Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
1.
Biomed Pharmacother ; 174: 116477, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522235

RESUMEN

BACKGROUND: SGLT2i reduce cardiac hypertrophy, but underlying mechanisms remain unknown. Here we explore a role for serine/threonine kinases (STK) and sodium hydrogen exchanger 1(NHE1) activities in SGLT2i effects on cardiac hypertrophy. METHODS: Isolated hearts from db/db mice were perfused with 1 µM EMPA, and STK phosphorylation sites were examined using unbiased multiplex analysis to detect the most affected STKs by EMPA. Subsequently, hypertrophy was induced in H9c2 cells with 50 µM phenylephrine (PE), and the role of the most affected STK (p90 ribosomal S6 kinase (RSK)) and NHE1 activity in hypertrophy and the protection by EMPA was evaluated. RESULTS: In db/db mice hearts, EMPA most markedly reduced STK phosphorylation sites regulated by RSKL1, a member of the RSK family, and by Aurora A and B kinases. GO and KEGG analysis suggested that EMPA inhibits hypertrophy, cell cycle, cell senescence and FOXO pathways, illustrating inhibition of growth pathways. EMPA prevented PE-induced hypertrophy as evaluated by BNP and cell surface area in H9c2 cells. EMPA blocked PE-induced activation of NHE1. The specific NHE1 inhibitor Cariporide also prevented PE-induced hypertrophy without added effect of EMPA. EMPA blocked PE-induced RSK phosphorylation. The RSK inhibitor BIX02565 also suppressed PE-induced hypertrophy without added effect of EMPA. Cariporide mimicked EMPA's effects on PE-treated RSK phosphorylation. BIX02565 decreased PE-induced NHE1 activity, with no further decrease by EMPA. CONCLUSIONS: RSK inhibition by EMPA appears as a novel direct cardiac target of SGLT2i. Direct cardiac effects of EMPA exert their anti-hypertrophic effect through NHE-inhibition and subsequent RSK pathway inhibition.


Asunto(s)
Compuestos de Bencidrilo , Cardiomegalia , Glucósidos , Proteínas Quinasas S6 Ribosómicas 90-kDa , Intercambiador 1 de Sodio-Hidrógeno , Animales , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores , Glucósidos/farmacología , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Cardiomegalia/prevención & control , Cardiomegalia/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Masculino , Compuestos de Bencidrilo/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Línea Celular , Ratas , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos
2.
J Neuroinflammation ; 21(1): 69, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509618

RESUMEN

Microglial Na/H exchanger-1 (NHE1) protein, encoded by Slc9a1, plays a role in white matter demyelination of ischemic stroke brains. To explore underlying mechanisms, we conducted single cell RNA-seq transcriptome analysis in conditional Slc9a1 knockout (cKO) and wild-type (WT) mouse white matter tissues at 3 days post-stroke. Compared to WT, Nhe1 cKO brains expanded a microglial subgroup with elevated transcription of white matter myelination genes including Spp1, Lgals3, Gpnmb, and Fabp5. This subgroup also exhibited more acidic pHi and significantly upregulated CREB signaling detected by ingenuity pathway analysis and flow cytometry. Moreover, the Nhe1 cKO white matter tissues showed enrichment of a corresponding oligodendrocyte subgroup, with pro-phagocytosis and lactate shuffling gene expression, where activated CREB signaling is a likely upstream regulator. These findings demonstrate that attenuation of NHE1-mediated H+ extrusion acidifies microglia/macrophage and may underlie the stimulation of CREB1 signaling, giving rise to restorative microglia-oligodendrocyte interactions for remyelination.


Asunto(s)
Encéfalo , Microglía , Intercambiador 1 de Sodio-Hidrógeno , Animales , Ratones , Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal/genética , Intercambiador 1 de Sodio-Hidrógeno/metabolismo
3.
Auris Nasus Larynx ; 51(3): 472-480, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520980

RESUMEN

OBJECTIVE: Although there have been brilliant advancements in the practical application of therapies targeting immune checkpoints, achieving success in targeting the microenvironment remains elusive. In this study, we aimed to address this gap by focusing on Na+ / H+ exchanger 1 (NHE1) and Lysyl Oxidase Like 2 (LOXL2), which are upregulated in head and neck squamous cell carcinoma (HNSCC) cells. METHODS: The malignancy of a metastatic human HNSCC cell line was assessed in a mouse tongue cancer xenograft model by knocking down (KD) NHE1, responsible for regulating intracellular pH, and LOXL2, responsible for extracellular matrix (ECM) reorganization via cross-linking of ECM proteins. In addition to assessing changes in PD-L1 levels and collagen accumulation following knockdown, the functional status of the PD-L1 / PD-1 immune checkpoint was examined through co-culture with NK92MI, a PD-1 positive phagocytic human Natural Killer (NK) cell line. RESULTS: The tumorigenic potential of each single KD cell line was similar to that of the control cells, whereas the potential was attenuated in cells with simultaneous KD of both factors (double knockdown [dKD]). Additionally, we observed decreased PD-L1 levels in NHE1 KD cells and compromised collagen accumulation in LOXL2 KD and dKD cells. NK92MI cells exhibited phagocytic activity toward HNSCC cells in co-culture, and the number of remaining dKD cells after co-culture was the lowest in comparison to the control and single KD cells. CONCLUSION: This study demonstrated the possibility of achieving efficient anti-tumor effects by simultaneously disturbing multiple factors involved in the modification of the tumor microenvironment.


Asunto(s)
Aminoácido Oxidorreductasas , Neoplasias de Cabeza y Cuello , Intercambiador 1 de Sodio-Hidrógeno , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Lengua , Intercambiador 1 de Sodio-Hidrógeno/genética , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Animales , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Humanos , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/patología , Neoplasias de la Lengua/metabolismo , Microambiente Tumoral , Técnicas de Silenciamiento del Gen , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Carcinogénesis/genética , Colágeno/metabolismo , Células Asesinas Naturales , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética
4.
Am J Physiol Cell Physiol ; 326(4): C1106-C1119, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38344766

RESUMEN

Intrauterine infection during pregnancy can enhance uterine contractions. A two-pore K+ channel TREK1 is crucial for maintaining uterine quiescence and reducing contractility, with its properties regulated by pH changes in cell microenvironment. Meanwhile, the sodium hydrogen exchanger 1 (NHE1) plays a pivotal role in modulating cellular pH homeostasis, and its activation increases smooth muscle tension. By establishing an infected mouse model of Escherichia coli (E. coli) and lipopolysaccharide (LPS), we used Western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence to detect changes of TREK1 and NHE1 expression in the myometrium, and isometric recording measured the uterus contraction. The NHE1 inhibitor cariporide was used to explore the effect of NHE1 on TREK1. Finally, cell contraction assay and siRNA transfection were performed to clarify the relationship between NHE1 and TREK1 in vitro. We found that the uterine contraction was notably enhanced in infected mice with E. coli and LPS administration. Meanwhile, TREK1 expression was reduced, whereas NHE1 expression was upregulated in infected mice. Cariporide alleviated the increased uterine contraction and promoted myometrium TREK1 expression in LPS-injected mice. Furthermore, suppression of NHE1 with siRNA transfection inhibited the contractility of uterine smooth muscle cells and activated the TREK1. Altogether, our findings indicate that infection increases the uterine contraction by downregulating myometrium TREK1 in mice, and the inhibition of TREK1 is attributed to the activation of NHE1.NEW & NOTEWORTHY Present work found that infection during pregnancy will increase myometrium contraction. Infection downregulated NHE1 and followed TREK1 expression and activation decrease in myometrium, resulting in increased myometrium contraction.


Asunto(s)
Guanidinas , Lipopolisacáridos , Miometrio , Canales de Potasio de Dominio Poro en Tándem , Intercambiador 1 de Sodio-Hidrógeno , Sulfonas , Animales , Femenino , Ratones , Embarazo , Escherichia coli , Lipopolisacáridos/toxicidad , Miometrio/metabolismo , ARN Interferente Pequeño/metabolismo , Contracción Uterina/fisiología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/metabolismo
5.
Transl Res ; 263: 53-72, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678757

RESUMEN

Neuropathic pain is caused by injury or disease of the somatosensory system, and its course is usually chronic. Several studies have been dedicated to investigating neuropathic pain-related targets; however, little attention has been paid to the persistent alterations that these targets, some of which may be crucial to the pathophysiology of neuropathic pain. The present study aimed to identify potential targets that may play a crucial role in neuropathic pain and validate their long-term impact. Through bioinformatics analysis of RNA sequencing results, we identified Slc9a1 and validated the reduced expression of sodium-hydrogen exchanger 1 (NHE1), the protein that Slc9a1 encodes, in the spinal nerve ligation (SNL) model. Colocalization analysis revealed that NHE1 is primarily co-localized with vesicular glutamate transporter 2-positive neurons. In vitro experiments confirmed that poly(lactic-co-glycolic acid) nanoparticles loaded with siRNA successfully inhibited NHE1 in SH-SY5Y cells, lowered intracellular pH, and increased intracellular calcium concentrations. In vivo experiments showed that sustained suppression of spinal NHE1 expression by siRNA-loaded nanoparticles resulted in delayed hyperalgesia in naïve and SNL model rats, whereas amiloride-induced transient suppression of NHE1 expression yielded no significant changes in pain sensitivity. We identified Slc9a1, which encodes NHE1, as a key gene in neuropathic pain. Utilizing the sustained release properties of nanoparticles enabled us to elucidate the chronic role of decreased NHE1 expression, establishing its significance in the mechanisms of neuropathic pain.


Asunto(s)
Neuralgia , Neuroblastoma , Ratas , Humanos , Animales , Intercambiador 1 de Sodio-Hidrógeno/genética , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Glicoles , Preparaciones de Acción Retardada , ARN Interferente Pequeño/genética
6.
Exp Dermatol ; 33(1): e14983, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38009253

RESUMEN

Tumour cell detachment from the primary tumour is an early and crucial step of the metastatic cascade. At the single cell level, it was already shown that migrating melanoma cells establish both intra- and extracellular pH gradients and that the Na+ /H+ exchanger NHE1 accumulates at the leading edges to strengthen cell-matrix interactions. However, less is known about the role of NHE1 in collective cell migration and the specific pH microenvironment at tumour cell-cell contacts. We used MV3 melanoma cells transfected with a NHE1-expressing vector or a control vector. NHE1 localization at cell-cell contacts was assessed via immunofluorescence imaging. Collective migration was analysed by live-cell imaging. The NHE1 activity and the perimembranous pH were measured both intra- and extracellularly by ratiometric fluorescence microscopy. NHE1 clearly localizes at cell-cell contacts. Its overexpression further increases migratory speed and translocation in multidirectional pathway analyses. NHE1 overexpressing MV3 cells also move further away from their neighbouring cells during wound closure assays. pH measurements revealed that the NHE1 is highly active at cell-cell contacts of melanoma cells. NHE1-mediated pH dynamics at such contact sites are more prominent in NHE1-overexpressing melanoma cells. Our findings highlight the contribution of the NHE1 towards modulation and plasticity of melanoma cell-cell contacts. We propose that its localization and functional activity at cell-cell contacts promotes evasion of single melanoma cells from the primary tumour.


Asunto(s)
Melanoma , Humanos , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Melanoma/metabolismo , Línea Celular Tumoral , Intercambiadores de Sodio-Hidrógeno/metabolismo , Comunicación Celular , Concentración de Iones de Hidrógeno , Microambiente Tumoral
7.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37686096

RESUMEN

To date, recanalization interventions are the only available treatments for ischemic stroke patients; however, there are no effective therapies for reducing stroke-induced neuroinflammation. We recently reported that H+ extrusion protein Na+/H+ exchanger-1 (NHE1) plays an important role in stroke-induced inflammation and white matter injury. In this study, we tested the efficacy of two potent NHE1 inhibitors, HOE642 and Rimeporide, with a delayed administration regimen starting at 24 h post-stroke in adult C57BL/6J mice. Post-stroke HOE642 and Rimeporide treatments accelerated motor and cognitive function recovery without affecting the initial ischemic infarct, neuronal damage, or reactive astrogliosis. However, the delayed administration of NHE1 blockers after ischemic stroke significantly reduced microglial inflammatory activation while enhanced oligodendrogenesis and white matter myelination, with an increased proliferation and decreased apoptosis of the oligodendrocytes. Our findings suggest that NHE1 protein plays an important role in microglia-mediated inflammation and white matter damage. The pharmacological blockade of NHE1 protein activity reduced microglia inflammatory responses and enhanced oligodendrogenesis and white matter repair, leading to motor and cognitive function recovery after stroke. Our study reveals the potential of targeting NHE1 protein as a therapeutic strategy for ischemic stroke therapy.


Asunto(s)
Accidente Cerebrovascular Isquémico , Intercambiador 1 de Sodio-Hidrógeno , Accidente Cerebrovascular , Sustancia Blanca , Animales , Ratones , Antiarrítmicos , Inflamación , Ratones Endogámicos C57BL , Accidente Cerebrovascular/tratamiento farmacológico , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores
8.
Carbohydr Polym ; 299: 120179, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36876794

RESUMEN

The mechanism underlying the intestinal transport of COS is not well understood. Here, transcriptome and proteome analyses were performed to identify potential critical molecules involved in COS transport. Enrichment analyses revealed that the differentially expressed genes in the duodenum of the COS-treated mice were mainly enriched in transmembrane and immune function. In particular, B2 m, Itgb2, and Slc9a1 were upregulated. The Slc9a1 inhibitor decreased the transport efficiency of COS both in MODE-K cells (in vitro) and in mice (in vivo). The transport of FITC-COS in Slc9a1-overexpressing MODE-K cells was significantly higher than that in empty vector-transfected cells (P < 0.01). Molecular docking analysis revealed the possibility of stable binding between COS and Slc9a1 through hydrogen bonding. This finding indicates that Slc9a1 plays a crucial role in COS transport in mice. This provides valuable insights for improving the absorption efficiency of COS as a drug adjuvant.


Asunto(s)
Transporte Biológico , Quitosano , Mucosa Intestinal , Intercambiador 1 de Sodio-Hidrógeno , Animales , Ratones , Mucosa Intestinal/metabolismo , Simulación del Acoplamiento Molecular , Oligosacáridos , Intercambiador 1 de Sodio-Hidrógeno/metabolismo
9.
Neoplasia ; 35: 100862, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508876

RESUMEN

Intrinsic or acquired radioresistance often limits the efficacy of radiation therapy (RT), thereby leading to local control failure. Cancerous cells have abnormal pH dynamics due to high metabolic demands, but it is unclear how pH dynamics contribute to radioresistance. In this study, we investigated the role of Na-H exchange 1 (NHE1), the major intracellular pH (pHi) regulator, in RT response. We observed that RT increased NHE1 expression and modulated pHi in MDA-MB-231 human breast cancer cells. When combined with RT, pharmacological NHE1 inhibition by 5-(N-Ethyl-N-isopropyl)amiloride (EIPA) reduced pHi and clonogenic survival. EIPA attenuated radiation-damaged DNA repair, increasing G2/M cell cycle arrest. The combination of EIPA and RT increased apoptotic cell death while decreasing phosphorylation of NF-κB p65. Similarly, the knockdown of NHE1 increased radiosensitivity with lower pHi and increased apoptosis. Consistent with in vitro data, the EIPA plus RT inhibited the growth of MDA-MB-231 xenograft tumors in mice to a greater extent than either EIPA or RT alone. EIPA abrogated the RT-induced increase in NHE1 and phospho-NF-κB p65 expression in tumor tissues. Such coincidence of increased NHE1 level, pHi, and NF-κB activation was also found in radioresistant MDA-MB-231 cells, which were reversed by EIPA treatment. Bioinformatics analysis of RNA sequencing data revealed that inhibiting NHE1 reversed three core gene networks that were up-regulated in radioresistant cells and correlated with high NHE1 expression in patient samples: NF-κB, senescence, and extracellular matrix. Taken together, our findings suggest that NHE1 contributes to RT resistance via NF-κB-mediated signaling networks, and NHE1 may be a promising target for improving RT outcomes.


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Humanos , Ratones , Animales , Femenino , FN-kappa B/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/genética , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Amilorida/farmacología , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/radioterapia , Concentración de Iones de Hidrógeno
10.
Nephrol Dial Transplant ; 38(3): 586-598, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35921220

RESUMEN

BACKGROUND: The kidney is the main organ in the pathophysiology of essential hypertension. Although most bicarbonate reabsorption occurs in the proximal tubule, the medullary thick ascending limb (mTAL) of the nephron also maintains acid-base balance by contributing to 25% of bicarbonate reabsorption. A crucial element in this regulation is the sodium-hydrogen exchanger 1 (NHE1), a ubiquitous membrane protein controlling intracellular pH, where proton extrusion is driven by the inward sodium flux. MicroRNA (miRNA) expression of hypertensive patients significantly differs from that of normotensive subjects. The aim of this study was to determine the functional role of miRNA alterations at the mTAL level. METHODS: By miRNA microarray analysis, we identified miRNA expression profiles in isolated mTALs from high sodium intake-induced hypertensive rats (HSD) versus their normotensive counterparts (NSD). In vitro validation was carried out in rat mTAL cells. RESULTS: Five miRNAs involved in the onset of salt-sensitive hypertension were identified, including miR-23a, which was bioinformatically predicted to target NHE1 mRNA. Data demonstrated that miRNA-23a is downregulated in the mTAL of HSD rats while NHE1 is upregulated. Consistently, transfection of an miRNA-23a mimic in an mTAL cell line, using a viral vector, resulted in NHE1 downregulation. CONCLUSION: NHE1, a protein involved in sodium reabsorption at the mTAL level and blood pressure regulation, is upregulated in our model. This was due to a downregulation of miRNA-23a. Expression levels of this miRNA are influenced by high sodium intake in the mTALs of rats. The downregulation of miRNA-23a in humans affected by essential hypertension corroborate our data and point to the potential role of miRNA-23a in the regulation of mTAL function following high salt intake.


Asunto(s)
Hipertensión , MicroARNs , Animales , Humanos , Ratas , Bicarbonatos , Hipertensión Esencial/metabolismo , Hipertensión/metabolismo , Médula Renal , MicroARNs/metabolismo , Sodio/metabolismo , Cloruro de Sodio Dietético , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo
11.
Oxid Med Cell Longev ; 2022: 9306614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35915613

RESUMEN

As a previously discovered target of DNA damage, Na+/H+ exchanger 1 (NHE1) plays a role in regulation of intracellular pH (pHi) through the extrusion of intracellular proton (H+) in exchange for extracellular sodium (Na+). Its abnormal expression and dysfunction have been reported in solid tumor and hematopoietic malignancies. Here, we reported that suppression of NHE1 in BCR-ABL+ hematopoietic malignancies' K562 cells treated with Etoposide was manipulated by miR-19 and c-MYC. Inhibition of miR-19 or c-MYC enhanced the expression of NHE1 and sensitized K562 cells to Etoposide in vitro. The in vivo nude mouse transplantation model was also performed to confirm the enhanced sensitivity of K562 cells to Etoposide by inhibiting the miR-19 or c-MYC pathway. TCGA analysis conferred a negative correlation between miR-19 level and leukemia patients' survival. Thus, our results provided a potential management by which the c-MYC-miRNA 19 pathway might have a crucial impact on sensitizing K562 cells to Etoposide in the therapeutic approaches.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mielógena Crónica BCR-ABL Positiva , MicroARNs , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Animales , Etopósido/farmacología , Etopósido/uso terapéutico , Regulación Leucémica de la Expresión Génica , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regulación hacia Arriba
12.
J Int Med Res ; 50(5): 3000605221097490, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35510669

RESUMEN

OBJECTIVE: Sodium-glucose cotransporter-2 (SGLT2) inhibitors exhibit cardioprotective properties in patients with diabetes. However, SGLT2 is not expressed in the heart, and the underlying molecular mechanisms are not fully understood. We investigated whether the SGLT2 inhibitor luseogliflozin exerts beneficial effects on high glucose-exposed cardiomyocytes via the suppression of sodium-hydrogen exchanger-1 (NHE-1) activity. METHODS: Mouse cardiomyocytes were incubated under normal or high glucose conditions with vehicle, luseogliflozin, or the NHE-1 inhibitor cariporide. NHE-1 activity and gene expression were evaluated by the SNARF assay and real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis, respectively. Six-week-old male db/db mice were treated with vehicle or luseogliflozin for 6 weeks, and the hearts were collected for histological, RT-PCR, and western blot analyses. RESULTS: High glucose increased NHE-1 activity and transforming growth factor (Tgf)-ß2 mRNA levels in cardiomyocytes, both of which were inhibited by luseogliflozin or cariporide, whereas their combination showed no additive suppression of Tgf-ß2 mRNA levels. Luseogliflozin attenuated cardiac hypertrophy and fibrosis in db/db mice in association with decreased mRNA and protein levels of TGF-ß2. CONCLUSIONS: Luseogliflozin may suppress cardiac hypertrophy in diabetes by reducing Tgf-ß2 expression in cardiomyocytes via the suppression of NHE-1 activity.


Asunto(s)
Diabetes Mellitus , Miocitos Cardíacos , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Animales , Cardiomegalia/patología , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Masculino , Ratones , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/farmacología , Sorbitol/análogos & derivados , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/farmacología
13.
PLoS One ; 17(5): e0266890, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35503765

RESUMEN

Sodium-hydrogen exchangers (NHEs) tightly regulate intracellular pH (pHi), proliferation, migration and cell volume. Heterogeneity exists between pulmonary endothelial cells derived from different vascular segments, yet the activity and isoform expression of NHEs between these vascular segments has not been fully examined. Utilizing the ammonium-prepulse and recovery from acidification technique in a buffer lacking bicarbonate, pulmonary microvascular and pulmonary artery endothelial cells exhibited unique recovery rates from the acid load dependent upon the concentration of the sodium transport inhibitor, amiloride; further, pulmonary artery endothelial cells required a higher dose of amiloride to inhibit sodium-dependent acid recovery compared to pulmonary microvascular endothelial cells, suggesting a unique complement of NHEs between the different endothelial cell types. While NHE1 has been described in pulmonary endothelial cells, all NHE isoforms have not been accounted for. To address NHE expression in endothelial cells, qPCR was performed. Using a two-gene normalization approach, Sdha and Ywhag were identified for qPCR normalization and analysis of NHE isoforms between pulmonary microvascular and pulmonary artery endothelial cells. NHE1 and NHE8 mRNA were equally expressed between the two cell types, but NHE5 expression was significantly higher in pulmonary microvascular versus pulmonary artery endothelial cells, which was confirmed at the protein level. Thus, pulmonary microvascular and pulmonary artery endothelial cells exhibit unique NHE isoform expression and have a unique response to acid load revealed through recovery from cellular acidification.


Asunto(s)
Amilorida , Células Endoteliales , Ácidos/metabolismo , Amilorida/farmacología , Células Endoteliales/metabolismo , Concentración de Iones de Hidrógeno , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo
14.
Kidney Blood Press Res ; 47(6): 399-409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35339998

RESUMEN

BACKGROUND/AIMS: Vasopressin is a powerful stimulator of vascular calcification, augmenting osteogenic signaling in vascular smooth muscle cells (VSMCs) including upregulation of transcription factors such as core-binding factor α-1 (CBFA1), msh homeobox 2 (MSX2), and SRY-Box 9 (SOX9), as well as of tissue-nonspecific alkaline phosphatase (ALPL). Vasopressin-induced osteogenic signaling and calcification require the serum- and glucocorticoid-inducible kinase 1 (SGK1). Known effects of SGK1 include upregulation of Na+/H+ exchanger 1 (NHE1). NHE1 further participates in the regulation of reactive oxygen species (ROS). NHE1 has been shown to participate in the orchestration of bone mineralization. The present study, thus, explored whether vasopressin modifies NHE1 expression and ROS generation, as well as whether pharmacological inhibition of NHE1 disrupts vasopressin-induced osteogenic signaling and calcification in VSMCs. METHODS: Human aortic smooth muscle cells (HAoSMCs) were treated with vasopressin in the absence or presence of SGK1 silencing, SGK1 inhibitor GSK-650394, and NHE1 blocker cariporide. Transcript levels were determined by using quantitative real-time polymerase chain reaction, protein abundance by Western blotting, ROS generation with 2',7'-dichlorofluorescein diacetate fluorescence, and ALP activity and calcium content by using colorimetric assays. RESULTS: Vasopressin significantly enhanced the NHE1 transcript and protein levels in HAoSMCs, effects significantly blunted by SGK1 inhibition with GSK-650394 or SGK1 silencing. Vasopressin increased ROS accumulation, an effect significantly blocked by the NHE1 inhibitor cariporide. Vasopressin further significantly increased osteogenic markers CBFA1, MSX2, SOX9, and ALPL transcript levels, as well as ALP activity and calcium content in HAoSMCs, all effects significantly blunted by SGK1 silencing or in the presence of GSK-650394 or cariporide. CONCLUSION: Vasopressin stimulates NHE1 expression and ROS generation, an effect dependent on SGK1 and required for vasopressin-induced stimulation of osteogenic signaling and calcification of VSMCs.


Asunto(s)
Calcificación Fisiológica , Calcificación Vascular , Calcio/metabolismo , Células Cultivadas , Humanos , Miocitos del Músculo Liso , Especies Reactivas de Oxígeno/metabolismo , Intercambiador 1 de Sodio-Hidrógeno , Calcificación Vascular/metabolismo , Vasopresinas/metabolismo
15.
Heart Fail Rev ; 27(6): 1973-1990, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35179683

RESUMEN

This review summarizes and describes the current evidence addressing how sodium-glucose cotransporter 2 (SGLT2) inhibitors alter the function of sodium-hydrogen exchanger 1 (NHE-1), in association with their protective effects against adverse cardiovascular events. In the heart, SGLT2 inhibitors modulate the function of NHE-1 (either by direct inhibition or indirect attenuation of protein expression), which promotes cardiac contraction and an enhanced energy supply, in association with improved mitochondrial function, reduced inflammation/oxidative/endoplasmic reticulum stress, and attenuated fibrosis and apoptotic/autophagic cell death. The vasodilating effect of SGLT2 inhibitors has also been proposed due to NHE-1 inhibition. Moreover, platelet-expressed NHE-1 might serve as a target for SGLT2 inhibitors, since these drugs and selective NHE-1 inhibitors produce comparable activity against adenosine diphosphate-stimulated platelet activation. Overall, it is promising that the modulation of the functions of NHE-1 on the heart, blood vessels, and platelets may act as a contributing pathway for the cardiovascular benefits of SGLT2 inhibitors in diabetes and heart failure.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adenosina Difosfato , Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Glucosa , Glucósidos/farmacología , Humanos , Sodio/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Intercambiador 1 de Sodio-Hidrógeno
16.
Exp Cell Res ; 412(1): 113006, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34979106

RESUMEN

Breast cancer metastasis is the leading cause of cancer-related deaths. Hypoxia in the tumor mass is believed to trigger cell migration, which is involved in a crucial process of breast cancer metastasis. However, the molecular mechanisms underlying aggressive behavior under hypoxic conditions have not been fully elucidated. Here, we demonstrate the significant motility of MDA-MB-231 cells cultured under hypoxic conditions compared to that of cells cultured under normoxic conditions. MDA-MB-231 cells under hypoxic conditions showed a significant increase in Na+/H+ exchanger isoform 1 (NHE1) expression level, which was observed to co-locate in lamellipodia formation. Inhibition of NHE1 significantly suppressed the intracellular pH and the expression of mesenchymal markers, thereby blocking the high migration activity in hypoxia. Moreover, treatment with ciglitazone, a potent and selective peroxisome proliferator-activated receptor γ (PPARγ) agonist, modulated hypoxia-enhanced motion in cells via the repression of NHE1. These findings highlight that NHE1 is required for migratory activity through the enhancement of epithelial-mesenchymal transition (EMT) in MDA-MB-231 cells under hypoxic conditions, and we propose new drug repurposing strategies targeting hypoxia based on NHE1 suppression by effective usage of PPARγ agonists.


Asunto(s)
Neoplasias de la Mama/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Femenino , Humanos , Modelos Biológicos , PPAR gamma/agonistas , Transducción de Señal/efectos de los fármacos , Tiazolidinedionas/farmacología , Hipoxia Tumoral/fisiología , Microambiente Tumoral/fisiología
17.
Mol Cell Biochem ; 477(4): 1207-1216, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35084672

RESUMEN

In breast cancer, it is the resulting metastasis that is the primary cause of fatality. pH regulatory proteins and the tumor microenvironment play an important role in metastasis of cancer cells and acid-extruding proteins are critical in this process. There are several types of breast cancer and triple-negative breast cancer tends to be more metastatic and invasive and is itself is composed of several types. MDA-MB-468 are a triple-negative breast cancer cell line and are classified as basal-like and basal tumors account for up to 15% of breast cancers. Here we examined the effect of removal of the acid-extruding protein, the Na+/H+ exchanger isoform one, from MDA-MB-468 cells. NHE1 was deleted from these cells using the CRISPR/Cas9 system. Western blotting and measurement of activity confirmed the absence of the protein. In wounding/cell migration experiments, deletion of NHE1 reduced the rate of cell migration in the presence of low- or high-serum concentrations. Anchorage-dependent colony formation was also greatly reduced by deletion of the NHE1 protein. Cell proliferation was not affected by knockout of NHE1. The results demonstrate that NHE1 has an important role in migration and invasion of basal-like triple-negative breast cancer cells.


Asunto(s)
Movimiento Celular , Proteínas de Neoplasias/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Femenino , Humanos , Células MCF-7 , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
18.
Rev Physiol Biochem Pharmacol ; 182: 85-110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-32776252

RESUMEN

Prostate cancer is the fourth most commonly diagnosed cancer, and although it is often a slow-growing malignancy, it is the second leading cause of cancer-associated deaths in men and the first in Europe and North America. In many forms of cancer, when the disease is a solid tumor confined to one organ, it is often readily treated. However, when the cancer becomes an invasive metastatic carcinoma, it is more often fatal. It is therefore of great interest to identify mechanisms that contribute to the invasion of cells to identify possible targets for therapy. During prostate cancer progression, the epithelial cells undergo epithelial-mesenchymal transition that is characterized by morphological changes, a loss of cell-cell adhesion, and invasiveness. Dysregulation of pH has emerged as a hallmark of cancer with a reversed pH gradient and with a constitutively increased intracellular pH that is elevated above the extracellular pH. This phenomenon has been referred to as "a perfect storm" for cancer progression. Acid-extruding ion transporters include the Na+/H+ exchanger NHE1 (SLC9A1), the Na+HCO3- cotransporter NBCn1 (SLC4A7), anion exchangers, vacuolar-type adenosine triphosphatases, and the lactate-H+ cotransporters of the monocarboxylate family (MCT1 and MCT4 (SLC16A1 and 3)). Additionally, carbonic anhydrases contribute to acid transport. Of these, several have been shown to be upregulated in different human cancers including the NBCn1, MCTs, and NHE1. Here the role and contribution of acid-extruding transporters in prostate cancer growth and metastasis were examined. These proteins make significant contributions to prostate cancer progression.


Asunto(s)
Carcinoma , Neoplasias de la Próstata , Carcinoma/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Masculino , Simportadores de Sodio-Bicarbonato/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-34626804

RESUMEN

Aquatic hypoxia is both a naturally-occurring and anthropogenically-generated event. Fish species have evolved different adaptations to cope with hypoxic environments, including gill modifications and air breathing. However, little is known about the molecular mechanisms involved in the respiration of embryonic and larval fishes during critical windows of development. We assessed expression of the genes hif-1α, fih-1, nhe1, epo, gr and il8 using the developing tropical gar as a piscine model during three developmental periods (fertilization to hatch, 1 to 6 days post hatch (dph) and 7 to 12 dph) when exposed to normoxia (~7.43 mg/L DO), hypoxia (~2.5 mg/L DO) or hyperoxia (~9.15 mg/L DO). All genes had higher expression when fish were exposed to either hypoxia or hyperoxia during the first two developmental periods. However, fish continuously exposed to hypoxia had increased expression of the six genes by hatching and 6 dph, and by 12 dph only hif-1α still had increased expression. The middle developmental period was the most hypoxia-sensitive, coinciding with several changes in physiology and morphology. The oldest larvae were the most resilient to gene expression change, with little variation in expression of the six genes compared. This study is the first to relate the molecular response of an air-breathing fish to oxygen availability to developmental critical windows and contributes to our understanding of some molecular responses of developing fish to changes in oxygen availability.


Asunto(s)
Enfermedades de los Peces/genética , Peces/genética , Hiperoxia/veterinaria , Hipoxia/veterinaria , Animales , Acuicultura , Eritropoyetina/genética , Femenino , Enfermedades de los Peces/fisiopatología , Proteínas de Peces/genética , Peces/crecimiento & desarrollo , Peces/fisiología , Regulación del Desarrollo de la Expresión Génica , Hiperoxia/genética , Hiperoxia/fisiopatología , Hipoxia/genética , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Interleucina-8/genética , Masculino , Receptores de Glucocorticoides/genética , Fenómenos Fisiológicos Respiratorios , Intercambiador 1 de Sodio-Hidrógeno/genética
20.
Cancer Med ; 11(1): 183-193, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34796694

RESUMEN

Triple negative breast cancers (TNBCs) are very aggressive and have a poor prognosis due to lack of efficacious therapies. The only effective treatment is chemotherapy that however is frequently hindered by the occurrence of drug resistance. We approached this problem in vitro and in vivo on a triple negative and a hormone sensitive breast cancer cell lines: 4T1 and TS/A. A main defense mechanism of tumors is the extrusion of intracellular protons derived from the metabolic shift to glycolysis, and necessary to maintain an intracellular pH compatible with life. The resulting acidic extracellular milieu bursts the malignant behavior of tumors and impairs chemotherapy. Therefore, we investigated the efficacy of combined therapies that associate cisplatin (Cis) with proton exchanger inhibitors, such as esomeprazole (ESO) and 5-(N-ethyl-N-isopropyl)amiloride (EIPA). Our results demonstrate that in the 4T1 triple negative model the combined therapy Cis plus EIPA is significantly more effective than the other treatments. Instead, in the TS/A tumor the best therapeutic result is obtained with ESO alone. Remarkably, in both 4T1 and TS/A tumors these treatments correlate with increase of CD8+  T lymphocytes and dendritic cells, and a dramatic reduction of M2 macrophages and other suppressor myeloid cells (MDSC) in the tumor infiltrates.


Asunto(s)
Amilorida/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cisplatino/uso terapéutico , Esomeprazol/uso terapéutico , Inhibidores de la Bomba de Protones/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Amilorida/uso terapéutico , Animales , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ratones Endogámicos BALB C , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Macrófagos Asociados a Tumores/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA