop postoperative respiratory failure. Biospecimens (arterial plasma, bronchoalveolar lavage separately from ventilated and operated lungs) were obtained from patients undergoing lung surgery at two timepoints: (1) just prior to initiation of OLV and (2) after lung resection was completed and OLV stopped. Multiplex electrochemiluminescent immunoassays were performed for these biospecimen. We quantified 50 protein biomarkers of inflammation and tissue injury and identified significant differences between those who did and did not develop postoperative respiratory failure. The three biospecimen types also display unique biomarker patterns.


Asunto(s)
Pulmón , Insuficiencia Respiratoria , Humanos , Estudios de Casos y Controles , Estudios Prospectivos , Pulmón/cirugía , Pulmón/metabolismo , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/metabolismo , Respiración Artificial
4.
eNeuro ; 10(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37364996

RESUMEN

Opioid drugs are widely used as analgesics but cause respiratory depression, a potentially lethal side effect with overdose, by acting on µ-opioid receptors (MORs) expressed in brainstem regions involved in the control of breathing. Although many brainstem regions have been shown to regulate opioid-induced respiratory depression, the types of neurons involved have not been identified. Somatostatin is a major neuropeptide found in brainstem circuits regulating breathing, but it is unknown whether somatostatin-expressing circuits regulate respiratory depression by opioids. We examined the coexpression of Sst (gene encoding somatostatin) and Oprm1 (gene encoding MORs) mRNAs in brainstem regions involved in respiratory depression. Interestingly, Oprm1 mRNA expression was found in the majority (>50%) of Sst-expressing cells in the preBötzinger Complex, the nucleus tractus solitarius, the nucleus ambiguus, and the Kölliker-Fuse nucleus. We then compared respiratory responses to fentanyl between wild-type and Oprm1 full knock-out mice and found that the lack of MORs prevented respiratory rate depression from occurring. Next, using transgenic knock-out mice lacking functional MORs specifically in Sst-expressing cells, we compared respiratory responses to fentanyl between control and the conditional knock-out mice. We found that respiratory rate depression by fentanyl was preserved when MORs were deleted only in Sst-expressing cells. Our results show that despite coexpression of Sst and Oprm1 in respiratory circuits and the importance of somatostatin-expressing cells in the regulation of breathing, these cells do not mediate opioid-induced respiratory rate depression. Instead, MORs found in respiratory cell populations other than Sst-expressing cells likely contribute to the respiratory effects of fentanyl.


Asunto(s)
Fentanilo , Insuficiencia Respiratoria , Ratones , Animales , Fentanilo/farmacología , Analgésicos Opioides/farmacología , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Neuronas/metabolismo , Ratones Noqueados , Somatostatina/metabolismo , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/tratamiento farmacológico , Insuficiencia Respiratoria/metabolismo
5.
Am J Physiol Cell Physiol ; 324(4): C799-C806, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36847444

RESUMEN

The alveolar epithelial glycocalyx is a dense anionic layer of glycosaminoglycans (GAGs) and proteoglycans that lines the apical surface of the alveolar epithelium. In contrast to the pulmonary endothelial glycocalyx, which has well-established roles in vascular homeostasis and septic organ dysfunction, the alveolar epithelial glycocalyx is less understood. Recent preclinical studies demonstrated that the epithelial glycocalyx is degraded in multiple murine models of acute respiratory distress syndrome (ARDS), particularly those that result from inhaled insults (so-called "direct" lung injury), leading to shedding of GAGs into the alveolar airspaces. Epithelial glycocalyx degradation also occurs in humans with respiratory failure, as quantified by analysis of airspace fluid obtained from ventilator heat moisture exchange (HME) filters. In patients with ARDS, GAG shedding correlates with the severity of hypoxemia and is predictive of the duration of respiratory failure. These effects may be mediated by surfactant dysfunction, as targeted degradation of the epithelial glycocalyx in mice was sufficient to cause increased alveolar surface tension, diffuse microatelectasis, and impaired lung compliance. In this review, we describe the structure of the alveolar epithelial glycocalyx and the mechanisms underlying its degradation during ARDS. We additionally review the current state of knowledge regarding the attributable effect of epithelial glycocalyx degradation in lung injury pathogenesis. Finally, we address glycocalyx degradation as a potential mediator of ARDS heterogeneity, and the subsequent value of point-of-care quantification of GAG shedding to potentially identify patients who are most likely to respond to pharmacological agents aimed at attenuating glycocalyx degradation.


Asunto(s)
Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Animales , Ratones , Glicocálix , Lesión Pulmonar/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Pulmón , Insuficiencia Respiratoria/metabolismo
6.
ASN Neuro ; 14: 17590914221103188, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35611439

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in refractory epilepsy patients. Accumulating evidence from recent human studies and animal models suggests that seizure-related respiratory arrest may be important for initiating cardiorespiratory arrest and death. Prior evidence suggests that apnea onset can coincide with seizure spread to the amygdala and that stimulation of the amygdala can reliably induce apneas in epilepsy patients, potentially implicating amygdalar regions in seizure-related respiratory arrest and subsequent postictal hypoventilation and cardiorespiratory death. This study aimed to determine if an extended amygdalar structure, the dorsal bed nucleus of the stria terminalis (dBNST), is involved in seizure-induced respiratory arrest (S-IRA) and death using DBA/1 mice, a mouse strain which has audiogenic seizures (AGS) and a high incidence of postictal respiratory arrest and death. The presence of S-IRA significantly increased c-Fos expression in the dBNST of DBA/1 mice. Furthermore, disruption of synaptic output from the dBNST via viral-induced tetanus neurotoxin (TeNT) significantly improved survival following S-IRA in DBA/1 mice without affecting baseline breathing or hypercapnic (HCVR) and hypoxic ventilatory response (HVR). This disruption in the dBNST resulted in changes to the balance of excitatory/inhibitory (E/I) synaptic events in the downstream brainstem regions of the lateral parabrachial nucleus (PBN) and the periaqueductal gray (PAG). These findings suggest that the dBNST is a potential subcortical forebrain site necessary for the mediation of S-IRA, potentially through its outputs to brainstem respiratory regions.


Asunto(s)
Insuficiencia Respiratoria , Núcleos Septales , Animales , Tronco Encefálico/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos DBA , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/metabolismo , Convulsiones/metabolismo , Transmisión Sináptica
7.
Viruses ; 14(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35458517

RESUMEN

Risk stratification of coronavirus disease-19 (COVID-19) patients by simple markers is critical to guide treatment. We studied the predictive value of soluble interleukin-2 receptor (sIL-2R) for the early identification of patients at risk of developing severe clinical outcomes. sIL-2R levels were measured in 197 patients (60.9% males; median age 61 years; moderate disease, n = 65; severe, n = 132, intubated and/or died, n = 42). All patients received combined immunotherapies (anakinra ± corticosteroids ± intravenous immunoglobulin ± tocilizumab) according to our local treatment algorithm. The endpoint was the composite event of intubation due to severe respiratory failure (SRF) or mortality. Median (interquartile range) sIL-2R levels were significantly higher in patients with severe disease, compared with those with moderate disease (6 (6.2) vs. 5.2 (3.4) ng/mL, p = 0.017). sIL-2R was the strongest laboratory predictive factor for intubation/death (hazard ratio 1.749, 95%CI 1.041-2.939, p = 0.035) after adjustment for other known risk factors. Youden's index revealed optimal sIL-2R cut-off for predicting intubation/death at 9 ng/mL (sensitivity: 67%; specificity: 86%; positive and negative predictive value: 57% and 91%, respectively). Delta sIL-2R between the day of event or discharge minus admission date was higher in patients that intubated/died than in those who did not experience an event (2.91 (10.42) vs. 0.44 (2.88) ng/mL; p = 0.08)). sIL-2R on admission and its dynamic changes during follow-up may reflect disease severity and predict the development of SRF and mortality.


Asunto(s)
COVID-19 , Receptores de Interleucina-2 , Insuficiencia Respiratoria , Biomarcadores , COVID-19/metabolismo , COVID-19/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Receptores de Interleucina-2/sangre , Receptores de Interleucina-2/metabolismo , Insuficiencia Respiratoria/diagnóstico , Insuficiencia Respiratoria/metabolismo
8.
Br J Anaesth ; 128(3): 584-595, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34872716

RESUMEN

BACKGROUND: The safety profile of buprenorphine has encouraged its widespread use. However, fatalities have been attributed to benzodiazepine/buprenorphine combinations, by poorly understood mechanisms of toxicity. Mechanistic hypotheses include (i) benzodiazepine-mediated increase in brain buprenorphine (pharmacokinetic hypothesis); (ii) benzodiazepine-mediated potentiation of buprenorphine interaction with opioid receptors (receptor hypothesis); and (iii) combined effects of buprenorphine and benzodiazepine on respiratory parameters (pharmacodynamic hypothesis). METHODS: We studied the neuro-respiratory effects of buprenorphine (30 mg kg-1, i.p.), diazepam (20 mg kg-1, s.c.), and diazepam/buprenorphine combination in rats using arterial blood gas analysis, plethysmography, and diaphragm electromyography. Pretreatments with various opioid and gamma-aminobutyric acid receptor antagonists were tested. Diazepam impact on brain 11C-buprenorphine kinetics and binding to opioid receptors was studied using positron emission tomography imaging. RESULTS: In contrast to diazepam and buprenorphine alone, diazepam/buprenorphine induced early-onset sedation (P<0.05) and respiratory depression (P<0.001). Diazepam did not alter 11C-buprenorphine brain kinetics or binding to opioid receptors. Diazepam/buprenorphine-induced effects on inspiratory time were additive, driven by buprenorphine (P<0.0001) and were blocked by naloxonazine (P<0.01). Diazepam/buprenorphine-induced effects on expiratory time were non-additive (P<0.001), different from buprenorphine-induced effects (P<0.05) and were blocked by flumazenil (P<0.01). Diazepam/buprenorphine-induced effects on tidal volume were non-additive (P<0.01), different from diazepam- (P<0.05) and buprenorphine-induced effects (P<0.0001) and were blocked by naloxonazine (P<0.05) and flumazenil (P<0.05). Compared with buprenorphine, diazepam/buprenorphine decreased diaphragm contraction amplitude (P<0.01). CONCLUSIONS: Pharmacodynamic parameters and antagonist pretreatments indicate that diazepam/buprenorphine-induced respiratory depression results from a pharmacodynamic interaction between both drugs on ventilatory parameters.


Asunto(s)
Buprenorfina , Diazepam , Insuficiencia Respiratoria , Animales , Masculino , Ratas , Analgésicos Opioides/farmacocinética , Benzodiazepinas/farmacocinética , Análisis de los Gases de la Sangre/métodos , Buprenorfina/efectos adversos , Buprenorfina/farmacocinética , Diazepam/efectos adversos , Diazepam/farmacocinética , Interacciones Farmacológicas/fisiología , Flumazenil/farmacocinética , Antagonistas de Narcóticos/farmacocinética , Ratas Sprague-Dawley , Receptores Opioides/metabolismo , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/metabolismo
9.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884756

RESUMEN

Pulmonary fibrosis is a chronic, fibrotic lung disease affecting 3 million people worldwide. The ACE2/Ang-(1-7)/MasR axis is of interest in pulmonary fibrosis due to evidence of its anti-fibrotic action. Current scientific evidence supports that inhibition of ACE2 causes enhanced fibrosis. ACE2 is also the primary receptor that facilitates the entry of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic. COVID-19 is associated with a myriad of symptoms ranging from asymptomatic to severe pneumonia and acute respiratory distress syndrome (ARDS) leading to respiratory failure, mechanical ventilation, and often death. One of the potential complications in people who recover from COVID-19 is pulmonary fibrosis. Cigarette smoking is a risk factor for fibrotic lung diseases, including the idiopathic form of this disease (idiopathic pulmonary fibrosis), which has a prevalence of 41% to 83%. Cigarette smoke increases the expression of pulmonary ACE2 and is thought to alter susceptibility to COVID-19. Cannabis is another popular combustible product that shares some similarities with cigarette smoke, however, cannabis contains cannabinoids that may reduce inflammation and/or ACE2 levels. The role of cannabis smoke in the pathogenesis of pulmonary fibrosis remains unknown. This review aimed to characterize the ACE2-Ang-(1-7)-MasR Axis in the context of pulmonary fibrosis with an emphasis on risk factors, including the SARS-CoV-2 virus and exposure to environmental toxicants. In the context of the pandemic, there is a dire need for an understanding of pulmonary fibrotic events. More research is needed to understand the interplay between ACE2, pulmonary fibrosis, and susceptibility to coronavirus infection.


Asunto(s)
Angiotensina I/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Fibrosis/metabolismo , Fragmentos de Péptidos/metabolismo , Proto-Oncogenes Mas/metabolismo , Cannabis , Fumar Cigarrillos , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Inflamación , Pulmón/patología , Pandemias , Respiración Artificial , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria/metabolismo , Factores de Riesgo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
10.
Sci Rep ; 11(1): 23019, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836982

RESUMEN

Hierarchal clustering of amino acid metabolites may identify a metabolic signature in children with pediatric acute hypoxemic respiratory failure. Seventy-four immunocompetent children, 41 (55.4%) with pediatric acute respiratory distress syndrome (PARDS), who were between 2 days to 18 years of age and within 72 h of intubation for acute hypoxemic respiratory failure, were enrolled. We used hierarchal clustering and partial least squares-discriminant analysis to profile the tracheal aspirate airway fluid using quantitative LC-MS/MS to explore clusters of metabolites that correlated with acute hypoxemia severity and ventilator-free days. Three clusters of children that differed by severity of hypoxemia and ventilator-free days were identified. Quantitative pathway enrichment analysis showed that cysteine and methionine metabolism, selenocompound metabolism, glycine, serine and threonine metabolism, arginine biosynthesis, and valine, leucine, and isoleucine biosynthesis were the top five enriched, impactful pathways. We identified three clusters of amino acid metabolites found in the airway fluid of intubated children important to acute hypoxemia severity that correlated with ventilator-free days < 21 days. Further studies are needed to validate our findings and to test our models.


Asunto(s)
Aminoácidos/metabolismo , Líquidos Corporales/química , Síndrome de Dificultad Respiratoria/metabolismo , Insuficiencia Respiratoria/metabolismo , Adolescente , Biomarcadores , Niño , Preescolar , Análisis por Conglomerados , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Síndrome de Dificultad Respiratoria/diagnóstico , Insuficiencia Respiratoria/diagnóstico
11.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34769481

RESUMEN

Ecological networking and in vitro studies predict that anaerobic, mucus-degrading bacteria are keystone species in cystic fibrosis (CF) microbiomes. The metabolic byproducts from these bacteria facilitate the colonization and growth of CF pathogens like Pseudomonas aeruginosa. Here, a multi-omics study informed the control of putative anaerobic keystone species during a transition in antibiotic therapy of a CF patient. A quantitative metagenomics approach combining sequence data with epifluorescence microscopy showed that during periods of rapid lung function loss, the patient's lung microbiome was dominated by the anaerobic, mucus-degrading bacteria belonging to Streptococcus, Veillonella, and Prevotella genera. Untargeted metabolomics and community cultures identified high rates of fermentation in these sputa, with the accumulation of lactic acid, citric acid, and acetic acid. P. aeruginosa utilized these fermentation products for growth, as indicated by quantitative transcriptomics data. Transcription levels of P. aeruginosa genes for the utilization of fermentation products were proportional to the abundance of anaerobic bacteria. Clindamycin therapy targeting Gram-positive anaerobes rapidly suppressed anaerobic bacteria and the accumulation of fermentation products. Clindamycin also lowered the abundance and transcription of P. aeruginosa, even though this patient's strain was resistant to this antibiotic. The treatment stabilized the patient's lung function and improved respiratory health for two months, lengthening by a factor of four the between-hospitalization time for this patient. Killing anaerobes indirectly limited the growth of P. aeruginosa by disrupting the cross-feeding of fermentation products. This case study supports the hypothesis that facultative anaerobes operated as keystone species in this CF microbiome. Personalized multi-omics may become a viable approach for routine clinical diagnostics in the future, providing critical information to inform treatment decisions.


Asunto(s)
Fibrosis Quística/microbiología , Metagenómica/métodos , Microbiota , Adulto , Antibacterianos/uso terapéutico , Fibrosis Quística/complicaciones , Fibrosis Quística/terapia , Genómica/métodos , Humanos , Pulmón/microbiología , Masculino , Metabolómica/métodos , Microbiota/genética , Pruebas de Función Respiratoria , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/microbiología , Insuficiencia Respiratoria/terapia , Esputo/microbiología
12.
Am J Physiol Cell Physiol ; 321(4): C681-C683, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469203

RESUMEN

Respiratory depression is a potentially fatal side effect of opioid analgesics and a major limitation to their use. G protein-biased opioid agonists have been proposed as "safer" analgesics with less respiratory depression. These agonists are biased to activate G proteins rather than ß-arrestin signaling. Respiratory depression has been shown to correlate with both G protein bias and intrinsic efficacy, and recent work has refuted the role of ß-arrestin signaling in opioid-induced respiratory depression. In addition, there is substantial evidence that G proteins do, in fact, mediate respiratory depression by actions in respiratory-controlling brainstem neurons. Based on these studies, we provide the perspective that protection from respiratory depression displayed by newly developed G protein-biased agonists is due to factors other than G protein versus arrestin bias.


Asunto(s)
Analgésicos Opioides/efectos adversos , Proteínas de Unión al GTP/agonistas , Pulmón/efectos de los fármacos , Respiración/efectos de los fármacos , Insuficiencia Respiratoria/inducido químicamente , Arrestina beta 2/metabolismo , Animales , Proteínas de Unión al GTP/metabolismo , Humanos , Pulmón/metabolismo , Pulmón/fisiopatología , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/fisiopatología , Insuficiencia Respiratoria/prevención & control , Factores de Riesgo , Transducción de Señal
13.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L485-L489, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34231390

RESUMEN

COVID-19, the disease caused by the SARS-CoV-2 virus, can progress to multisystem organ failure and viral sepsis characterized by respiratory failure, arrhythmias, thromboembolic complications, and shock with high mortality. Autopsy and preclinical evidence implicate aberrant complement activation in endothelial injury and organ failure. Erythrocytes express complement receptors and are capable of binding immune complexes; therefore, we investigated complement activation in patients with COVID-19 using erythrocytes as a tool to diagnose complement activation. We discovered enhanced C3b and C4d deposition on erythrocytes in COVID-19 sepsis patients and non-COVID sepsis patients compared with healthy controls, supporting the role of complement in sepsis-associated organ injury. Our data suggest that erythrocytes may contribute to a precision medicine approach to sepsis and have diagnostic value in monitoring complement dysregulation in COVID-19-sepsis and non-COVID sepsis and identifying patients who may benefit from complement targeted therapies.


Asunto(s)
COVID-19/complicaciones , Activación de Complemento/inmunología , Complemento C3b/inmunología , Complemento C4b/inmunología , Eritrocitos/inmunología , Fragmentos de Péptidos/inmunología , Insuficiencia Respiratoria/diagnóstico , Sepsis/diagnóstico , COVID-19/inmunología , COVID-19/virología , Complemento C3b/metabolismo , Complemento C4b/metabolismo , Eritrocitos/metabolismo , Eritrocitos/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/metabolismo , Insuficiencia Respiratoria/inmunología , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/virología , SARS-CoV-2/aislamiento & purificación , Sepsis/inmunología , Sepsis/metabolismo , Sepsis/virología
14.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074761

RESUMEN

Opioid-induced respiratory depression (OIRD) causes death following an opioid overdose, yet the neurobiological mechanisms of this process are not well understood. Here, we show that neurons within the lateral parabrachial nucleus that express the µ-opioid receptor (PBL Oprm1 neurons) are involved in OIRD pathogenesis. PBL Oprm1 neuronal activity is tightly correlated with respiratory rate, and this correlation is abolished following morphine injection. Chemogenetic inactivation of PBL Oprm1 neurons mimics OIRD in mice, whereas their chemogenetic activation following morphine injection rescues respiratory rhythms to baseline levels. We identified several excitatory G protein-coupled receptors expressed by PBL Oprm1 neurons and show that agonists for these receptors restore breathing rates in mice experiencing OIRD. Thus, PBL Oprm1 neurons are critical for OIRD pathogenesis, providing a promising therapeutic target for treating OIRD in patients.


Asunto(s)
Analgésicos Opioides/efectos adversos , Morfina/efectos adversos , Neuronas/metabolismo , Receptores Opioides mu/metabolismo , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/metabolismo , Analgésicos Opioides/farmacología , Animales , Ratones , Ratones Transgénicos , Morfina/administración & dosificación , Morfina/farmacología , Neuronas/patología , Receptores Opioides mu/genética , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/patología
15.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070501

RESUMEN

Our goal was to analyze postmortem tissues of an adult patient with late-onset thymidine kinase 2 (TK2) deficiency who died of respiratory failure. Compared with control tissues, we found a low mtDNA content in the patient's skeletal muscle, liver, kidney, small intestine, and particularly in the diaphragm, whereas heart and brain tissue showed normal mtDNA levels. mtDNA deletions were present in skeletal muscle and diaphragm. All tissues showed a low content of OXPHOS subunits, and this was especially evident in diaphragm, which also exhibited an abnormal protein profile, expression of non-muscular ß-actin and loss of GAPDH and α-actin. MALDI-TOF/TOF mass spectrometry analysis demonstrated the loss of the enzyme fructose-bisphosphate aldolase, and enrichment for serum albumin in the patient's diaphragm tissue. The TK2-deficient patient's diaphragm showed a more profound loss of OXPHOS proteins, with lower levels of catalase, peroxiredoxin 6, cytosolic superoxide dismutase, p62 and the catalytic subunits of proteasome than diaphragms of ventilated controls. Strong overexpression of TK1 was observed in all tissues of the patient with diaphragm showing the highest levels. TK2 deficiency induces a more profound dysfunction of the diaphragm than of other tissues, which manifests as loss of OXPHOS and glycolytic proteins, sarcomeric components, antioxidants and overactivation of the TK1 salvage pathway that is not attributed to mechanical ventilation.


Asunto(s)
ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Diafragma/metabolismo , Mitocondrias/metabolismo , Insuficiencia Respiratoria/metabolismo , Timidina Quinasa/deficiencia , Timidina Quinasa/genética , Actinas/metabolismo , Adulto , Autopsia , Encéfalo/metabolismo , Catalasa/metabolismo , Diafragma/enzimología , Femenino , Fructosa-Bifosfato Aldolasa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Humanos , Intestino Delgado/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Espectrometría de Masas , Mitocondrias/enzimología , Mitocondrias/genética , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Peroxiredoxina VI/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteoma/genética , Proteoma/metabolismo , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/mortalidad , Superóxido Dismutasa/metabolismo , Timidina Quinasa/metabolismo , Regulación hacia Arriba
16.
J Pediatr ; 237: 143-147, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34043996

RESUMEN

OBJECTIVE: To assess whether use of an N95 mask by children is associated with episodes of desaturation or respiratory distress. STUDY DESIGN: Twenty-two healthy children were assigned at random to 1 of 2 groups: one group wearing N95 masks without an exhalation valve and the other group wearing N95 masks with an exhalation valve. We tracked changes in partial pressure of end-tidal carbon dioxide (PETCO2), oxygen saturation, pulse rate, and respiratory rate over 72 minutes of mask use. All subjects were monitored every 15 minutes, the first 30 minutes while not wearing a mask and the next 30 minutes while wearing a mask. They then performed a 12-minute walking test. RESULTS: The children did not experience a statistically significant change in oxygen saturation or pulse rate during the study. There were significant increases in respiratory rate and PETCO2 in the children wearing an N95 mask without an exhalation valve, whereas these increases were seen in the children wearing a mask with an exhalation valve only after the walking test. CONCLUSIONS: The use of an N95 mask could potentially cause breathing difficulties in children if the mask does not have an exhalation valve, particularly during a physical activity. We believe that wearing a surgical mask may be more appropriate for children.


Asunto(s)
Respiradores N95/efectos adversos , Insuficiencia Respiratoria/etiología , Biomarcadores/metabolismo , Dióxido de Carbono/metabolismo , Niño , Preescolar , Ejercicio Físico/fisiología , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Oxígeno/metabolismo , Pruebas de Función Respiratoria , Insuficiencia Respiratoria/diagnóstico , Insuficiencia Respiratoria/metabolismo , Frecuencia Respiratoria , Factores de Riesgo , Prueba de Paso
17.
J Pharmacol Exp Ther ; 378(1): 42-50, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963018

RESUMEN

The drug of abuse, γ-hydroxybutyric acid (GHB), is commonly co-ingested with ethanol, resulting in a high incidence of toxicity and death. Our laboratory has previously reported that GHB is a substrate for the monocarboxylate transporters (MCTs), necessary for its absorption, renal clearance, and tissue distribution, including across the blood-brain barrier. Our goal was to investigate the drug-drug interaction (DDI) between GHB and ethanol and to evaluate MCT1 inhibition as a strategy to reverse toxicity. The toxicokinetics of this DDI were investigated, including brain-to-plasma concentration ratios, in the presence and absence of ethanol. The toxicodynamic parameters examined were respiratory depression (breathing frequency, tidal volume) and sedation (time of return-of-righting reflex). Ethanol was administered (2 g/kg i.v.) 5 minutes before the intravenous or oral administration of GHB, and MCT1 inhibitors AZD-3965 and AR-C155858 (5 mg/kg i.v.) were administered 60 minutes after GHB administration. Ethanol administration did not alter the toxicokinetics or respiratory depression caused by GHB after intravenous or oral administration; however, it significantly increased the sedation effect, measured by return-to-righting time. AZD-3965 or AR-C155858 significantly decreased the effects of the co-administration of GHB and ethanol on respiratory depression and sedation of this DDI and decreased brain concentrations and the brain-to-plasma concentration ratio of GHB. The results indicate that ethanol co-administered with GHB increases toxicity and that MCT1 inhibition is effective in reversing toxicity by inhibiting GHB brain uptake when given after GHB-ethanol administration. SIGNIFICANCE STATEMENT: These studies investigated the enhanced toxicity observed clinically when γ-hydroxybutyric acid (GHB) is co-ingested with alcohol and evaluated strategies to reverse this toxicity. The effects of the novel monocarboxylate transporter 1 (MCT1) inhibitors AR-C155858 and AZD-3965 on this drug-drug interaction have not been studied before, and these preclinical studies indicate that MCT1 inhibitors can decrease brain concentrations of GHB by inhibiting brain uptake, even when administered at times after GHB-ethanol. AZD-3965 represents a potential treatment strategy for GHB-ethanol overdoses.


Asunto(s)
Etanol/toxicidad , Hidroxibutiratos/toxicidad , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Pirimidinonas/farmacología , Simportadores/antagonistas & inhibidores , Tiofenos/farmacología , Uracilo/análogos & derivados , Animales , Interacciones Farmacológicas/fisiología , Etanol/metabolismo , Hidroxibutiratos/metabolismo , Masculino , Transportadores de Ácidos Monocarboxílicos/metabolismo , Pirimidinonas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/tratamiento farmacológico , Insuficiencia Respiratoria/metabolismo , Simportadores/metabolismo , Tiofenos/uso terapéutico , Uracilo/farmacología , Uracilo/uso terapéutico
18.
Sci Rep ; 11(1): 10515, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006901

RESUMEN

Acute respiratory failure (ARF) requiring mechanical ventilation, a complicating factor in sepsis and other disorders, is associated with high morbidity and mortality. Despite its severity and prevalence, treatment options are limited. In light of accumulating evidence that mitochondrial abnormalities are common in ARF, here we applied broad spectrum quantitative and semiquantitative metabolomic analyses of serum from ARF patients to detect bioenergetic dysfunction and determine its association with survival. Plasma samples from surviving and non-surviving patients (N = 15/group) were taken at day 1 and day 3 after admission to the medical intensive care unit and, in survivors, at hospital discharge. Significant differences between survivors and non-survivors (ANOVA, 5% FDR) include bioenergetically relevant intermediates of redox cofactors nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP), increased acyl-carnitines, bile acids, and decreased acyl-glycerophosphocholines. Many metabolites associated with poor outcomes are substrates of NAD(P)-dependent enzymatic processes, while alterations in NAD cofactors rely on bioavailability of dietary B-vitamins thiamine, riboflavin and pyridoxine. Changes in the efficiency of the nicotinamide-derived cofactors' biosynthetic pathways also associate with alterations in glutathione-dependent drug metabolism characterized by substantial differences observed in the acetaminophen metabolome. Based on these findings, a four-feature model developed with semi-quantitative and quantitative metabolomic results predicted patient outcomes with high accuracy (AUROC = 0.91). Collectively, this metabolomic endotype points to a close association between mitochondrial and bioenergetic dysfunction and mortality in human ARF, thus pointing to new pharmacologic targets to reduce mortality in this condition.


Asunto(s)
Enfermedad Crítica , Metabolismo Energético , Metabolómica , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/mortalidad , Enfermedad Aguda , Adulto , Cromatografía Líquida de Alta Presión/métodos , Femenino , Humanos , Masculino , Espectrometría de Masas/métodos , Persona de Mediana Edad , NAD/metabolismo , NADP/metabolismo , Estudios Retrospectivos
20.
Respir Res ; 22(1): 30, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33517896

RESUMEN

BACKGROUND: Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) carry significant morbidity and mortality. AECOPD treatment remains limited. High molecular weight hyaluronan (HMW-HA) is a glycosaminoglycan sugar, which is a physiological constituent of the lung extracellular matrix and has notable anti-inflammatory and hydrating properties. RESEARCH QUESTION: We hypothesized that inhaled HMW-HA will improve outcomes in AECOPD. METHODS: We conducted a single center, randomized, placebo-controlled, double-blind study to investigate the effect of inhaled HMW-HA in patients with severe AECOPD necessitating non-invasive positive-pressure ventilation (NIPPV). Primary endpoint was time until liberation from NIPPV. RESULTS: Out of 44 screened patients, 41 were included in the study (21 for placebo and 20 for HMW-HA). Patients treated with HMW-HA had significantly shorter duration of NIPPV. HMW-HA treated patients also had lower measured peak airway pressures on the ventilator and lower systemic inflammation markers after liberation from NIPPV. In vitro testing showed that HMW-HA significantly improved mucociliary transport in air-liquid interface cultures of primary bronchial cells from COPD patients and healthy primary cells exposed to cigarette smoke extract. INTERPRETATION: Inhaled HMW-HA shortens the duration of respiratory failure and need for non-invasive ventilation in patients with AECOPD. Beneficial effects of HMW-HA on mucociliary clearance and inflammation may account for some of the effects (NCT02674880, www.clinicaltrials.gov ).


Asunto(s)
Ácido Hialurónico/administración & dosificación , Mediadores de Inflamación/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Insuficiencia Respiratoria/tratamiento farmacológico , Insuficiencia Respiratoria/metabolismo , Adyuvantes Inmunológicos/administración & dosificación , Administración por Inhalación , Anciano , Anciano de 80 o más Años , Células Cultivadas , Método Doble Ciego , Femenino , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Tiempo de Internación/tendencias , Masculino , Persona de Mediana Edad , Peso Molecular , Proyectos Piloto , Contaminación por Humo de Tabaco/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA