Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.977
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000553

RESUMEN

Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) affect a large part of the general population worldwide. Dysregulation of lipid metabolism and alcohol toxicity drive disease progression by the activation of hepatic stellate cells and the capillarization of liver sinusoidal endothelial cells. Collagen deposition, along with sinusoidal remodeling, alters sinusoid structure, resulting in hepatic inflammation, portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for NASH and AH. However, the success of such treatments is limited and unpredictable. We report a strategy for NASH and AH treatment involving the induction of integrin αvß3-mediated cell apoptosis using a rationally designed protein (ProAgio). Integrin αvß3 is highly expressed in activated hepatic stellate cells (αHSCs), the angiogenic endothelium, and capillarized liver sinusoidal endothelial cells (caLSECs). ProAgio induces the apoptosis of these disease-driving cells, therefore decreasing collagen fibril, reversing sinusoid remodeling, and reducing immune cell infiltration. The reversal of sinusoid remodeling reduces the expression of leukocyte adhesion molecules on LSECs, thus decreasing leukocyte infiltration/activation in the diseased liver. Our studies present a novel and effective approach for NASH and AH treatment.


Asunto(s)
Células Endoteliales , Células Estrelladas Hepáticas , Hepatitis Alcohólica , Hígado , Enfermedad del Hígado Graso no Alcohólico , Células Estrelladas Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Células Endoteliales/metabolismo , Hepatitis Alcohólica/metabolismo , Hepatitis Alcohólica/patología , Hígado/metabolismo , Hígado/patología , Apoptosis , Humanos , Integrina alfaVbeta3/metabolismo , Masculino , Ratones
2.
Nano Lett ; 24(28): 8567-8574, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38959438

RESUMEN

Phagocytosis is an essential mechanism of the human immune system where pathogens are eliminated by immune cells. The CCN1 protein plays an important role in the phagocytosis of Staphylococcus aureus by favoring the bridging of the αVß3 integrin to the bacterial peptidoglycan (PG), through mechanical forces that remain unknown. Here, we employ single-molecule experiments to unravel the nanomechanics of the PG-CCN1-αVß3 ternary complex. While CCN1 binds αVß3 integrins with moderate force (∼60 pN), much higher binding strengths (up to ∼800 pN) are observed between CCN1 and PG. Notably, the strength of both CCN1-αVß3 and CCN1-PG bonds is dramatically enhanced by tensile loading, favoring a model in which mechanical stress induces the exposure of cryptic integrin binding sites in CCN1 and multivalent binding between CCN1 lectin sites and monosaccharides along the PG glycan chains.


Asunto(s)
Proteína 61 Rica en Cisteína , Integrina alfaVbeta3 , Fagocitosis , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiología , Humanos , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/química , Integrina alfaVbeta3/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano/química , Unión Proteica , Sitios de Unión
3.
Nat Commun ; 15(1): 5986, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013903

RESUMEN

In zebrafish, brain lymphatic endothelial cells (BLECs) are essential for meningeal angiogenesis and cerebrovascular regeneration. Although epidermal growth factor-like domain 7 (Egfl7) has been reported to act as a pro-angiogenic factor, its roles in lymphangiogenesis remain unclear. Here, we show that Egfl7 is expressed in both blood and lymphatic endothelial cells. We generate an egfl7 cq180 mutant with a 13-bp-deletion in exon 3 leading to reduced expression of Egfl7. The egfl7 cq180 mutant zebrafish exhibit defective formation of BLEC bilateral loop-like structures, although trunk and facial lymphatic development remains unaffected. Moreover, while the egfl7 cq180 mutant displays normal BLEC lineage specification, the migration and proliferation of these cells are impaired. Additionally, we identify integrin αvß3 as the receptor for Egfl7. αvß3 is expressed in the CVP and sprouting BLECs, and blocking this integrin inhibits the formation of BLEC bilateral loop-like structures. Thus, this study identifies a role for Egfl7 in BLEC development that is mediated through the integrin αvß3.


Asunto(s)
Encéfalo , Células Endoteliales , Integrina alfaVbeta3 , Linfangiogénesis , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/metabolismo , Células Endoteliales/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Encéfalo/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/genética , Linfangiogénesis/genética , Movimiento Celular/genética , Proliferación Celular , Familia de Proteínas EGF/metabolismo , Familia de Proteínas EGF/genética , Mutación , Humanos , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica
4.
Mar Drugs ; 22(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38921594

RESUMEN

Endothelial hyperpermeability is pivotal in sepsis-associated multi-organ dysfunction. Increased von Willebrand factor (vWF) plasma levels, stemming from activated platelets and endothelium injury during sepsis, can bind to integrin αvß3, exacerbating endothelial permeability. Hence, targeting this pathway presents a potential therapeutic avenue for sepsis. Recently, we identified isaridin E (ISE), a marine-derived fungal cyclohexadepsipeptide, as a promising antiplatelet and antithrombotic agent with a low bleeding risk. ISE's influence on septic mortality and sepsis-induced lung injury in a mouse model of sepsis, induced by caecal ligation and puncture, is investigated in this study. ISE dose-dependently improved survival rates, mitigating lung injury, thrombocytopenia, pulmonary endothelial permeability, and vascular inflammation in the mouse model. ISE markedly curtailed vWF release from activated platelets in septic mice by suppressing vesicle-associated membrane protein 8 and soluble N-ethylmaleide-sensitive factor attachment protein 23 overexpression. Moreover, ISE inhibited healthy human platelet adhesion to cultured lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), thereby significantly decreasing vWF secretion and endothelial hyperpermeability. Using cilengitide, a selective integrin αvß3 inhibitor, it was found that ISE can improve endothelial hyperpermeability by inhibiting vWF binding to αvß3. Activation of the integrin αvß3-FAK/Src pathway likely underlies vWF-induced endothelial dysfunction in sepsis. In conclusion, ISE protects against sepsis by inhibiting endothelial hyperpermeability and platelet-endothelium interactions.


Asunto(s)
Plaquetas , Células Endoteliales de la Vena Umbilical Humana , Sepsis , Factor de von Willebrand , Animales , Sepsis/tratamiento farmacológico , Factor de von Willebrand/metabolismo , Humanos , Ratones , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Masculino , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inhibidores , Permeabilidad Capilar/efectos de los fármacos
5.
Front Immunol ; 15: 1418061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903499

RESUMEN

Extracellular vesicles (EVs), characterized by low immunogenicity, high biocompatibility and targeting specificity along with excellent blood-brain barrier permeability, are increasingly recognized as promising drug delivery vehicles for treating a variety of diseases, such as cancer, inflammation and viral infection. However, recent findings demonstrate that the intracellular delivery efficiency of EVs fall short of expectations due to phagocytic clearance mediated by the host mononuclear phagocyte system through Fcγ receptors, complement receptors as well as non-opsonic phagocytic receptors. In this text, we investigate a range of bacterial virulence proteins that antagonize host phagocytic machinery, aiming to explore their potential in engineering EVs to counteract phagocytosis. Special emphasis is placed on IdeS secreted by Group A Streptococcus and ImpA secreted by Pseudomonas aeruginosa, as they not only counteract phagocytosis but also bind to highly upregulated surface biomarkers αVß3 on cancer cells or cleave the tumor growth and metastasis-promoting factor CD44, respectively. This suggests that bacterial anti-phagocytic proteins, after decorated onto EVs using pre-loading or post-loading strategies, can not only improve EV-based drug delivery efficiency by evading host phagocytosis and thus achieve better therapeutic outcomes but also further enable an innovative synergistic EV-based cancer therapy approach by integrating both phagocytosis antagonism and cancer targeting or deactivation.


Asunto(s)
Vesículas Extracelulares , Fagocitosis , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Fagocitosis/inmunología , Humanos , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/inmunología , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/inmunología , Pseudomonas aeruginosa/inmunología
6.
Nano Lett ; 24(26): 7953-7961, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888317

RESUMEN

The physical properties of nanoscale cell-extracellular matrix (ECM) ligands profoundly impact biological processes, such as adhesion, motility, and differentiation. While the mechanoresponse of cells to static ligands is well-studied, the effect of dynamic ligand presentation with "adaptive" properties on cell mechanotransduction remains less understood. Utilizing a controllable diffusible ligand interface, we demonstrated that cells on surfaces with rapid ligand mobility could recruit ligands through activating integrin α5ß1, leading to faster focal adhesion growth and spreading at the early adhesion stage. By leveraging UV-light-sensitive anchor molecules to trigger a "dynamic to static" transformation of ligands, we sequentially activated α5ß1 and αvß3 integrins, significantly promoting osteogenic differentiation of mesenchymal stem cells. This study illustrates how manipulating molecular dynamics can directly influence stem cell fate, suggesting the potential of "sequentially" controlled mobile surfaces as adaptable platforms for engineering smart biomaterial coatings.


Asunto(s)
Adhesión Celular , Diferenciación Celular , Mecanotransducción Celular , Células Madre Mesenquimatosas , Propiedades de Superficie , Células Madre Mesenquimatosas/citología , Humanos , Integrina alfa5beta1/metabolismo , Osteogénesis , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Integrina alfaVbeta3/metabolismo , Ligandos , Adhesiones Focales
7.
Mol Med ; 30(1): 57, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698308

RESUMEN

BACKGROUND: Ossification of the posterior longitudinal ligament (OPLL), an emerging heterotopic ossification disease, causes spinal cord compression, resulting in motor and sensory dysfunction. The etiology of OPLL remains unclear but may involve integrin αVß3 regulating the process of osteogenesis and angiogenesis. In this study, we focused on the role of integrin αVß3 in OPLL and explored the underlying mechanism by which the c(RGDyk) peptide acts as a potent and selective integrin αVß3 inhibitor to inhibit osteogenesis and angiogenesis in OPLL. METHODS: OPLL or control ligament samples were collected in surgery. For OPLL samples, RNA-sequencing results revealed activation of the integrin family, particularly integrin αVß3. Integrin αVß3 expression was detected by qPCR, Western blotting, and immunohistochemical analysis. Fluorescence microscopy was used to observe the targeted inhibition of integrin αVß3 by the c(RGDyk) peptide on ligaments fibroblasts (LFs) derived from patients with OPLL and endothelial cells (ECs). The effect of c(RGDyk) peptide on the ossification of pathogenic LFs was detected using qPCR, Western blotting. Alkaline phosphatase staining or alizarin red staining were used to test the osteogenic capability. The effect of the c(RGDyk) peptide on angiogenesis was determined by EC migration and tube formation assays. The effects of the c(RGDyk) peptide on heterotopic bone formation were evaluated by micro-CT, histological, immunohistochemical, and immunofluorescence analysis in vivo. RESULTS: The results indicated that after being treated with c(RGDyk), the osteogenic differentiation of LFs was significantly decreased. Moreover, the c(RGDyk) peptide inhibited the migration of ECs and thus prevented the nutritional support required for osteogenesis. Furthermore, the c(RGDyk) peptide inhibited ectopic bone formation in mice. Mechanistic analysis revealed that c(RGDyk) peptide could inhibit osteogenesis and angiogenesis in OPLL by targeting integrin αVß3 and regulating the FAK/ERK pathway. CONCLUSIONS: Therefore, the integrin αVß3 appears to be an emerging therapeutic target for OPLL, and the c(RGDyk) peptide has dual inhibitory effects that may be valuable for the new therapeutic strategy of OPLL.


Asunto(s)
Integrina alfaVbeta3 , Osificación del Ligamento Longitudinal Posterior , Osteogénesis , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inhibidores , Humanos , Osteogénesis/efectos de los fármacos , Animales , Ratones , Osificación del Ligamento Longitudinal Posterior/metabolismo , Osificación del Ligamento Longitudinal Posterior/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Oligopéptidos/farmacología , Oligopéptidos/química , Angiogénesis
8.
Cell Commun Signal ; 22(1): 295, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802814

RESUMEN

BACKGROUND: Colorectal cancer (CRC) commonly exhibits tolerance to cisplatin treatment, but the underlying mechanisms remain unclear. Within the tumor microenvironment, macrophages play a role in resisting the cytotoxic effects of chemotherapy by engaging in efferocytosis to clear apoptotic cells induced by chemotherapeutic agents. The involvement of extracellular vesicles (EVs), an intercellular communicator within the tumor microenvironment, in regulating the efferocytosis for the promotion of drug resistance has not been thoroughly investigated. METHODS: We constructed GFP fluorescent-expressing CRC cell lines (including GFP-CT26 and GFP-MC38) to detect macrophage efferocytosis through flow cytometric analysis. We isolated and purified CRC-secreted EVs using a multi-step ultracentrifugation method and identified them through electron microscopy and nanoflow cytometry. Proteomic analysis was conducted to identify the protein molecules carried by CRC-EVs. MFGE8 knockout CRC cell lines were constructed using CRISPR-Cas9, and their effects were validated through in vitro and in vivo experiments using Western blotting, immunofluorescence, and flow cytometric analysis, confirming that these EVs activate the macrophage αvß3-Src-FAK-STAT3 signaling pathway, thereby promoting efferocytosis. RESULTS: In this study, we found that CRC-derived EVs (CRC-EVs) enhanced macrophage efferocytosis of cisplatin-induced apoptotic CRC cells. Analysis of The Cancer Genome Atlas (TCGA) database revealed a high expression of the efferocytosis-associated gene MFGE8 in CRC patients, suggesting a poorer prognosis. Additionally, mass spectrometry-based proteomic analysis identified a high abundance of MFGE8 protein in CRC-EVs. Utilizing CRISPR-Cas9 gene edition system, we generated MFGE8-knockout CRC cells, demonstrating that their EVs fail to upregulate macrophage efferocytosis in vitro and in vivo. Furthermore, we demonstrated that MFGE8 in CRC-EVs stimulated macrophage efferocytosis by increasing the expression of αvß3 on the cell surface, thereby activating the intracellular Src-FAK-STAT3 signaling pathway. CONCLUSIONS: Therefore, this study highlighted a mechanism in CRC-EVs carrying MFGE8 activated the macrophage efferocytosis. This activation promoted the clearance of cisplatin-induced apoptotic CRC cells, contributing to CRC resistance against cisplatin. These findings provide novel insights into the potential synergistic application of chemotherapy drugs, EVs inhibitors, and efferocytosis antagonists for CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Vesículas Extracelulares , Macrófagos , Fagocitosis , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Macrófagos/metabolismo , Humanos , Animales , Línea Celular Tumoral , Ratones , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal , Cisplatino/farmacología , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/genética , Eferocitosis
9.
Nanoscale ; 16(20): 9953-9965, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38693876

RESUMEN

Sonodynamic therapy (SDT) is an advanced non-invasive cancer treatment strategy with moderate tissue penetration, less invasiveness and a reliable curative effect. However, due to the low stability, potential bio-toxicity and lack of tumor targeting capability of most sonosensitizers, the vast clinical application of SDT has been challenging and limited. Therefore, it is desirable to develop a novel approach to implement sonosensitizers to SDT for cancer treatments. In this study, an amphiphilic polypeptide was designed to effectively encapsulate rose bengal (RB) as a model sonosensitizer to form peptido-nanomicelles (REPNs). The as-fabricated REPNs demonstrated satisfactory tumor targeting and fluorescence performances, which made them superb imaging tracers in vivo. In the meantime, they generated considerable amounts of reactive oxygen species (ROS) to promote tumor cell apoptosis under ultrasound irradiation and showed excellent anti-tumor performance without obvious side effects. These engineered nanomicelles in combination with medical ultrasound may be used to achieve integrin αvß3-targeted sonodynamic therapy against breast cancer, and it is also a promising non-invasive cancer treatment strategy for clinical translations.


Asunto(s)
Neoplasias de la Mama , Integrina alfaVbeta3 , Micelas , Péptidos , Especies Reactivas de Oxígeno , Terapia por Ultrasonido , Integrina alfaVbeta3/metabolismo , Femenino , Péptidos/química , Péptidos/farmacología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Humanos , Animales , Ratones , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Rosa Bengala/química , Rosa Bengala/farmacología , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Nanopartículas/uso terapéutico
10.
Bioorg Med Chem ; 107: 117759, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795572

RESUMEN

Small molecule drugs sourced from natural products are pivotal for novel therapeutic discoveries. However, their clinical deployment is often impeded by non-specific activity and severe adverse effects. This study focused on 3-fluoro-10-hydroxy-Evodiamine (F-OH-Evo), a potent derivative of Evodiamine, whose development is curtailed due to suboptimal tumor selectivity and heightened cytotoxicity. By harnessing the remarkable stability, specificity, and αvß3 integrin affinity of c(RGDFK), a novel prodrug by conjugating F-OH-Evo with cRGD was synthesized. This innovative prodrug substantially enhanced the tumor-specific targeting of F-OH-Evo and improved the anti-tumor activities. Among them, compound 3c demonstrated the best selective inhibitory activity toward U87 cancer cells in vitro. It selectively enterd U87 cells by binding to αvß3 integrin, releasing the parent molecule under the dual response of ROS and GSH to exert inhibitory activity on topo I. The results highlight the potential of cRGD-conjugated prodrugs in targeted cancer therapy. This approach signifies a significant advancement in developing safer and more effective chemotherapy drugs, emphasizing the role of prodrug strategies in overcoming the limitations of traditional cancer treatments.


Asunto(s)
Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Péptidos Cíclicos , Profármacos , Quinazolinas , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inhibidores , Estructura Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química , Relación Estructura-Actividad , Quinazolinas/química , Quinazolinas/farmacología
11.
Biomed Pharmacother ; 175: 116714, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761419

RESUMEN

Cancer is one of the top 10 fatal diseases worldwide, among which advanced metastatic carcinoma has the highest mortality rate. Sunitinib and immune checkpoint blockers are commonly used to treat metastatic renal carcinoma with limited efficacy. Therefore, there is an urgent need to develop novel targeted therapies for metastatic renal cancer. In this study, we designed an antibody fusion protein, 57103, that simultaneously targeted the cluster of differentiation 24 (CD24), interleukin 4 receptor (IL-4R), and integrin receptors αvß3 and α5ß1. In vitro assays showed that 57103 significantly suppressed the proliferation, migration, invasion, colony formation, and adhesion abilities of renal cancer cells, resulting in a comprehensive and significant antitumor effect. Furthermore, 57103 inhibited angiogenesis, promoted THP1-derived M0-type macrophage phagocytosis, and enhanced the antibody-dependent cellular cytotoxicity of peripheral blood mononuclear and NK92MI-CD16a cells. In vivo experiments revealed significant inhibition of tumor growth in ACHN cell xenograft nude mice and an MC38-hCD24 tumor-bearing mouse model. Immunohistochemical analysis showed that 57103 decreased the proliferation and induced the apoptosis of renal cancer cells, while inhibiting angiogenesis. The MC38-hPDL1 and MC38-hCD24-hPDL1 tumor-bearing mouse models further offer the possibility of combining 57103 with the PDL1 antagonist atezolizumab. In conclusion, 57103 is a potential candidate drug for the treatment of metastatic renal carcinoma or PDL1-overexpressing cancer.


Asunto(s)
Proliferación Celular , Integrina alfaVbeta3 , Neoplasias Renales , Ratones Desnudos , Microambiente Tumoral , Animales , Humanos , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inhibidores , Ratones , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Recombinantes de Fusión/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Apoptosis/efectos de los fármacos , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología
12.
Anal Chem ; 96(22): 9007-9015, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38778775

RESUMEN

This study explores the synthesis and characterization of aggregation-induced emission enhancement (AIEE)-active gold nanoclusters (AuNCs), focusing on their near-infrared luminescence properties and potential applications in biological imaging. These AIEE-active AuNCs were synthesized via the NaBH4-mediated reduction of HAuCl4 in the presence of peptides. We systematically investigated the influence of the peptide sequence on the optical features of the AuNCs, highlighting the role of glutamic acid in enhancing their quantum yield (QY). Among the synthesized peptide-stabilized AuNCs, EECEE-stabilized AuNCs exhibited the maximum QY and a pronounced AIEE effect at pH 5.0, making them suitable for the luminescence imaging of intracellular lysosomes. The AIEE characteristic of the EECEE-stabilized AuNCs was demonstrated through examinations using transmission electron microscopy, dynamic light scattering, zeta potential analysis, and single-particle imaging. The formation of the EECEE-stabilized AuNCs was confirmed by size-exclusion chromatography and mass spectrometry. Spectroscopic and electrochemical examinations uncover the formation process of EECEE-stabilized AuNCs, comprising EECEE-mediated reduction, NaBH4-induced nucleation, complex aggregation, and subsequent cluster growth. Furthermore, we demonstrated the utility of these AuNCs as luminescent probes for intracellular lysosomal imaging, leveraging their pH-responsive AIEE behavior. Additionally, cyclic arginylglycylaspartic acid (RGD)-modified AIEE dots, derived from cyclic RGD-linked peptide-induced aggregation of EECEE-stabilized AuNCs, were developed for single- and two-photon luminescence imaging of αvß3 integrin receptor-positive cancer cells.


Asunto(s)
Oro , Integrina alfaVbeta3 , Lisosomas , Nanopartículas del Metal , Oro/química , Lisosomas/química , Lisosomas/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/análisis , Humanos , Nanopartículas del Metal/química , Péptidos/química , Péptidos/síntesis química , Fotones , Imagen Óptica
13.
J Nucl Med ; 65(7): 1107-1112, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38724280

RESUMEN

Angiogenesis is an essential part of the cardiac repair process after myocardial infarction, but its spatiotemporal dynamics remain to be fully deciphered.68Ga-NODAGA-Arg-Gly-Asp (RGD) is a PET tracer targeting αvß3 integrin expression, which is a marker of angiogenesis. Methods: In this prospective single-center trial, we aimed to monitor angiogenesis through myocardial integrin αvß3 expression in 20 patients with ST-segment elevation myocardial infarction (STEMI). In addition, the correlations between the expression levels of myocardial αvß3 integrin and the subsequent changes in 82Rb PET/CT parameters, including rest and stress myocardial blood flow (MBF), myocardial flow reserve (MFR), and wall motion abnormalities, were assessed. The patients underwent 68Ga-NODAGA-RGD PET/CT and rest and stress 82Rb-PET/CT at 1 wk, 1 mo, and 3 mo after STEMI. To assess 68Ga-NODAGA-RGD uptake, the summed rest 82Rb and 68Ga-NODAGA-RGD images were coregistered, and segmental SUVs were calculated (RGD SUV). Results: At 1 wk after STEMI, 19 participants (95%) presented increased 68Ga-NODAGA-RGD uptake in the infarcted myocardium. Seventeen participants completed the full imaging series. The values of the RGD SUV in the infarcted myocardium were stable 1 mo after STEMI (1 wk vs. 1 mo, 1.47 g/mL [interquartile range (IQR), 1.37-1.64 g/mL] vs. 1.47 g/mL [IQR, 1.30-1.66 g/mL]; P = 0.9), followed by a significant partial decrease at 3 mo (1.32 g/mL [IQR, 1.12-1.71 g/mL]; P = 0.011 vs. 1 wk and 0.018 vs. 1 mo). In segment-based analysis, positive correlations were found between RGD SUV at 1 wk and the subsequent changes in stress MBF (Spearman ρ: r = 0.17, P = 0.0033) and MFR (Spearman ρ: r = 0.31, P < 0.0001) at 1 mo. A negative correlation was found between RGD SUV at 1 wk and the subsequent changes in wall motion abnormalities at 3 mo (Spearman ρ: r = -0.12, P = 0.035). Conclusion: The present study found that αvß3 integrin expression is significantly increased in the infarcted myocardium 1 wk after STEMI. This expression remains stable after 1 mo and partially decreases after 3 mo. Initial αvß3 integrin expression at 1 wk is significantly weakly correlated with subsequent improvements in stress MBF, MFR, and wall motion analysis.


Asunto(s)
Circulación Coronaria , Integrina alfaVbeta3 , Infarto del Miocardio , Miocardio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Integrina alfaVbeta3/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Anciano , Compuestos Heterocíclicos con 1 Anillo , Estudios Prospectivos , Oligopéptidos/metabolismo , Radioisótopos de Rubidio , Acetatos
14.
Cancer Res ; 84(10): 1543-1545, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745495

RESUMEN

Nutrient stress accompanies several stages of tumor progression, including metastasis formation. Metabolic reprogramming is a hallmark of cancer, and it has been associated with stress tolerance and anchorage-independent cell survival. Adaptive responses are required to support cancer cell survival under these conditions. In this issue of Cancer Research, Nam and colleagues showed that the extracellular matrix (ECM) receptor integrin ß3 was upregulated in lung cancer cells in response to nutrient starvation, resulting in increased cell survival that was independent from ECM binding. Delving into the molecular mechanisms responsible for this, the authors found that integrin ß3 promoted glutamine metabolism and oxidative phosphorylation (OXPHOS) by activating a Src/AMPK/PGC1α signaling pathway. Importantly, in vivo experiments confirmed that OXPHOS inhibition suppressed tumor initiation in an orthotopic model of lung cancer, while ß3 knockout completely abrogated tumor initiation. These observations indicate that targeting signaling pathways downstream of αvß3 could represent a promising therapeutic avenue to prevent lung cancer progression and metastasis. See related article by Nam et al., p. 1630.


Asunto(s)
Integrina alfaVbeta3 , Neoplasias Pulmonares , Humanos , Integrina alfaVbeta3/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Animales , Transducción de Señal , Ratones , Fosforilación Oxidativa , Estrés Fisiológico , Nutrientes/metabolismo
15.
Int J Nanomedicine ; 19: 3071-3086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562611

RESUMEN

Introduction: The high mortality rate of malignant ovarian cancer is attributed to the absence of effective early diagnosis methods. The LHRH receptor is specifically overexpressed in most ovarian cancers, and the integrin αvß3 receptor is also overexpressed on the surface of ovarian cancer cells. In this study, we designed LHRH analogues (LHRHa)/RGD co-modified paclitaxel liposomes (LHRHa-RGD-LP-PTX) to target LHRH receptor-positive ovarian cancers more effectively and enhance the anti-ovarian cancer effects. Methods: LHRHa-RGD-LP-PTX liposomes were prepared using the thin film hydration method. The morphology, physicochemical properties, cellular uptake, and cell viability were assessed. Additionally, the cellular uptake mechanism of the modified liposomes was investigated using various endocytic inhibitors. The inhibitory effect of the formulations on tumor spheroids was observed under a microscope. The co-localization with lysosomes was visualized using confocal laser scanning microscopy (CLSM), and the in vivo tumor-targeting ability of the formulations was assessed using the IVIS fluorescent imaging system. Finally, the in vivo anti-tumor efficacy of the formulations was evaluated in the armpits of BALB/c nude mice. Results: The results indicated that LHRHa-RGD-LP-PTX significantly enhanced cellular uptake in A2780 cells, increased cytotoxicity, and hand a more potent inhibitory effect on tumor spheroids of A2780 cells. It also showed enhanced co-localization with endosomes or lysosome in A2780 cells, improved tumor-targeting capability, and demonstrated an enhanced anti-tumor effect in LHRHR-positive ovarian cancers. Conclusion: The designed LHRHa-RGD-LP-PTX liposomes significantly enhanced the tumor-targeting ability and therapeutic efficacy for LHRH receptor-positive ovarian cancers.


Asunto(s)
Neoplasias Ováricas , Animales , Ratones , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Liposomas/química , Receptores LHRH , Integrina alfaVbeta3 , Línea Celular Tumoral , Ratones Desnudos , Paclitaxel/uso terapéutico , Oligopéptidos/química
16.
J Immunol ; 212(11): 1680-1692, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38607278

RESUMEN

Plasmacytoid dendritic cells (pDCs) are strongly implicated as a major source of IFN-I in systemic lupus erythematosus (SLE), triggered through TLR-mediated recognition of nucleic acids released from dying cells. However, relatively little is known about how TLR signaling and IFN-I production are regulated in pDCs. In this article, we describe a role for integrin αvß3 in regulating TLR responses and IFN-I production by pDCs in mouse models. We show that αv and ß3-knockout pDCs produce more IFN-I and inflammatory cytokines than controls when stimulated through TLR7 and TLR9 in vitro and in vivo. Increased cytokine production was associated with delayed acidification of endosomes containing TLR ligands, reduced LC3 conjugation, and increased TLR signaling. This dysregulated TLR signaling results in activation of B cells and promotes germinal center (GC) B cell and plasma cell expansion. Furthermore, in a mouse model of TLR7-driven lupus-like disease, deletion of αvß3 from pDCs causes accelerated autoantibody production and pathology. We therefore identify a pDC-intrinsic role for αvß3 in regulating TLR signaling and preventing activation of autoreactive B cells. Because αvß3 serves as a receptor for apoptotic cells and cell debris, we hypothesize that this regulatory mechanism provides important contextual cues to pDCs and functions to limit responses to self-derived nucleic acids.


Asunto(s)
Autoinmunidad , Células Dendríticas , Integrina alfaVbeta3 , Lupus Eritematoso Sistémico , Ratones Noqueados , Transducción de Señal , Receptor Toll-Like 7 , Animales , Ratones , Células Dendríticas/inmunología , Integrina alfaVbeta3/inmunología , Integrina alfaVbeta3/metabolismo , Autoinmunidad/inmunología , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/genética , Lupus Eritematoso Sistémico/inmunología , Transducción de Señal/inmunología , Ratones Endogámicos C57BL , Citocinas/metabolismo , Citocinas/inmunología , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo , Linfocitos B/inmunología , Autoanticuerpos/inmunología , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Activación de Linfocitos/inmunología , Modelos Animales de Enfermedad
17.
Cancer Res ; 84(10): 1630-1642, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38588407

RESUMEN

Cancer stem/tumor-initiating cells display stress tolerance and metabolic flexibility to survive in a harsh environment with limited nutrient and oxygen availability. The molecular mechanisms underlying this phenomenon could provide targets to prevent metabolic adaptation and halt cancer progression. Here, we showed in cultured cells and live human surgical biopsies of non-small cell lung cancer that nutrient stress drives the expression of the epithelial cancer stem cell marker integrin αvß3 via upregulation of the ß3 subunit, resulting in a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. Although nutrient deprivation is known to promote acute, yet transient, activation of the stress sensor AMP-activated protein kinase (AMPK), stress-induced αvß3 expression via Src activation unexpectedly led to secondary and sustained AMPK activation. This resulted in the nuclear localization of peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α) and upregulation of glutamine metabolism, the tricarboxylic acid cycle, and oxidative phosphorylation. Pharmacological or genetic targeting of this axis prevented lung cancer cells from evading the effects of nutrient stress, thereby blocking tumor initiation in mice following orthotopic implantation of lung cancer cells. These findings reveal a molecular pathway driven by nutrient stress that results in cancer stem cell reprogramming to promote metabolic flexibility and tumor initiation. SIGNIFICANCE: Upregulation of integrin αvß3, a cancer stem cell marker, in response to nutrient stress activates sustained AMPK/PGC1α signaling that induces metabolic reprogramming in lung cancer cells to support their survival. See related commentary by Rainero, p. 1543.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Integrina alfaVbeta3 , Neoplasias Pulmonares , Regulación hacia Arriba , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Animales , Integrina alfaVbeta3/metabolismo , Ratones , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Estrés Fisiológico , Nutrientes/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
18.
Cells ; 13(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38391921

RESUMEN

FGF9 is a potent mitogen and survival factor, but FGF9 protein levels are generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in cancer. However, the mechanism of FGF9 action has not been fully established. Previous studies showed that FGF1 and FGF2 directly bind to integrin αvß3, and this interaction is critical for signaling functions (FGF-integrin crosstalk). FGF1 and FGF2 mutants defective in integrin binding were defective in signaling, whereas the mutants still bound to FGFR suppressed angiogenesis and tumor growth, indicating that they act as antagonists. We hypothesize that FGF9 requires direct integrin binding for signaling. Here, we show that docking simulation of the interaction between FGF9 and αvß3 predicted that FGF9 binds to the classical ligand-binding site of αvß3. We show that FGF9 bound to integrin αvß3 and generated FGF9 mutants in the predicted integrin-binding interface. An FGF9 mutant (R108E) was defective in integrin binding, activating FRS2α and ERK1/2, inducing DNA synthesis, cancer cell migration, and invasion in vitro. R108E suppressed DNA synthesis and activation of FRS2α and ERK1/2 induced by WT FGF9 (dominant-negative effect). These findings indicate that FGF9 requires direct integrin binding for signaling and that R108E has potential as an antagonist to FGF9 signaling.


Asunto(s)
Integrina alfaVbeta3 , Mitógenos , Integrina alfaVbeta3/metabolismo , Ligandos , Factor 1 de Crecimiento de Fibroblastos , Factor 2 de Crecimiento de Fibroblastos , ADN
19.
J Ovarian Res ; 17(1): 50, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395907

RESUMEN

BACKGROUND: Individual patients with ovarian cancer show remarkably different prognosis. Present prognostic models for ovarian cancer mainly focus on clinico-pathological parameters, so quantifiable prognostic markers at molecular level are urgently needed. Platelets contribute to ovarian cancer progression, but have not been considered as biomarkers likely due to their instability. Here, we aimed to search for a stable prognostic marker from platelet-treated ovarian cancer cells, and explore its functions and mechanisms. METHODS: Microarrays analysis was done with platelet-treated SKOV-3 ovarian cancer cells. Relevant studies were searched in the Gene Expression Omnibus (GEO) database. The candidate genes were determined by differentially expressed genes (DEGs), Venn diagram drawing, protein-protein interaction (PPI) network, Cox proportional hazards model and Kaplan-Meier analysis. The expression of TGFBI in clinical samples was assessed by immunehistochemical staining (IHC), and the association of TGFBI levels with the clinic-pathological characteristics and prognosis in ovarian cancer patients was evaluated by univariate and multivariate analysis. The functions of TGFBI were predicted using data from TCGA, and validated by in vitro and in vivo experiments. The mechanism exploration was performed based on proteomic analysis, molecular docking and intervention study. RESULTS: TGFBI was significantly higher expressed in the platelet-treated ovarian cancer cells. An analysis of bioinformatics data revealed that increased expression of TGFBI led to significant decrease of overall survival (OS), progression-free survival (PFS) and post-progression survival (PPS) in ovarian cancer patients. Tissue microarray results showed that TGFBI was an independent factor for ovarian cancer, and TGFBI expression predict poor prognosis. Functionally, TGFBI affected the migration and invasion of ovarian cancer cells by regulation of epithelial mesenchymal transition (EMT) markers (CDH1 and CDH2) and extracellular matrix (ECM) degradation proteins (MMP-2). Mechanistically, TGFBI phosphorylated PI3K and Akt by combining integrin αvß3. CONCLUSIONS: We found out TGFBI as a novel prognostic indicator for ovarian cancer patients. TGFBI could promote metastasis in ovarian cancer by EMT induction and ECM remodeling, which might be associated with the activation of integrin αvß3-PI3K-Akt signaling pathway.


Asunto(s)
Integrina alfaVbeta3 , Neoplasias Ováricas , Factor de Crecimiento Transformador beta , Femenino , Humanos , Proteínas de la Matriz Extracelular/metabolismo , Simulación del Acoplamiento Molecular , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
20.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119701, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417588

RESUMEN

Recent findings suggest that uncarboxylated osteocalcin (GluOC) promotes glucose and lipid metabolism via its putative receptor GPRC6A; however, its direct effect on adipocytes remains elusive. In this study, we elucidated the effects of GluOC on adipocytes, with an emphasis on the role of cell adhesion molecules. We determined that GluOC promoted the expression of adipocyte adhesion molecule (ACAM) and its transcription factor Krüppel-like factor 4 and enhanced the cortical actin filament assembly, which ameliorated lipid droplet hypertrophy. Additionally, GluOC upregulated the expression of integrin αVß3 and activation of focal adhesion kinase (FAK) and prevented insulin receptor substrate 1 (IRS1) degradation by inhibiting the ubiquitin-proteasome system via the FAK-PLC-PKC axis, which activated IRS1-Akt-mediated glucose transporter 4 (GLUT4) transport. Furthermore, we showed that GluOC elevated the expression of the insulin-independent glucose transporters GLUT1 and GLUT8, which facilitated insulin stimulation-independent glucose transport. The GluOC-induced activation of integrin αVß3 signaling promoted microtubule assembly, which improved glucose and lipid metabolism via its involvement in intracellular vesicular transport. GluOC treatment also suppressed collagen type 1 formation, which might prevent adipose tissue fibrosis in obese individuals. Overall, our results imply that GluOC promotes glucose and lipid metabolism via ACAM, integrin αVß3, and GLUT1 and 8 expression, directly affecting adipocytes.


Asunto(s)
Glucosa , Metabolismo de los Lípidos , Humanos , Glucosa/metabolismo , Osteocalcina/metabolismo , Osteocalcina/farmacología , Metabolismo de los Lípidos/genética , Transportador de Glucosa de Tipo 1/metabolismo , Integrina alfaVbeta3 , Adipocitos/metabolismo , Insulina/metabolismo , Moléculas de Adhesión Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA