Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Matrix Biol ; 132: 87-97, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019241

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) represents a severe and progressive manifestation of idiopathic interstitial pneumonia marked by an uncertain etiology along with an unfavorable prognosis. Osteoglycin (OGN), belonging to the small leucine-rich proteoglycans family, assumes pivotal functions in both tissue formation and damage response. However, the roles and potential mechanisms of OGN in the context of lung fibrosis remain unexplored. METHODS: The assessment of OGN expression levels in fibrotic lungs was conducted across various experimental lung fibrosis mouse models. To elucidate the effects of OGN on the differentiation of lung myofibroblasts, both OGN knockdown and OGN overexpression were employed in vitro. The expression of integrin αv, along with its colocalization with lysosomes and latency-associated peptide (LAP), was monitored in OGN-knockdown lung myofibroblasts. Furthermore, the role of OGN in lung fibrosis was investigated through OGN knockdown utilizing adeno-related virus serotype 6 (AAV6)-mediated delivery. RESULTS: OGN exhibited upregulation in both lungs and myofibroblasts across diverse lung fibrosis mouse models. And laboratory experiments in vitro demonstrated that OGN knockdown inhibited the TGF-ß/Smad signaling pathway in lung myofibroblasts. Conversely, OGN overexpression promoted TGF-ß/Smad pathway in these cells. Mechanistic insights revealed that OGN knockdown facilitated lysosome-mediated degradation of integrin αv while inhibiting its binding to latency-associated peptide (LAP). Remarkably, AAV6-targeted OGN knockdown ameliorated the extent of lung fibrosis in experimental mouse models. CONCLUSION: Our results indicate that inhibiting OGN signaling could serve as a promising therapeutic way for lung fibrosis.


Asunto(s)
Modelos Animales de Enfermedad , Fibrosis Pulmonar Idiopática , Integrina alfaV , Pulmón , Miofibroblastos , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Miofibroblastos/metabolismo , Miofibroblastos/patología , Ratones , Integrina alfaV/metabolismo , Integrina alfaV/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/genética , Pulmón/metabolismo , Pulmón/patología , Proteínas Smad/metabolismo , Proteínas Smad/genética , Humanos , Técnicas de Silenciamiento del Gen , Masculino , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología
2.
MAbs ; 16(1): 2365891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38889315

RESUMEN

Integrins are cell surface receptors that mediate the interactions of cells with their surroundings and play essential roles in cell adhesion, migration, and homeostasis. Eight of the 24 integrins bind to the tripeptide Arg-Gly-Asp (RGD) motif in their extracellular ligands, comprising the RGD-binding integrin subfamily. Despite similarity in recognizing the RGD motif and some redundancy, these integrins can selectively recognize RGD-containing ligands to fulfill specific functions in cellular processes. Antibodies against individual RGD-binding integrins are desirable for investigating their specific functions, and were selected here from a synthetic yeast-displayed Fab library. We discovered 11 antibodies that exhibit high specificity and affinity toward their target integrins, i.e. αVß3, αVß5, αVß6, αVß8, and α5ß1. Of these, six are function-blocking antibodies and contain a ligand-mimetic R(G/L/T)D motif in their CDR3 sequences. We report antibody-binding specificity, kinetics, and binding affinity for purified integrin ectodomains, as well as intact integrins on the cell surface. We further used these antibodies to reveal binding preferences of the αV subunit for its 5 ß-subunit partners: ß6 = ß8 > ß3 > ß1 = ß5.


Asunto(s)
Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Cadenas beta de Integrinas/inmunología , Cadenas beta de Integrinas/química , Cadenas beta de Integrinas/metabolismo , Cadenas beta de Integrinas/genética , Integrina alfaV/inmunología , Integrina alfaV/metabolismo , Integrinas/inmunología , Integrinas/metabolismo , Biblioteca de Péptidos , Técnicas de Visualización de Superficie Celular , Unión Proteica , Especificidad de Anticuerpos
3.
Crit Rev Eukaryot Gene Expr ; 34(6): 71-78, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912964

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a common malignancy of the gastrointestinal tract with a single therapeutic option and a lack of effective clinical therapeutic biomarkers. Extracellular matrix (ECM) remodeling plays a pro-carcinogenic role in a variety of malignancies, but its role in esophageal squamous carcinoma remains to be elucidated. In this study, we examined the expression levels of ECM remodeling markers in 71 pairs of esophageal squamous carcinoma tissues and normal tissues adjacent to the carcinoma using immunohistochemical staining, and analyzed their relationship with clinicopathological features and prognosis. The results suggested that extracellular matrix remodeling markers (integrin αV, fibronectin, MMP9) were abnormally highly expressed in esophageal squamous carcinoma tissues. There was a statistically significant difference between the positive expression of ECM remodeling and the TNM stage of esophageal squamous carcinoma, and there was no statistically significant correlation with age, gender and carcinoembryonic antigen expression, differentiation degree, T stage, and lymph node metastasis. Overall survival rate and overall survival time were significantly lower in patients with positive ECM remodeling expression, which was an independent risk factor for poor prognosisof esophageal squamous carcinoma.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Matriz Extracelular , Fibronectinas , Humanos , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Masculino , Femenino , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Matriz Extracelular/metabolismo , Pronóstico , Persona de Mediana Edad , Fibronectinas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Anciano , Metaloproteinasa 9 de la Matriz/metabolismo , Integrina alfaV/metabolismo , Integrina alfaV/genética , Estadificación de Neoplasias , Regulación Neoplásica de la Expresión Génica , Metástasis Linfática , Adulto
4.
Cell Death Dis ; 15(6): 464, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942749

RESUMEN

The role of mitochondria peptides in the spreading of glioblastoma remains poorly understood. In this study, we investigated the mechanism underlying intracranial glioblastoma progression. Our findings demonstrate that the mitochondria-derived peptide, humanin, plays a significant role in enhancing glioblastoma progression through the intratumoral activation of the integrin alpha V (ITGAV)-TGF beta (TGFß) signaling axis. In glioblastoma tissues, humanin showed a significant upregulation in the tumor area compared to the corresponding normal region. Utilizing multiple in vitro pharmacological and genetic approaches, we observed that humanin activates the ITGAV pathway, leading to cellular attachment and filopodia formation. This process aids the subsequent migration and invasion of attached glioblastoma cells through intracellular TGFßR signaling activation. In addition, our in vivo orthotopic glioblastoma model provides further support for the pro-tumoral function of humanin. We observed a correlation between poor survival and aggressive invasiveness in the humanin-treated group, with noticeable tumor protrusions and induced angiogenesis compared to the control. Intriguingly, the in vivo effect of humanin on glioblastoma was significantly reduced by the treatment of TGFBR1 inhibitor. To strengthen these findings, public database analysis revealed a significant association between genes in the ITGAV-TGFßR axis and poor prognosis in glioblastoma patients. These results collectively highlight humanin as a pro-tumoral factor, making it a promising biological target for treating glioblastoma.


Asunto(s)
Progresión de la Enfermedad , Glioblastoma , Integrina alfaV , Transducción de Señal , Factor de Crecimiento Transformador beta , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Integrina alfaV/metabolismo , Integrina alfaV/genética , Ratones , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Movimiento Celular/efectos de los fármacos , Ratones Desnudos , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Invasividad Neoplásica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
5.
Sci Rep ; 14(1): 14273, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902362

RESUMEN

Tumor-derived extracellular vesicles (EVs) show great potential as biomarkers for several diseases, including pancreatic cancer, due to their roles in cancer development and progression. However, the challenge of utilizing EVs as biomarkers lies in their inherent heterogeneity in terms of size and concentration, making accurate quantification difficult, which is highly dependent on the isolation and quantification methods used. In our study, we compared three EV isolation techniques and two EV quantification methods. We observed variations in EV concentration, with approximately 1.5-fold differences depending on the quantification method used. Interestingly, all EV isolation techniques consistently yielded similar EV quantities, overall size distribution, and modal sizes. In contrast, we found a notable increase in total EV amounts in samples from pancreatic cancer cell lines, mouse models, and patient plasma, compared to non-cancerous conditions. Moreover, individual tumor-derived EVs exhibited at least a 3-fold increase in several EV biomarkers. Our data, obtained from EVs isolated using various techniques and quantified through different methods, as well as originating from various pancreatic cancer models, suggests that EV profiling holds promise for the identification of unique and cancer-specific biomarkers in pancreatic cancer.


Asunto(s)
Biomarcadores de Tumor , Molécula de Adhesión Celular Epitelial , Vesículas Extracelulares , Glipicanos , Neoplasias Pancreáticas , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Vesículas Extracelulares/metabolismo , Humanos , Biomarcadores de Tumor/metabolismo , Animales , Ratones , Línea Celular Tumoral , Molécula de Adhesión Celular Epitelial/metabolismo , Glipicanos/metabolismo , Integrina alfaV/metabolismo
6.
Viruses ; 16(5)2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38793651

RESUMEN

Numerous human adenovirus (AdV) types are endowed with arginine-glycine-aspartic acid (RGD) sequences that enable them to recognize vitronectin-binding (αv) integrins. These RGD-binding cell receptors mediate AdV entry into host cells, a crucial early step in virus infection. Integrin interactions with adenoviruses not only initiate receptor-mediated endocytosis but also facilitate AdV capsid disassembly, a prerequisite for membrane penetration by AdV protein VI. This review discusses fundamental aspects of AdV-host interactions mediated by integrins. Recent efforts to re-engineer AdV vectors and non-viral nanoparticles to target αv integrins for bioimaging and the eradication of cancer cells will also be discussed.


Asunto(s)
Terapia Genética , Integrinas , Internalización del Virus , Humanos , Terapia Genética/métodos , Integrinas/metabolismo , Vectores Genéticos/genética , Adenovirus Humanos/genética , Adenovirus Humanos/fisiología , Adenoviridae/genética , Adenoviridae/fisiología , Animales , Receptores Virales/metabolismo , Neoplasias/terapia , Neoplasias/virología , Integrina alfaV/metabolismo , Integrina alfaV/genética , Oligopéptidos
7.
Pathol Oncol Res ; 30: 1611571, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38312516

RESUMEN

Objectives: Integrins are heterodimeric transmembrane plasma membrane proteins composed of α- and ß-chains. They bind to extracellular matrix (ECM) and cytoskeletal proteins as ECM protein receptors. Upon ECM protein binding, integrins activate focal adhesion kinase (FAK) and transduce various signals. Despite their importance, integrin and FAK expression in oral squamous cell carcinoma (OSCC) tissue and the prognosis of patients with OSCC remains elusive. Methods: In a retrospective observational study, we immunohistochemically evaluated integrin αV, ß1, ß3, ß5, ß6, FAK, and phosphorylated-FAK (pFAK) expressions as prognostic predictors in 96 patients with OSCC. Patients were classified as positive or negative based on staining intensity, and clinicopathologic characteristics and survival rates of the two groups were compared. The association between above integrin-related proteins and PD-1 or PD-L1 in OSCC tissues was investigated. Results: We observed immunohistochemical integrin αV, ß1, ß6, ß8, and FAK expressions in the cell membrane and cytoplasm but not integrin ß3 and ß5 in the OSCC tissues. pFAK was expressed in the cytoplasm of OSCC cells. The overall survival rate significantly decreased in pFAK-positive OSCC patients compared to the negative group, and cervical lymph node metastasis significantly increased in integrin ß8-positive patients with OSCC (p < 0.05). No association between integrin-related proteins and PD-1 or PD-L1 in OSCC tissues was observed. Conclusion: Our results indicate that pFAK and integrin ß8 are prognostic factors for OSCC. Therefore, pFAK- and integrin ß8-targeting new oral cancer diagnostic and therapeutic methods hold a promising potential.


Asunto(s)
Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Antígeno B7-H1 , Relevancia Clínica , Proteína-Tirosina Quinasas de Adhesión Focal/uso terapéutico , Integrina alfaV/metabolismo , Integrinas/metabolismo , Neoplasias de la Boca/patología , Receptor de Muerte Celular Programada 1 , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
8.
Clin Transl Med ; 14(1): e1546, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38239077

RESUMEN

BACKGROUND: Radiotherapy is the main treatment modality for thoracic tumours, but it may induce pulmonary fibrosis. Currently, the pathogenesis of radiation-induced pulmonary fibrosis (RIPF) is unclear, and effective treatments are lacking. Transforming growth factor beta 1 (TGFß1) plays a central role in RIPF. We found that activated TGFß1 had better performance for radiation pneumonitis (RP) risk prediction by detecting activated and total TGFß1 levels in patient serum. αv integrin plays key roles in TGFß1 activation, but the role of αv integrin-mediated TGFß1 activation in RIPF is unclear. Here, we investigated the role of αv integrin-mediated TGFß1 activation in RIPF and the application of the integrin antagonist cilengitide to prevent RIPF. METHODS: ItgavloxP/loxP ;Pdgfrb-Cre mice were generated by conditionally knocking out Itgav in myofibroblasts, and wild-type mice were treated with cilengitide or placebo. All mice received 16 Gy of radiation or underwent a sham radiation procedure. Lung fibrosis was measured by a modified Ashcroft score and microcomputed tomography (CT). An enzyme-linked immunosorbent assay (ELISA) was used to measure the serum TGFß1 concentration, and total Smad2/3 and p-Smad2/3 levels were determined via Western blotting. RESULTS: Conditional Itgav knockout significantly attenuated RIPF (p < .01). Hounsfield units (HUs) in the lungs were reduced in the knockout mice compared with the control mice (p < .001). Conditional Itgav knockout decreased active TGFß1 secretion and inhibited fibroblast p-Smad2/3 expression. Exogenous active TGFß1, but not latent TGFß1, reversed these reductions. Furthermore, cilengitide treatment elicited similar results and prevented RIPF. CONCLUSIONS: The present study revealed that conditional Itgav knockout and cilengitide treatment both significantly attenuated RIPF in mice by inhibiting αv integrin-mediated TGFß1 activation. HIGHLIGHTS: Activated TGFß1 has a superior capacity in predicting radiation pneumonitis (RP) risk and plays a vital role in the development of radiation-induced pulmonary fibrosis (RIPF). Conditional knock out Itgav in myofibroblasts prevented mice from developing RIPF. Cilengitide alleviated the development of RIPF by inhibiting αv integrin-mediated TGFß1 activation and may be used in targeted approaches for preventing RIPF.


Asunto(s)
Fibrosis Pulmonar , Neumonitis por Radiación , Animales , Humanos , Ratones , Integrina alfaV/metabolismo , Integrina alfaV/farmacología , Pulmón/metabolismo , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/genética , Neumonitis por Radiación/prevención & control , Neumonitis por Radiación/metabolismo , Neumonitis por Radiación/patología , Microtomografía por Rayos X/efectos adversos
9.
Appl Biochem Biotechnol ; 196(3): 1241-1254, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37382792

RESUMEN

The incidence of diabetic patients with non-alcoholic fatty liver disease (NAFLD) is continuously increasing worldwide. However, the specific mechanisms of NAFLD patients with diabetes are still not clear. Recent studies have indicated that integrins play an important role in NAFLD. In this study, we considered the relationship between integrin αv (IGTAV)/FAK pathway and sinusoidal capillarization. We investigated the difference between the expression of IGTAV, laminin (LN), focal adhesion kinase (FAK), and phosphor-FAK protein in human liver sinusoidal endothelial cells (HLSECs) to explore the specific mechanisms of the diseases of NAFLD with diabetes under high glucose. We cultured and identified the HLSECs and constructed the recombinant lentivirus vector with IGTAV shRNA by quantitative real-time PCR (qRT-PCR) to silence the IGTAV gene. Cells were divided into groups of 25 mmol/L glucose and 25 mmol/L mannitol. We measured the protein levels of IGTAV, LN, FAK, and phosphor-FAK by western blot at 2 h, 6 h, and 12 h before and after IGTAV gene silencing. The lentivirus vector was successfully constructed with IGTAV shRNA. The HLSECs under high glucose were observed by scanning electron microscope. SPSS19.0 was used for statistical analysis. High glucose significantly increased the expression of IGTAV, LN, and phosphor-FAK protein in HLSECs; the shRNA IGTAV could effectively inhibit the expression of phosphor-FAK and LN at 2 h and 6 h. Inhibition of the phosphor-FAK could effectively decrease the expression of LN in HLSECs at 2 h and 6 h under high glucose. Inhibition of IGTAV gene of HLSECs under high glucose could improve hepatic sinus capillarization. Inhibition of IGTAV and phosphor-FAK decreased the expression of LN. High glucose led to hepatic sinus capillarization via IGTAV/ FAK pathway.


Asunto(s)
Diabetes Mellitus , Enfermedad del Hígado Graso no Alcohólico , Humanos , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Integrina alfaV/metabolismo , Células Endoteliales , Capilares/metabolismo , Glucosa/metabolismo , ARN Interferente Pequeño
10.
Biochem Biophys Res Commun ; 692: 149360, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38081108

RESUMEN

BACKGROUND: Myocardial infarction (MI) dramatically changes the mechanical stress, which is intensified by the fibrotic remodeling. Integrins, especially the αV subunit, mediate mechanical signal and mechanoparacrine of transforming growth factor ß1 (TGF-ß1) in various organ fibrosis by activating CFs into myofibroblasts (MFBs). We investigated a possible role of integrin αV mediated mechanoparacrine of TGF-ß1 in MFBs activation for fibrous reparation in mice with MI. METHODS: Heart samples from MI, sham, or MI plus cilengitide (14 mg/kg, specific integrin αV inhibitor) treated mice, underwent functional and morphological assessments by echocardiography, and histochemistry on 7, 14 and 28 days post-surgery. The mechanical and ultrastructural changes of the fibrous scar were further evaluated by atomic mechanics microscope (AFM), immunofluorescence, second harmonic generation (SHG) imaging, polarized light and scanning electron microscope, respectively. Hydroxyproline assay was used for total collagen content, and western blot for protein expression profile examination. Fibroblast bioactivities, including cell shape, number, Smad2/3 signal and expression of extracellular matrix (ECM) related proteins, were further evaluated by microscopic observation and immunofluorescence in polyacrylamide (PA) hydrogel with adjustable stiffness, which was re-explored in fibroblast cultured on stiff matrix after silencing of integrin αV. The content of total and free TGF-ß1 was tested by enzyme-linked immunosorbent assay (ELISA) in both infarcted tissue and cell samples. RESULT: Increased stiffness with heterogeneity synchronized with integrin αV and alpha smooth muscle actin (α-SMA) positive MFBs accumulation in those less mature fibrous areas. Cilengitide abruptly reduced collagen content and disrupted collagen alignment, which also decreased TGF-ß1 bioavailability, Smad2/3 phosphorylation, and α-SMA expression in the fibrous area. Accordingly, fibroblast on stiff but not soft matrix exhibited obvious MFB phenotype, as evidenced by enlarged cell, hyperproliferation, well-developed α-SMA fibers, and elevated ECM related proteins, while silencing of integrin αV almost abolished this switch via attenuating paracrine of TGF-ß1 and nuclear translocation of Smad2/3. CONCLUSION: This study illustrated that increased tissue stiffness activates CFs into MFBs by integrin αV mediated mechanoparacrine of TGF-ß1, especially in immature scar area, which ultimately promotes fibrous scar maturation.


Asunto(s)
Infarto del Miocardio , Miofibroblastos , Animales , Ratones , Actinas/metabolismo , Cicatriz/metabolismo , Colágeno/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis , Integrina alfaV/metabolismo , Infarto del Miocardio/patología , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
11.
Ann Hepatol ; 29(2): 101279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38123132

RESUMEN

INTRODUCTION AND OBJECTIVES: Cholangiocarcinoma (CCA) is characterized by early distant invasion and metastasis, whereas the underlying mechanism is still obscure. Increasing evidence shows that collagen type Ι alpha 1 (COL1A1) is a gene associated with the progression of multiple diseases. Here, we attempted to investigate the role of COL1A1 in CCA. MATERIALS AND METHODS: The expression of COL1A1 between tumor tissues and adjacent normal tissues obtained from CCA patients was detected by Western blot and immunofluorescence, followed by analysis of its clinical significance. Then, the biological effects of COL1A1 overexpression or knockdown on CCA cells were evaluated in vitro and in vivo. Finally, molecular mechanism of COL1A1 in regulating the invasion and metastasis of CCA cells was determined by a series of experiments. RESULTS: COL1A1 expression was significantly higher in CCA pathological tissues than in corresponding adjacent normal tissues. Analysis of 83 CCA patients showed that higher expression of COL1A1 was correlated with poorer patient prognosis. Notably, overexpression or knockdown experiments revealed that COL1A1 contributed to the migration and invasion, as well as epithelial-to-mesenchymal transition (EMT), in CCA cells. Further investigations demonstrated that matrix metalloproteinase-2 (MMP2) promoted COL1A1 upregulation via the integrin alpha Ⅴ pathway, therefore affecting ECM remodelling and inducing EMT in CCA cells. Moreover, COL1A1 expression was positively related to PD-1 and PD-L1 in CCA, and COL1A1 increased PD-L1 expression by activating the NF-κB pathway. CONCLUSIONS: COL1A1 plays an important role in regulating CCA progression and may act as a promising biomarker and therapeutic target for CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Colangiocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Integrina alfaV/genética , Integrina alfaV/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo
12.
Environ Toxicol ; 39(4): 2077-2085, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38100242

RESUMEN

Colorectal cancer (CRC) exhibits highly metastatic potential even in the early stages of tumor progression. Gallic acid (GA), a common phenolic compound in plants, is known to possess potent antioxidant and anticancer activities, thereby inducing cell death or cell cycle arrest. However, whether GA reduces the invasiveness of CRC cells without inducing cell death remains unclear. Herein, we aimed to investigate the antimetastatic activity of low-dose GA on CRC cells and determine its underlying mechanism. Cell viability and tumorigenicity were analyzed by MTS, cell adhesion, and colony formation assay. Invasiveness was demonstrated using migration and invasion assays. Changes in protein phosphorylation and expression were assessed by Western blot. The involvement of microRNAs was validated by microarray analysis and anti-miR antagonist. Our findings showed that lower dose of GA (≤100 µM) did not affect cell viability but reduced the capabilities of colony formation, cell adhesion, and invasiveness in CRC cells. Cellularly, GA downregulated the cellular level of integrin αV/ß3, talin-1, and tensin and diminished the phosphorylated FAK, paxillin, Src, and AKT in DLD-1 cells. Microarray results revealed that GA increased miR-1247-3p expression, and pretreatment of anti-miR antagonist against miR-1247-3p restored the GA-reduced integrin αV/ß3 and the GA-inhibited paxillin activation in DLD-1 cells. Consistently, the in vivo xenograft model showed that GA administration inhibited tumor growth and liver metastasis derived from DLD-1 cells. Collectively, our findings indicated that GA inhibited the metastatic capabilities of CRC cells, which may result from the suppression of integrin/FAK axis mediated by miR1247-3p.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Paxillin/genética , Paxillin/metabolismo , Integrinas/genética , Integrinas/metabolismo , Ácido Gálico/farmacología , Antagomirs , Integrina alfaV/metabolismo , Línea Celular Tumoral , Proliferación Celular , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Colorrectales/metabolismo , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
13.
J Hepatol ; 79(6): 1418-1434, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37604269

RESUMEN

BACKGROUND & AIMS: Integrin αv (ITGAV, CD51) is regarded as a key component in multiple stages of tumor progression. However, the clinical failure of cilengitide, a specific inhibitor targeting surface CD51, suggests the importance of yet-unknown mechanisms by which CD51 promotes tumor progression. METHODS: In this study, we used several hepatocellular carcinoma (HCC) cell lines and murine hepatoma cell lines. To investigate the role of CD51 on HCC progression, we used a 3D invasion assay and in vivo bioluminescence imaging. We used periostin-knockout transgenic mice to uncover the role of the tumor microenvironment on CD51 cleavage. Moreover, we used several clinically relevant HCC models, including patient-derived organoids and patient-derived xenografts, to evaluate the therapeutic efficacy of cilengitide in combination with the γ-secretase inhibitor LY3039478. RESULTS: We found that CD51 could undergo transmembrane cleavage by γ-secretase to produce a functional intracellular domain (CD51-ICD). The cleaved CD51-ICD facilitated HCC invasion and metastasis by promoting the transcription of oxidative phosphorylation-related genes. Furthermore, we identified cancer-associated fibroblast-derived periostin as the major driver of CD51 cleavage. Lastly, we showed that cilengitide-based therapy led to a dramatic therapeutic effect when supplemented with LY3039478 in both patient-derived organoid and xenograft models. CONCLUSIONS: In summary, we revealed previously unrecognized mechanisms by which CD51 is involved in HCC progression and uncovered the underlying cause of cilengitide treatment failure, as well as providing evidence supporting the translational prospects of combined CD51-targeted therapy in the clinic. IMPACT AND IMPLICATIONS: Integrin αv (CD51) is a widely recognized pro-tumoral molecule that plays a crucial role in various stages of tumor progression, making it a promising therapeutic target. However, despite early promising results, cilengitide, a specific antagonist of CD51, failed in a phase III clinical trial. This prompted further investigation into the underlying mechanisms of CD51's effects. This study reveals that the γ-secretase complex directly cleaves CD51 to produce an intracellular domain (CD51-ICD), which functions as a pro-tumoral transcriptional regulator and can bypass the inhibitory effects of cilengitide by entering the nucleus. Furthermore, the localization of CD51 in the nucleus is significantly associated with the prognosis of patients with HCC. These findings provide a theoretical basis for re-evaluating cilengitide in clinical settings and highlight the importance of identifying a more precise patient subpopulation for future clinical trials targeting CD51.


Asunto(s)
Carcinoma Hepatocelular , Integrina alfaV , Neoplasias Hepáticas Experimentales , Neoplasias Hepáticas , Animales , Humanos , Ratones , Secretasas de la Proteína Precursora del Amiloide , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Integrina alfaV/genética , Integrina alfaV/metabolismo , Neoplasias Hepáticas/genética , Microambiente Tumoral
14.
Clin Transl Med ; 13(7): e1316, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37403784

RESUMEN

BACKGROUNDS AND AIMS: As a central event during liver fibrosis, hepatic stellate cells (HSC) have been thought to be a potential therapeutic target for liver fibrosis. Previous studies have shown that runt-related transcription factor 2 (Runx2) is associated with the development of non-alcoholic fatty liver disease, while its specific role in HSC activation and hepatic fibrosis remains elusive. APPROACH AND RESULTS: In this study, we found that Runx2 expression was significantly upregulated in human liver fibrosis with different aetiologies. Runx2 expression was also gradually elevated in mouse liver during fibrosis, and Runx2 was mainly expressed in the activated HSC. Knockdown of Runx2 in HSC markedly alleviated CCl4 -induced, 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced or methionine-choline deficient (MCD)-induced liver fibrosis, while hepatic overexpression of Runx2 via HBAAV-Runx2 or VA-Lip-Runx2 injection exacerbated CCl4 -induced liver fibrosis. In vitro analysis demonstrated that Runx2 promoted HSC activation and proliferation, whereas Runx2 knockdown in HSC suppressed these effects. RNA-seq and Runx2 ChIP-seq analysis demonstrated that Runx2 could promote integrin alpha-V (Itgav) expression by binding to its promoter. Blockade of Itgav attenuated Runx2-induced HSC activation and liver fibrosis. Additionally, we found that cytokines (TGF-ß1, PDGF, EGF) promote the expression and nuclear translocation of Runx2 through protein kinase A (PKA) in HSC. CONCLUSIONS: Runx2 is critical for HSC activation via transcriptionally regulating Itgav expression during liver fibrosis, and may be a promising therapeutic target for liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Integrina alfaV , Ratones , Animales , Humanos , Células Estrelladas Hepáticas/metabolismo , Integrina alfaV/metabolismo , Integrina alfaV/farmacología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Línea Celular , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo
15.
J Cell Sci ; 136(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37129180

RESUMEN

Fibronectin (FN)-binding integrins control a variety of cellular responses through Rho GTPases. The FN-binding integrins, αvß3 and α5ß1, are known to induce different effects on cell morphology and motility. Here, we report that FN-bound αvß3 integrin, but not FN-bound α5ß1 integrin, triggers the dissociation of the RhoA GEF Lfc (also known as GEF-H1 and ARHGEF2 in humans) from microtubules (MTs), leading to the activation of RhoA, formation of stress fibres and maturation of focal adhesions (FAs). Conversely, loss of Lfc expression decreases RhoA activity, stress fibre formation and FA size, suggesting that Lfc is the major GEF downstream of FN-bound αvß3 that controls RhoA activity. Mechanistically, FN-engaged αvß3 integrin activates a kinase cascade involving MARK2 and MARK3, which in turn leads to phosphorylation of several phospho-sites on Lfc. In particular, S151 was identified as the main site involved in the regulation of Lfc localization and activity. Our findings indicate that activation of Lfc and RhoA is orchestrated in FN-adherent cells in an integrin-specific manner.


Asunto(s)
Integrina alfa5beta1 , Integrina alfaV , Humanos , Integrina alfaV/metabolismo , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Fosforilación , Proteína de Unión al GTP rhoA/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo
16.
Environ Pollut ; 330: 121817, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182579

RESUMEN

Along with the increasing production and application of graphene oxide (GO), its environmental health and safety (EHS) risks have become a global concern. Numerous studies have investigated the biosafety and toxicity mechanisms associated with GO, however, the majority of previous studies were based on its direct toxic dose, which could not reflect the realistic state of environmental exposure of GO with an indirect toxic dose (low dose). Meanwhile, the effects of low-dose GO on the progression of tumors are still unclearly. Herein, we found that GO can promote multiple types of tumor cell proliferation under its low-dose treatment. Moreover, the lateral size of GO has no obvious distinction on its promoting effect on tumor proliferation. The mechanistic investigation revealed that low-dose GO treatment increased the expression level of integrin αV protein, a cell membrane receptor, and further lead to the constitutively activated PI3K/AKT/mTOR signaling pathway and promoted mitotic progression. Collectively, these findings increased our understanding of the detrimental effects of GO in promoting tumor proliferation, as well as improved our biosafety assessment at its realistic exposure doses.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Integrina alfaV/metabolismo , Integrina alfaV/farmacología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular , Apoptosis , Línea Celular Tumoral
17.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175535

RESUMEN

Parkinson's disease with cognitive impairment (PD-CI) results in several clinical outcomes for which specific treatment is lacking. Although the pathogenesis of PD-CI has not yet been fully elucidated, it is related to neuronal plasticity decline in the hippocampus region. The dopaminergic projections from the substantia nigra to the hippocampus are critical in regulating hippocampal plasticity. Recently, aerobic exercise has been recognized as an effective therapeutic strategy for enhancing plasticity through the secretion of various muscle factors. The exact role of FNDC5-an upregulated, newly identified myokine produced after exercise-in mediating hippocampal plasticity and regional dopaminergic projections in PD-CI remains unclear. In this study, the effect of treadmill exercise on hippocampal synaptic plasticity was evaluated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced chronic PD models. The results showed that treadmill exercise substantially alleviated the motor dysfunction, cognition disorder, and dopaminergic neuron degeneration induced by MPTP. Here, we discovered that the quadriceps, serum, and brain FNDC5 levels were lower in PD mice and that intervention with treadmill exercise restored FNDC5 levels. Moreover, treadmill exercise enhanced the synaptic plasticity of hippocampal pyramidal neurons via increased dopamine levels and BDNF in the PD mice. The direct protective effect of FNDC5 is achieved by promoting the secretion of BDNF in the hippocampal neurons via binding the integrin αVß5 receptor, thereby improving synaptic plasticity. Regarding the indirect protection effect, FNDC5 promotes the dopaminergic connection from the substantia nigra to the hippocampus by mediating the interaction between the integrin αVß5 of the hippocampal neurons and the CD90 molecules on the membrane of dopaminergic terminals. Our findings demonstrated that treadmill exercise could effectively alleviate cognitive disorders via the activation of the FNDC5-BDNF pathway and enhance the dopaminergic synaptic connection from SNpc to the hippocampus in the MPTP-induced chronic PD model.


Asunto(s)
Trastornos del Conocimiento , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Integrina alfaV/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sustancia Negra/metabolismo , Trastornos del Conocimiento/metabolismo , Dopamina/metabolismo , Factores de Transcripción/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Fibronectinas/metabolismo
18.
Eur J Histochem ; 67(2)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052420

RESUMEN

In humans, even where millions of spermatozoa are deposited upon ejaculation in the vagina, only a few thousand enter the uterine tube (UT). Sperm transiently adhere to the epithelial cells lining the isthmus reservoir, and this interaction is essential in coordinating the availability of functional spermatozoa for fertilization. The binding of spermatozoa to the UT epithelium (mucosa) occurs due to interactions between cell-adhesion molecules on the cell surfaces of both the sperm and the epithelial cell. However, in humans, there is little information about the molecules involved. The aim of this study was to perform a histological characterization of the UT focused on determining the tissue distribution and deposition of some molecules associated with cell adhesion (F-spondin, galectin-9, osteopontin, integrin αV/ß3) and UT's contractile activity (TNFα-R1, TNFα-R2) in the follicular and luteal phases. Our results showed the presence of galectin-9, F-spondin, osteopontin, integrin αV/ß3, TNFα-R1, and TNFα-R2 in the epithelial cells in ampullar and isthmic segments during the menstrual cycle. Our results suggest that these molecules could form part of the sperm-UT interactions. Future studies will shed light on the specific role of each of the identified molecules.


Asunto(s)
Trompas Uterinas , Osteopontina , Femenino , Humanos , Masculino , Trompas Uterinas/metabolismo , Osteopontina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Integrina alfaV/metabolismo , Semen , Espermatozoides/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 43(7): 1134-1153, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37078287

RESUMEN

BACKGROUND: The role of increased smooth muscle cell (SMC) integrin αv signaling in Marfan syndrome (MFS) aortic aneurysm remains unclear. Herein, we examine the mechanism and potential efficacy of integrin αv blockade as a therapeutic strategy to reduce aneurysm progression in MFS. METHODS: Induced pluripotent stem cells (iPSCs) were differentiated into aortic SMCs of the second heart field (SHF) and neural crest (NC) lineages, enabling in vitro modeling of MFS thoracic aortic aneurysms. The pathological role of integrin αv during aneurysm formation was confirmed by blockade of integrin αv with GLPG0187 in Fbn1C1039G/+ MFS mice. RESULTS: iPSC-derived MFS SHF SMCs overexpress integrin αv relative to MFS NC and healthy control SHF cells. Furthermore, integrin αv downstream targets (FAK [focal adhesion kinase]/AktThr308/mTORC1 [mechanistic target of rapamycin complex 1]) were activated, especially in MFS SHF. Treatment of MFS SHF SMCs with GLPG0187 reduced p-FAK/p-AktThr308/mTORC1 activity back to control SHF levels. Functionally, MFS SHF SMCs had increased proliferation and migration compared to MFS NC SMCs and control SMCs, which normalized with GLPG0187 treatment. In the Fbn1C1039G/+ MFS mouse model, integrin αv, p-AktThr308, and downstream targets of mTORC1 proteins were elevated in the aortic root/ascending segment compared to littermate wild-type control. Mice treated with GLPG0187 (age 6-14 weeks) had reduced aneurysm growth, elastin fragmentation, and reduction of the FAK/AktThr308/mTORC1 pathway. GLPG0187 treatment reduced the amount and severity of SMC modulation assessed by single-cell RNA sequencing. CONCLUSIONS: The integrin αv-FAK-AktThr308 signaling pathway is activated in iPSC SMCs from MFS patients, specifically from the SHF lineage. Mechanistically, this signaling pathway promotes SMC proliferation and migration in vitro. As biological proof of concept, GLPG0187 treatment slowed aneurysm growth and p-AktThr308 signaling in Fbn1C1039G/+ mice. Integrin αv blockade via GLPG0187 may be a promising therapeutic approach to inhibit MFS aneurysmal growth.


Asunto(s)
Aneurisma de la Aorta Torácica , Aneurisma de la Aorta , Aneurisma de la Raíz de la Aorta , Células Madre Pluripotentes Inducidas , Síndrome de Marfan , Ratones , Animales , Integrina alfaV/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de Marfan/complicaciones , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/prevención & control , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/prevención & control , Fibrilina-1/genética , Fibrilina-1/metabolismo , Miocitos del Músculo Liso/metabolismo
20.
Eur Rev Med Pharmacol Sci ; 27(3): 935-941, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36808339

RESUMEN

OBJECTIVE: The purpose of this study was to investigate whether integrin levels are associated with axon regeneration after central nervous system (CNS) injury. MATERIALS AND METHODS: By using immunohistochemistry, we performed a detailed investigation of the changes in and colocalization of integrins αv and α5, with Nogo-A in the retina after optic nerve injury. RESULTS: We confirmed that integrins αv and α5 were expressed in the rat retina and colocalized with Nogo-A. After optic nerve transection, we found that integrin α5 levels increased over 7 days, but integrin αv levels remained unchanged, while Nogo-A levels increased. CONCLUSIONS: It seems that the inhibition of axonal regeneration by the Amino-Nogo-integrin signaling pathway may not occur via changes in integrin levels.


Asunto(s)
Traumatismos del Nervio Óptico , Ratas , Animales , Integrina alfaV/metabolismo , Proteínas Nogo , Axones/fisiología , Regeneración Nerviosa/fisiología , Retina/metabolismo , Integrinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA