Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.089
Filtrar
1.
Fish Shellfish Immunol ; 149: 109612, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705548

RESUMEN

SH2 domain containing inositol polyphosphate5-phosphatase-2 (SHIP2) is a member of the 5-phosphatase family, acting as a vital negative regulator of immune response in vertebrates. In the present study, a SHIP2 homologue (designed as CgSHIP2) was identified from Pacific oyster, Crassostrea gigas. There was a SH2 domain, an IPPc domain and a SAM domain in CgSHIP2. The mRNA transcripts of CgSHIP2 were widely expressed in all the tested tissues with the highest expression in haemolymph. The mRNA expressions of CgSHIP2 in haemocytes increased significantly at 6, 12, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgSHIP2 protein were mainly located in cytoplasm of haemocytes. After the expression of CgSHIP2 was inhibited by RNA interference, the mRNA transcripts of interleukin 17s (CgIL-17-1, CgIL-17-2, CgIL-17-3 and CgIL-17-6) in the haemocytes increased significantly at 24 h after V. splendidus stimulation, which were 8.15-fold (p < 0.001), 3.44-fold (p < 0.05), 2.15-fold (p < 0.01) and 4.63-fold (p < 0.05) compared with that in NC-RNAi group, respectively. Obvious branchial swelling and cilium shedding in gills were observed in CgSHIP2-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgSHIP2 played an important role in controlling inflammatory response induced by bacteria in oysters.


Asunto(s)
Crassostrea , Regulación de la Expresión Génica , ARN Mensajero , Vibrio , Animales , Crassostrea/inmunología , Crassostrea/genética , Vibrio/fisiología , Regulación de la Expresión Génica/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Inmunidad Innata/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-17/metabolismo , Filogenia , Secuencia de Aminoácidos , Perfilación de la Expresión Génica/veterinaria , Alineación de Secuencia/veterinaria , Hemocitos/inmunología
2.
PeerJ ; 12: e17374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756445

RESUMEN

Background: An increased level of interleukin-17A and interleukin-18 in the serum and intestinal mucosa of celiac disease patients reflecting the severity of villous atrophy and inflammation was documented. Thus, the objective of this study was to evaluate the concentrations of salivary-17A, interleukin-1 beta, and interleukin-18 in patients with celiac disease who are on a gluten-free diet, both with and without periodontitis, and to compare these levels with those in healthy individuals. Methods: The study involved 23 participants with serologically confirmed celiac disease (CD) and 23 control subjects. The CD patients had been following a gluten-free diet (GFD) for a minimum of 1 year and had no other autoimmune disorders. The research involved collecting demographic data, conducting periodontal examinations, gathering unstimulated whole saliva, and performing enzyme-linked immunosorbent assays to measure salivary interleukin-17A, interleukin-1 beta, and interleukin-18 levels. Spearman's correlation analysis was utilized to explore the relationships between CD markers in patients on a GFD and their periodontal clinical findings. Results: The periodontal findings indicated significantly lower values in celiac disease patients adhering to a gluten-free diet compared to control subjects (p = 0.001). No significant differences were found in salivary IL-17A, IL-18, and IL-1B levels between celiac disease patients and control subjects. Nevertheless, the levels of all interleukins were elevated in periodontitis patients in both the celiac and control groups. The IL-1 Beta level was significantly higher in periodontitis patients compared to non-periodontitis patients in the control group (p = 0.035). Significant negative correlations were observed between serum IgA levels and plaque index (r = -0.460, p = 0.010), as well as gingival index (r = -0.396, p = 0.030) in CD patients on a gluten-free diet. Conclusion: Celiac disease patients on gluten-free diet exhibited better periodontal health compared to control subjects. However, increased levels of salivary IL-17A, IL-18 and IL-1B levels were associated with periodontitis. Additionally, serum IgA level was significantly inversely associated with periodontitis clinical manifestations and with salivary inflammatory mediators in CD patients on GFD.


Asunto(s)
Enfermedad Celíaca , Dieta Sin Gluten , Interleucina-17 , Interleucina-18 , Periodontitis , Saliva , Humanos , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/sangre , Enfermedad Celíaca/diagnóstico , Interleucina-17/sangre , Interleucina-17/metabolismo , Interleucina-17/análisis , Masculino , Femenino , Interleucina-18/sangre , Interleucina-18/análisis , Interleucina-18/metabolismo , Saliva/química , Saliva/inmunología , Adulto , Periodontitis/inmunología , Periodontitis/metabolismo , Periodontitis/sangre , Interleucina-1beta/sangre , Interleucina-1beta/análisis , Interleucina-1beta/metabolismo , Estudios de Casos y Controles , Persona de Mediana Edad , Biomarcadores/sangre , Biomarcadores/análisis , Adulto Joven
3.
PeerJ ; 12: e17268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708351

RESUMEN

Objective: To study the efficacy of PADTM Plus-based photoactivated disinfection (PAD) for treating denture stomatitis (DS) in diabetic rats by establishing a diabetic rat DS model. Methods: The diabetic rat DS model was developed by randomly selecting 2-month-old male Sprague-Dawley rats and dividing them into four groups. The palate and denture surfaces of rats in the PAD groups were incubated with 1 mg/mL toluidine blue O for 1 min each, followed by a 1-min exposure to 750-mW light-emitting diode light. The PAD-1 group received one radiation treatment, and the PAD-2 group received three radiation treatments over 5 days with a 1-day interval. The nystatin (NYS) group received treatment for 5 days with a suspension of NYS of 100,000 IU. The infection group did not receive any treatment. In each group, assessments included an inflammation score of the palate, tests for fungal load, histological evaluation, and immunohistochemical detection of interleukin-17 (IL-17) and tumor necrosis factor (TNF-α) conducted 1 and 7 days following the conclusion of treatment. Results: One day after treatment, the fungal load on the palate and dentures, as well as the mean optical density values of IL-17 and TNF-α, were found to be greater in the infection group than in the other three treatment groups (P < 0.05). On the 7th day after treatment, these values were significantly higher in the infection group than in the PAD-2 and NYS groups (P < 0.05). Importantly, there were no differences between the infection and PAD-1 groups nor between the PAD-2 and NYS groups (P > 0.05). Conclusions: PAD effectively reduced the fungal load and the expressions of IL-17 and TNF-α in the palate and denture of diabetic DS rats. The efficacy of multiple-light treatments was superior to that of single-light treatments and similar to that of NYS.


Asunto(s)
Diabetes Mellitus Experimental , Desinfección , Ratas Sprague-Dawley , Estomatitis Subprotética , Animales , Masculino , Ratas , Estomatitis Subprotética/microbiología , Estomatitis Subprotética/radioterapia , Estomatitis Subprotética/tratamiento farmacológico , Desinfección/métodos , Cloruro de Tolonio/farmacología , Cloruro de Tolonio/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-17/metabolismo , Modelos Animales de Enfermedad
4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 373-377, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38710521

RESUMEN

Patients with Hashimoto's thyroiditis had increased numbers of Th17 cells in serum and thyroid tissue, significantly elevated levels of interleukin 17 (IL-17), and an imbalance in the ratio of Th17 cells to regulatory T cells (Tregs). The reduced Tregs' ratio leads to a reduction in immunosuppressive function within the thyroid gland, while Th17 cells are involved in the development of HT by regulating the expression of pro-inflammatory cytokines in the thyroid gland and mediating thyroid tissue fibrosis through the secretion of IL-17.


Asunto(s)
Enfermedad de Hashimoto , Interleucina-17 , Linfocitos T Reguladores , Células Th17 , Enfermedad de Hashimoto/inmunología , Enfermedad de Hashimoto/sangre , Enfermedad de Hashimoto/metabolismo , Humanos , Interleucina-17/metabolismo , Interleucina-17/sangre , Células Th17/inmunología , Células Th17/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Glándula Tiroides/inmunología , Glándula Tiroides/metabolismo , Animales
5.
Front Immunol ; 15: 1375654, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698841

RESUMEN

Background: Inflammatory bowel disease (IBD) is often associated with complex extraintestinal manifestations. The incidence of nonalcoholic fatty liver disease (NAFLD) in IBD populations is increasing yearly. However, the mechanism of interaction between NAFLD and IBD is not clear. Consequently, this study aimed to explore the common genetic characteristics of IBD and NAFLD and identify potential therapeutic targets. Materials and methods: Gene chip datasets for IBD and NAFLD were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was performed to identify modules in those datasets related to IBD and NAFLD. ClueGO was used for biological analysis of the shared genes between IBD and NAFLD. Based on the Human MicroRNA Disease Database (HMDD), microRNAs (miRNAs) common to NAFLD and IBD were obtained. Potential target genes for the miRNAs were predicted using the miRTarbase, miRDB, and TargetScan databases. Two-sample Mendelian randomization (MR) and two-way MR were used to explore the causal relationship between Interleukin-17 (IL-17) and the risk of IBD and NAFLD using data from GWAS retrieved from an open database. Results: Through WGCNA, gene modules of interest were identified. GO enrichment analysis using ClueGO suggested that the abnormal secretion of chemokines may be a common pathophysiological feature of IBD and NAFLD, and that the IL-17-related pathway may be a common key pathway for the pathological changes that occur in IBD and NAFLD. The core differentially expressed genes (DEGs) in IBD and NAFLD were identified and included COL1A1, LUM, CCL22, CCL2, THBS2, COL1A2, MMP9, and CXCL8. Another cohort was used for validation. Finally, analysis of the miRNAs identified potential therapeutic targets. The MR results suggested that although there was no causal relationship between IBD and NAFLD, there were causal relationships between IL-17 and IBD and NAFLD. Conclusion: We established a comorbid model to explain the potential mechanism of IBD with NAFLD and identified the chemokine-related pathway mediated by cytokine IL-17 as the core pathway in IBD with NAFLD, in which miRNA also plays a role and thus provides potential therapeutic targets.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Análisis de la Aleatorización Mendeliana , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Redes Reguladoras de Genes , MicroARNs/genética , Interleucina-17/genética , Interleucina-17/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Perfilación de la Expresión Génica , Polimorfismo de Nucleótido Simple
6.
J Immunol Res ; 2024: 5582151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690552

RESUMEN

Unlike T cells in other tissues, uterine T cells must balance strong immune defense against pathogens with tolerance to semiallogeneic fetus. Our previous study fully elucidated the characteristics of γδT cells in nonpregnant uterus and the mechanism modulated by estrogen. However, comprehensive knowledge of the immunological properties of αßT (including CD4+T cells and CD8+T) cells in nonpregnancy uterus has not been acquired. In this study, we fully compared the immunological properties of αßT cells between uterus and blood using mouse and human sample. It showed that most of CD4+T cells and CD8+T cells in murine uterus and human endometrium were tissue resident memory T cells which highly expressed tissue residence markers CD69 and/or CD103. In addition, both CD4+T cells and CD8+T cells in uterus highly expressed inhibitory molecular PD-1 and cytokine IFN-γ. Uterine CD4+T cells highly expressed IL-17 and modulated by transcription factor pSTAT3. Moreover, we compared the similarities and differences between human and murine uterine T cell phenotype. Together, uterine CD4+T cells and CD8+ cells exhibited a unique mixed signature of T cell dysfunction, activation, and effector function which enabled them to balance strong immune defense against pathogens with tolerance to fetus. Our study fully elucidated the unique immunologic properties of uterine CD4+T and CD8+T cells and provided a base for further investigation of functions.


Asunto(s)
Antígenos CD , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Útero , Femenino , Linfocitos T CD8-positivos/inmunología , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos/inmunología , Útero/inmunología , Antígenos CD/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Cadenas alfa de Integrinas/metabolismo , Células T de Memoria/inmunología , Factor de Transcripción STAT3/metabolismo , Interferón gamma/metabolismo , Lectinas Tipo C/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Interleucina-17/metabolismo , Activación de Linfocitos/inmunología , Memoria Inmunológica
7.
Nat Commun ; 15(1): 3756, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704381

RESUMEN

The human pathogen Neisseria gonorrhoeae ascends into the upper female reproductive tract to cause damaging inflammation within the Fallopian tubes and pelvic inflammatory disease (PID), increasing the risk of infertility and ectopic pregnancy. The loss of ciliated cells from the epithelium is thought to be both a consequence of inflammation and a cause of adverse sequelae. However, the links between infection, inflammation, and ciliated cell extrusion remain unresolved. With the use of ex vivo cultures of human Fallopian tube paired with RNA sequencing we defined the tissue response to gonococcal challenge, identifying cytokine, chemokine, cell adhesion, and apoptosis related transcripts not previously recognized as potentiators of gonococcal PID. Unexpectedly, IL-17C was one of the most highly induced genes. Yet, this cytokine has no previous association with gonococcal infection nor pelvic inflammatory disease and thus it was selected for further characterization. We show that human Fallopian tubes express the IL-17C receptor on the epithelial surface and that treatment with purified IL-17C induces pro-inflammatory cytokine secretion in addition to sloughing of the epithelium and generalized tissue damage. These results demonstrate a previously unrecognized but critical role of IL-17C in the damaging inflammation induced by gonococci in a human explant model of PID.


Asunto(s)
Trompas Uterinas , Gonorrea , Inflamación , Interleucina-17 , Neisseria gonorrhoeae , Humanos , Femenino , Trompas Uterinas/microbiología , Trompas Uterinas/patología , Trompas Uterinas/inmunología , Neisseria gonorrhoeae/inmunología , Neisseria gonorrhoeae/patogenicidad , Interleucina-17/metabolismo , Gonorrea/inmunología , Gonorrea/microbiología , Gonorrea/patología , Inflamación/patología , Inflamación/microbiología , Enfermedad Inflamatoria Pélvica/microbiología , Enfermedad Inflamatoria Pélvica/patología , Enfermedad Inflamatoria Pélvica/inmunología , Citocinas/metabolismo , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/genética , Adulto , Epitelio/patología , Epitelio/microbiología
8.
BMC Oral Health ; 24(1): 530, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704553

RESUMEN

OBJECTIVE: Explore the therapeutic mechanism of Coptidis Rhizome (CR) in periodontitis using network pharmacology, and validate it through molecular docking and in vitro experiments. METHODS: Screened potential active components and target genes of CR from TCMSP and Swiss databases. Identified periodontitis-related target genes using GeneCards. Found common target genes using Venny. Conducted GO and KEGG pathway analysis. Performed molecular docking and in vitro experiments using Berberine, the main active component of CR, on lymphocytes from healthy and periodontitis patients. Assessed effects on inflammatory factors using CCK-8, flow cytometry, and ELISA. RESULTS: Fourteen active components and 291 targets of CR were identified. 30 intersecting target genes with periodontitis were found. GO and KEGG analysis revealed oxidative stress response and IL-17 signaling pathway as key mechanisms. Molecular docking showed strong binding of Berberine with ALOX5, AKT1, NOS2, and TNF. In vitro experiments have demonstrated the ability of berberine to inhibit the expression of Th17 + and other immune related cells in LPS stimulated lymphocytes, and reduce the secretion of IL-6, IL-8, and IL-17. CONCLUSION: CR treats periodontitis through a multi-component, multi-target, and multi-pathway approach. Berberine, its key component, acts through the IL-17 signaling pathway to exert anti-inflammatory effects.


Asunto(s)
Berberina , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Periodontitis , Humanos , Periodontitis/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Berberina/farmacología , Berberina/uso terapéutico , Coptis chinensis , Rizoma , Interleucina-17/metabolismo , Transducción de Señal/efectos de los fármacos , Técnicas In Vitro , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo
9.
Front Immunol ; 15: 1378040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698866

RESUMEN

Background: Interleukin-17-producing CD4 T cells contribute to the control of Mycobacterium tuberculosis (Mtb) infection in humans; whether infection with human immunodeficiency virus (HIV) disproportionately affects distinct Th17-cell subsets that respond to Mtb is incompletely defined. Methods: We performed high-definition characterization of circulating Mtb-specific Th17 cells by spectral flow cytometry in people with latent TB and treated HIV (HIV-ART). We also measured kynurenine pathway activity by liquid chromatography-mass spectrometry (LC/MS) on plasma and tested the hypothesis that tryptophan catabolism influences Th17-cell frequencies in this context. Results: We identified two subsets of Th17 cells: subset 1 defined as CD4+Vα7.2-CD161+CD26+and subset 2 defined as CD4+Vα7.2-CCR6+CXCR3-cells of which subset 1 was significantly reduced in latent tuberculosis infection (LTBI) with HIV-ART, yet Mtb-responsive IL-17-producing CD4 T cells were preserved; we found that IL-17-producing CD4 T cells dominate the response to Mtb antigen but not cytomegalovirus (CMV) antigen or staphylococcal enterotoxin B (SEB), and tryptophan catabolism negatively correlates with both subset 1 and subset 2 Th17-cell frequencies. Conclusions: We found differential effects of ART-suppressed HIV on distinct subsets of Th17 cells, that IL-17-producing CD4 T cells dominate responses to Mtb but not CMV antigen or SEB, and that kynurenine pathway activity is associated with decreases of circulating Th17 cells that may contribute to tuberculosis immunity.


Asunto(s)
Antígenos Bacterianos , Infecciones por VIH , Interleucina-17 , Tuberculosis Latente , Mycobacterium tuberculosis , Células Th17 , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antígenos Bacterianos/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Inmunofenotipificación , Interleucina-17/metabolismo , Interleucina-17/inmunología , Quinurenina/metabolismo , Tuberculosis Latente/inmunología , Tuberculosis Latente/microbiología , Mycobacterium tuberculosis/inmunología , Fenotipo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Triptófano/metabolismo
10.
Sci Rep ; 14(1): 10340, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710764

RESUMEN

This study aims to evaluate the role of trefoil factor 3 (TFF3) peptides in type 2 diabetes mellitus (T2DM) from an inflammatory perspective. The focus was on exploring how TFF3 affects the function of T cells. TFF3 overexpression model was constructed using lentivirus in Jurkat cell lines. We evaluated the impact of TFF3 on the proliferation, apoptosis, and IL-17A levels of Jurkat cells cultured in high glucose. The T2DM model was induced in TFF3 knockout (KO) mice through streptozotocin combined with high-fat diet. The measurements included glucose tolerance, insulin tolerance, inflammation markers, Th17 cell proportion, and pancreatic pathological changes. The T2DM modeling led to splenomegaly in mice, and increased expression of TFF3 in their spleens. Overexpression of TFF3 increased the proportion of IL-17+ T cells and the levels of Th17-related cytokines in Jurkat cells. There was no difference in body weight and blood glucose levels between wild-type and TFF3 KO mice. However, T2DM mice lacking the TFF3 gene showed improved glucose utilization, ameliorated pancreatic pathology, decreased inflammation levels, and reduced Th17 cell ratio. TFF3 may be involved in the chronic inflammatory immune response in T2DM. Its mechanism may be related to the regulation of the RORγt/IL-17 signaling pathway and its impact on T cell proliferation and apoptosis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones Noqueados , Células Th17 , Factor Trefoil-3 , Células Th17/inmunología , Células Th17/metabolismo , Animales , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/inmunología , Ratones , Factor Trefoil-3/metabolismo , Factor Trefoil-3/genética , Células Jurkat , Interleucina-17/metabolismo , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/metabolismo , Masculino , Proliferación Celular , Apoptosis , Dieta Alta en Grasa/efectos adversos
11.
Elife ; 132024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722677

RESUMEN

Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.


Asunto(s)
Diferenciación Celular , Regulación hacia Abajo , MicroARNs , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Humanos , Células Th17/inmunología , Células Th17/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patología , Enfisema/genética , Enfisema/metabolismo , Ratones Endogámicos C57BL , Pulmón/patología , Pulmón/metabolismo , Masculino , Interleucina-17/metabolismo , Interleucina-17/genética , Femenino
12.
Arch Dermatol Res ; 316(5): 176, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758283

RESUMEN

Psoriasis is a chronic immune mediated inflammatory skin disease with systemic manifestations. It has been reported that caloric restriction could improve severity of psoriasis patients. However, the mechanism of intermittent fasting effects on psoriasis has not been investigated. Caloric restriction is known to reduce the number of circulating inflammatory monocytes in a CCL2-dependent manner. However, it is still unknown whether caloric restriction can improve psoriasis by regulating monocytes through CCL2. In this study, we used imiquimod (IMQ)-induced psoriasis-like mouse model to explore the effects and the mechanisms of intermittent fasting on psoriasis-like dermatitis. We found that intermittent fasting could significantly improve IMQ-induced psoriasis-like dermatitis, and reduce the number of γδT17 cells and IL-17 production in draining lymph nodes and psoriatic lesion via inhibiting proliferation and increasing death of γδT17 cells. Furthermore, intermittent fasting could significantly decrease monocytes in blood, and this was associated with decreased monocytes, macrophages and DC in psoriasis-like skin inflammation. Reduced monocytes in circulation and increased monocytes in BM of fasting IMQ-induced psoriasis-like mice is through reducing the production of CCL2 from BM to inhibit monocyte egress to the periphery. Our above data shads light on the mechanisms of intermittent fasting on psoriasis.


Asunto(s)
Quimiocina CCL2 , Modelos Animales de Enfermedad , Ayuno , Imiquimod , Monocitos , Psoriasis , Animales , Psoriasis/inmunología , Psoriasis/inducido químicamente , Psoriasis/patología , Monocitos/inmunología , Monocitos/metabolismo , Ratones , Ayuno/sangre , Quimiocina CCL2/metabolismo , Células Th17/inmunología , Interleucina-17/metabolismo , Piel/patología , Piel/inmunología , Humanos , Ratones Endogámicos C57BL , Masculino , Proliferación Celular , Restricción Calórica , Ayuno Intermitente
13.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731877

RESUMEN

Epstein-Barr virus (EBV) DNA is known to be shed upon reactivation of latent EBV. Based on our previous findings linking Toll-like receptor-9 (TLR9) to an EBV DNA-driven surge in IL-17A production, we aimed to examine the therapeutic potential of TLR9 inhibition in EBV DNA-exacerbated arthritis in a collagen-induced arthritis (CIA) mouse model. C57BL/6J mice were administered either collagen, EBV DNA + collagen, EBV DNA + collagen + TLR9 inhibitor, or only the TLR9 inhibitor. After 70 days, paw thicknesses, clinical scores, and gripping strength were recorded. Moreover, affected joints, footpads, and colons were histologically scored. Furthermore, the number of cells co-expressing IL-17A, IFN-γ, and FOXP3 in joint sections was determined by immunofluorescence assays. Significantly decreased paw thicknesses, clinical scores, and histological scores with a significantly increased gripping strength were observed in the group receiving EBV DNA + collagen + TLR9 inhibitor, compared to those receiving EBV DNA + collagen. Similarly, this group showed decreased IL-17A+ IFN-γ+, IL-17A+ FOXP3+, and IL-17A+ IFN-γ+ FOXP3+ foci counts in joints. We show that inhibiting TLR9 limits the exacerbation of arthritis induced by EBV DNA in a CIA mouse model, suggesting that TLR9 could be a potential therapeutic target for rheumatoid arthritis management in EBV-infected individuals.


Asunto(s)
Artritis Experimental , ADN Viral , Modelos Animales de Enfermedad , Herpesvirus Humano 4 , Ratones Endogámicos C57BL , Receptor Toll-Like 9 , Animales , Receptor Toll-Like 9/metabolismo , Ratones , Herpesvirus Humano 4/fisiología , Artritis Experimental/virología , Artritis Experimental/patología , Artritis Experimental/metabolismo , ADN Viral/genética , Interleucina-17/metabolismo , Masculino , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/virología
14.
Cytokine ; 179: 156611, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640559

RESUMEN

Candida species are a normal human flora in humans' digestive and reproductive systems, oral cavity, skin, and mucosal surfaces. This study aimed to detect the immunological role of Candida infection by using some immunological markers. The results of levels in serum showed high concentrations of IgA (56.20 ± 12 pg/ml,29.55 ± 4.5 pg/ml respectively) and IgG (12.05 ± 3.218 pg/ml, 3.836 ± 1.23 pg/ml respectively) in mice infected with C. albicans and mice treated with Cefoperazone and infected with Candida with significant differences (P value < 0.05). The results showed high serum levels of IL-17(191.5 ± 42.81 pg/ml) and TLR2(7.651 ± 1.5 pg/ml) in group mice infected with C. albicans compared with negative control and group mice treated with Cefoperazone. Also, high levels of IL-17 (91.33 ± 4.816 pg/ml) and TLR2 (2.630 ± 0.5 pg/ml) in group mice treated with Cefoperazone and infected with Candida compared with negative control and group mice treated with Cefoperazone (P value < 0.05). The results of antibodies and immunological markers in the intestine showed high levels of IgA and IgG in mice infected with C.albicans (55.7 ± 4.9 pg/ml, 18.19 ± 0.63 pg/ml respectively).Also,IgA and IgG in mice treated with Cefoperazone and infected with Candida were high level (43.04 ± 2.1 pg/ml, 2.927 ± 0.2 pg/ml respectively) in mice infected with C. albicans with significant differences (P value < 0.05). The results levels of IL-17 and TLR2 were increased in mice infected with C. albicans (191.5 ± 42.81 pg/ml, 7.651 ± 1.5 pg/ml respectively) and mice treated with Cefoperazone and infected with Candida (91.33 ± 4.816 pg/ml,2.630 ± 0.5 pg/ml respectively) with significant differences (P < 0.05). In conclusion, this study demonstrated that cefoperazone treatment and infection by Candida albicans changed the microbiome components in the gut and finally can change host immune responses. It was observed that elevated levels of the antibodies production (IgA and IgG) and immunological markers (IL-17, and TLR2) in serum and the gut.


Asunto(s)
Candida albicans , Candidiasis , Cefoperazona , Interleucina-17 , Receptor Toll-Like 2 , Animales , Candida albicans/inmunología , Candidiasis/inmunología , Candidiasis/tratamiento farmacológico , Ratones , Receptor Toll-Like 2/metabolismo , Interleucina-17/metabolismo , Interleucina-17/sangre , Inmunoglobulina G/sangre , Inmunoglobulina A/sangre , Masculino , Femenino , Ratones Endogámicos BALB C
15.
Biol Res ; 57(1): 18, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38671534

RESUMEN

BACKGROUND: Patients with liver cirrhosis may show minimal hepatic encephalopathy (MHE) with mild cognitive impairment and motor incoordination. Rats with chronic hyperammonemia reproduce these alterations. Motor incoordination in hyperammonemic rats is due to increased GABAergic neurotransmission in cerebellum, induced by neuroinflammation, which enhances TNFα-TNFR1-S1PR2-CCL2-BDNF-TrkB pathway activation. The initial events by which hyperammonemia triggers activation of this pathway remain unclear. MHE in cirrhotic patients is triggered by a shift in inflammation with increased IL-17. The aims of this work were: (1) assess if hyperammonemia increases IL-17 content and membrane expression of its receptor in cerebellum of hyperammonemic rats; (2) identify the cell types in which IL-17 receptor is expressed and IL-17 increases in hyperammonemia; (3) assess if blocking IL-17 signaling with anti-IL-17 ex-vivo reverses activation of glia and of the TNFα-TNFR1-S1PR2-CCL2-BDNF-TrkB pathway. RESULTS: IL-17 levels and membrane expression of the IL-17 receptor are increased in cerebellum of rats with hyperammonemia and MHE, leading to increased activation of IL-17 receptor in microglia, which triggers activation of STAT3 and NF-kB, increasing IL-17 and TNFα levels, respectively. TNFα released from microglia activates TNFR1 in Purkinje neurons, leading to activation of NF-kB and increased IL-17 and TNFα also in these cells. Enhanced TNFR1 activation also enhances activation of the TNFR1-S1PR2-CCL2-BDNF-TrkB pathway which mediates microglia and astrocytes activation. CONCLUSIONS: All these steps are triggered by enhanced activation of IL-17 receptor in microglia and are prevented by ex-vivo treatment with anti-IL-17. IL-17 and IL-17 receptor in microglia would be therapeutic targets to treat neurological impairment in patients with MHE.


Asunto(s)
Cerebelo , Hiperamonemia , Microglía , Ratas Wistar , Receptores de Interleucina-17 , Animales , Hiperamonemia/metabolismo , Microglía/metabolismo , Cerebelo/metabolismo , Masculino , Ratas , Receptores de Interleucina-17/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Interleucina-17/metabolismo , Encefalopatía Hepática/metabolismo , Transducción de Señal , Modelos Animales de Enfermedad
16.
Biomolecules ; 14(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38672413

RESUMEN

Individuals who are overweight or obese are at increased risk of developing prediabetes and type 2 diabetes, yet the direct molecular mechanisms that connect diabetes to obesity are not clear. Chronic, sustained inflammation is considered a strong risk factor in these interactions, directed in part by the short-lived gene expression programs encoding for cytokines and pro-inflammatory mediators. In this study, we show that triptolide administration in the C57BL/6 diet-induced obese mice at up to 10 µg/kg/day for 10 weeks attenuated the development of insulin resistance and diabetes, but not obesity, in these animals. Significant reductions in adipose tissue inflammation and improved insulin sensitivity were observed in the absence of changes in food intake, body weight, body composition, or energy expenditure. Analysis of the core cluster of biomarkers that drives pro-inflammatory responses in the metabolic tissues suggested TNF-α as a critical point that affected the co-development of inflammation and insulin resistance, but also pointed to the putatively protective roles of increased COX-2 and IL-17A signaling in the mediation of these pathophysiological states. Our results show that reduction of diet-induced inflammation confers partial protection against insulin resistance, but not obesity, and suggest the possibility of achieving overweight phenotypes that are accompanied by minimal insulin resistance if inflammation is controlled.


Asunto(s)
Diterpenos , Compuestos Epoxi , Resistencia a la Insulina , Ratones Endogámicos C57BL , Obesidad , Fenantrenos , Animales , Compuestos Epoxi/farmacología , Compuestos Epoxi/administración & dosificación , Diterpenos/farmacología , Diterpenos/administración & dosificación , Fenantrenos/farmacología , Fenantrenos/administración & dosificación , Obesidad/metabolismo , Obesidad/inmunología , Ratones , Masculino , Inflamación/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Interleucina-17/metabolismo , Interleucina-17/genética , Dieta Alta en Grasa/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/inmunología , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Metabolismo Energético/efectos de los fármacos
17.
Immun Inflamm Dis ; 12(4): e1243, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577988

RESUMEN

OBJECTIVE: To explore the role of interleukin (IL)-17 in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) and to investigate its possible mechanism on pulmonary artery smooth muscle cells (PASMCs). METHODS: Enzyme-linked immunosorbent assay (ELISA) were used to compare levels of serum IL-17 in patients with CTD-PAH and healthy controls (HCs). After treatment for 3 months, the serum IL-17 levels were tested in CTD-PAH. ELISA and immunohistochemistry were used to compare levels of serum IL-17 and numbers of pulmonary artery IL-17+ cells, respectively, in a rat model of monocrotaline-induced PAH and untreated rats. Proliferation, migration, and inflammatory factors expression of PASMCs were assessed after stimulation with different concentrations of IL-17 for various time periods. Proteins in the mitogen-activated protein kinase (MAPK) pathway were examined by western blot. RESULTS: Levels of IL-17 were upregulated in patients with CTD-PAH compared to HCs. After 3 months of treatment, serum IL-17 levels were downregulated with pulmonary artery pressure amelioration. Moreover, serum IL-17 levels and numbers of IL-17+ cells infiltrating lung arterioles were increased in PAH model rats. IL-17 could dose- and time-dependently promote proliferation and migration of PASMCs as well as time-dependently induce IL-6 and intercellular cell adhesion molecule-1 (ICAM-1) expression. The levels of MKK6 increased after IL-17 treatment. Inhibition of MAPK decreased proliferation of PASMCs. CONCLUSION: Levels of IL-17 may increase in CTD-PAH, and IL-17 promotes proliferation, migration, and secretion of IL-6 and ICAM in PASMCs, respectively, which likely involves the p-38 MAPK pathway.


Asunto(s)
Interleucina-17 , Miocitos del Músculo Liso , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratas , Proliferación Celular , Interleucina-17/metabolismo , Interleucina-17/farmacología , Interleucina-6/metabolismo , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/metabolismo
18.
J Transl Med ; 22(1): 328, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566145

RESUMEN

BACKGROUND: Psoriasis is a chronic immune-mediated skin condition. Although biologic treatments are effective in controlling psoriasis, some patients do not respond or lose response to these therapies. Thus, new strategies for psoriasis treatment are still urgently needed. Double-negative T cells (DNT) play a significant immunoregulatory role in autoimmune diseases. In this study, we aimed to evaluate the protective effect of DNT in psoriasis and explore the underlying mechanism. METHODS: We conducted a single adoptive transfer of DNT into an imiquimod (IMQ)-induced psoriasis mouse model through tail vein injection. The skin inflammation and IL-17A producing γδ T cells were evaluated. RESULTS: DNT administration significantly reduced the inflammatory response in mouse skin, characterized by decreased skin folds, scales, and red patches. After DNT treatment, the secretion of IL-17A by RORc+ γδlow T cells in the skin was selectively suppressed, resulting in an amelioration of skin inflammation. Transcriptomic data suggested heightened expression of NKG2D ligands in γδlow T cells within the mouse model of psoriasis induced by IMQ. When blocking the NKG2D ligand and NKG2D (expressed by DNT) interaction, the cytotoxic efficacy of DNT against RORc+IL17A+ γδlow T cells was attenuated. Using Ccr5-/- DNT for treatment yielded evidence that DNT migrates into inflamed skin tissue and fails to protect IMQ-induced skin lesions. CONCLUSIONS: DNT could migrate to inflamed skin tissue through CCR5, selectively inhibit IL-17-producing γδlow T cells and finally ameliorate mouse psoriasis. Our study provides feasibility for using immune cell therapy for the prevention and treatment of psoriasis in the clinic.


Asunto(s)
Interleucina-17 , Psoriasis , Humanos , Ratones , Animales , Interleucina-17/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Psoriasis/terapia , Piel/patología , Imiquimod/efectos adversos , Imiquimod/metabolismo , Inflamación/patología , Linfocitos T/metabolismo , Modelos Animales de Enfermedad
19.
Oncol Res ; 32(4): 625-641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560562

RESUMEN

The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer (NSCLC). Although researchers have disclosed that interleukin 17 (IL-17) can increase matrix metalloproteinases (MMPs) induction causing NSCLC cell metastasis, the underlying mechanism remains unclear. In the study, we found that IL-17 receptor A (IL-17RA), p300, p-STAT3, Ack-STAT3, and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17. p300, STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3, Ack-STAT3 and MMP19 level as well as the cell migration and invasion. Mechanism investigation revealed that STAT3 and p300 bound to the same region (-544 to -389 nt) of MMP19 promoter, and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity, p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17. Meanwhile, p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact, synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion. Besides, the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300, STAT3 or MMP19 gene plus IL-17 treatment, the nodule number, and MMP19, Ack-STAT3, or p-STAT3 production in the lung metastatic nodules were all alleviated. Collectively, these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation, which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Interleucina-17/genética , Interleucina-17/metabolismo , Fosforilación , Neoplasias Pulmonares/patología , Acetilación , Ratones Desnudos , Transcripción Genética , Movimiento Celular/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
20.
J Med Chem ; 67(8): 6456-6494, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38574366

RESUMEN

Dysregulation of IL17A drives numerous inflammatory and autoimmune disorders with inhibition of IL17A using antibodies proven as an effective treatment. Oral anti-IL17 therapies are an attractive alternative option, and several preclinical small molecule IL17 inhibitors have previously been described. Herein, we report the discovery of a novel class of small molecule IL17A inhibitors, identified via a DNA-encoded chemical library screen, and their subsequent optimization to provide in vivo efficacious inhibitors. These new protein-protein interaction (PPI) inhibitors bind in a previously undescribed mode in the IL17A protein with two copies binding symmetrically to the central cavities of the IL17A homodimer.


Asunto(s)
ADN , Descubrimiento de Drogas , Interleucina-17 , Bibliotecas de Moléculas Pequeñas , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , ADN/metabolismo , ADN/química , Humanos , Animales , Relación Estructura-Actividad , Unión Proteica , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA