Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Egypt J Immunol ; 31(2): 1-9, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38615199

RESUMEN

T helper 17 (Th17) cells have been reported to be the most powerful factor in autoimmune disorder pathogenesis, which points to the Th17 master cytokine, interleukin (IL)-17A, as the crucial mediator. We aimed to determine the impact of IL-17A polymorphism in the -197 G/A promoter region on level of IL-17 and intensity of rheumatoid arthritis (RA) disease symptoms. This case-control study was conducted at the Department of Clinical Rheumatology of Aswan university Hospital and included 35 people suffering RA and 30 volunteer controls, matched for age and sex. Rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP) antibodies, erythrocyte sedimentation rate (ESR), serum IL-17, and C-reactive protein (CRP) were measured in the RA patient group. Restriction fragment length polymorphism (RFLP) was conducted by polymerase chain reaction (PCR) amplicon obtained by IL-17A -197 G /A primers. Of the 35 RA patients, RF was positive in 33 (94.29%) and anti-CCP antibodies in 25 (71.43%), CRP in 31 (88.57%). Of the 35 RA patients, 5 (14.29%) patients carried the G/G genotype, 18 (51.43%) G/A and 12 (34.29%) A/A. IL-17 serum level was significantly greater in the more active RA (DAS28 >5.1) group than the less active (DAS28 ≤5.1) group. Of the RA patients carrying wild type G/G genotype, 60% had more active disease (DAS 28> 5.1), as compared to those with lower activity (DAS 28 ≤5.1), 40% carried the wild type G/G genotype. In conclusion, the study findings imply that IL-17A gene polymorphism is connected to RA clinical severity rather than with RA susceptibility.


Asunto(s)
Artritis Reumatoide , Interleucina-17 , Humanos , Anticuerpos Antiproteína Citrulinada , Artritis Reumatoide/genética , Proteína C-Reactiva/química , Estudios de Casos y Controles , Interleucina-17/sangre , Interleucina-17/química , Interleucina-17/genética , Gravedad del Paciente , Polimorfismo Genético , Factor Reumatoide , Regiones Promotoras Genéticas
2.
J Interferon Cytokine Res ; 44(5): 221-231, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38530079

RESUMEN

Interleukin-17A is a pro-inflammatory cytokine that plays a key role in the immune response to many pathogens and implicated in autoimmune diseases. This molecule is also involved in providing protection to many bacterial and fungal infections of gastro-intestinal tract and respiratory mucosa. Although molecular aspect of IL-17A has been studied in few species, no data are available for buffalo, which is one of the major sources of milk production in India. Therefore, in the present study, IL-17A gene of Indian Murrah Buffalo origin was cloned, expressed, and analyzed using bioinformatic tools. The coding sequence of buffalo IL-17A gene was cloned in prokaryotic expression vector (pET-28a) followed by its expression, purification, and characterization. A computational analysis was performed to understand the sequence, structure, and evolutionary relationship of buIL-17A. It revealed that the length of buIL-17A sequence without signal peptide is 132 amino acids as in cattle. However, sequence identity is found to be 99% due to one amino substitution difference between buffalo and cattle. After analysis, it can be concluded that buIL-17A recombinant protein can be used as a potential immunobiological reagent for diagnostic and therapeutic purpose.


Asunto(s)
Secuencia de Aminoácidos , Búfalos , Interleucina-17 , Búfalos/genética , Búfalos/inmunología , Animales , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-17/inmunología , Interleucina-17/química , Clonación Molecular , Filogenia , Bovinos , Modelos Moleculares , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología
3.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396704

RESUMEN

This study delves into the critical role of alarmins in chronic spontaneous urticaria (CSU), focusing on their impact on disease severity and the quality of life (QoL) of patients. We investigated the alterations in alarmin levels in CSU patients and their correlations with the Urticaria Activity Score (UAS7) and the Dermatology Life Quality Index (DLQI). We analyzed serum levels of interleukin-25 (IL-25), interleukin-33 (IL-33), and thymic stromal lymphopoietin (TSLP) in 50 CSU patients, comparing these to 38 healthy controls. The study examined the relationship between alarmin levels and clinical outcomes, including disease severity and QoL. Elevated levels of IL-33 and TSLP in CSU patients (p < 0.0001) highlight their potential role in CSU pathogenesis. Although IL-25 showed higher levels in CSU patients, this did not reach statistical significance (p = 0.0823). Crucially, IL-33's correlation with both UAS7 and DLQI scores underscores its potential as a biomarker for CSU diagnosis and severity assessment. Of the alarmins analyzed, IL-33 emerges as particularly significant for further exploration as a diagnostic and prognostic biomarker in CSU. Its substantial correlation with disease severity and impact on QoL makes it a compelling candidate for future research, potentially serving as a target for therapeutic interventions. Given these findings, IL-33 deserves additional investigation to confirm its role and effectiveness as a biomarker and therapeutic target in CSU.


Asunto(s)
Urticaria Crónica , Urticaria , Humanos , Alarminas , Biomarcadores , Enfermedad Crónica , Urticaria Crónica/sangre , Urticaria Crónica/diagnóstico , Citocinas/uso terapéutico , Interleucina-17/sangre , Interleucina-17/química , Interleucina-33/sangre , Interleucina-33/química , Calidad de Vida , Linfopoyetina del Estroma Tímico/sangre , Linfopoyetina del Estroma Tímico/química , Urticaria/sangre , Urticaria/diagnóstico
4.
Fish Shellfish Immunol ; 140: 108903, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423402

RESUMEN

The common Chinese cuttlefish (Sepiella japonica) is an essential species for stock enhancement by releasing juveniles in the East China Sea now. S. japonica is susceptible to bacterial diseases during parental breeding. In vertebrates, Interleukin-17 (IL-17) cytokine family plays critical roles in both acute and chronic inflammatory responses. In Cephalopoda, few studies have been reported on IL-17 genes so far. In this study, twenty IL-17 transcripts obtained from S. japonica were divided into eight groups (designated as Sj_IL-17-1 to Sj_IL-17-8). Multiple alignment analysis showed that IL-17s in S. japonica and human both contained four ß-folds (ß1-ß4), except for Sj_IL-17-6 with two ß-folds (ß1 and ß2), and the third and fourth ß-folds of Sj_IL-17-5 and Sj_IL-17-8 were longer than those of other Sj_IL-17. Protein structure and conserved motifs analysis demonstrated that Sj_IL-17-5 and Sj_IL-17-6 displayed different protein structure with respect to other six Sj_IL-17 proteins. The homology and phylogenetic analysis of amino acids showed that Sj_IL-17-5, Sj_IL-17-6 and Sj_IL-17-8 had low homology with the other five Sj_IL-17s. Eight Sj_IL-17 mRNAs were ubiquitously expressed in ten examined tissues, with dominant expression in the hemolymph. qRT-PCR data showed that the mRNA expression levels of Sj_IL-17-2, Sj_IL-17-3, Sj_IL-17-6, and Sj_IL-17-8 were significantly up-regulated in infected cuttlefishes, and Sj_IL-17-2, Sj_IL-17-6, Sj_IL-17-7, and Sj_IL-17-8 mRNAs Awere significantly up-regulated after bath infection of Vibrio harveyi, suggesting that certain Sj_IL-17s were involved in the immune response of S. japonica against V. harveyi infection. These results implied that Sj_IL-17s were likely to have distinct functional diversification. This study aims to understand the involvement of Sj_IL-17 genes in immune responses of cuttlefish against bacterial infections.


Asunto(s)
Decapodiformes , Interleucina-17 , Vibriosis , Vibrio , Animales , Humanos , Decapodiformes/genética , Decapodiformes/inmunología , Decapodiformes/microbiología , Interleucina-17/química , Interleucina-17/genética , Interleucina-17/inmunología , Filogenia , Vibriosis/inmunología , Vibriosis/veterinaria , China
5.
J Mol Recognit ; 36(8): e3045, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37415317

RESUMEN

Interleukin-17A (IL-17A) is a pro-inflammatory cytokine implicated in diverse autoimmune and inflammatory disorders such as psoriasis and Kawasaki disease. Mature IL-17A is a homodimer that binds to the extracellular type-III fibronectin D1:D2-dual domain of its cognate IL-17 receptor A (IL-17RA). In this study, we systematically examined the structural basis, thermodynamics property, and dynamics behavior of IL-17RA/IL-17A interaction and computationally identified two continuous hotspot regions separately from different monomers of IL-17A homodimer that contribute significantly to the interaction, namely I-shaped and U-shaped segments, thus rendered as a peptide-mediated protein-protein interaction (PmPPI). Self-inhibitory peptides (SIPs) are derived from the two segments to disrupt IL-17RA/IL-17A interaction by competitively rebinding to the IL-17A-binding pocket on IL-17RA surface, which, however, only have a weak affinity and low specificity for IL-17RA due to lack of the context support of intact IL-17A protein, thus exhibiting a large flexibility and intrinsic disorder when splitting from the protein context and incurring a considerable entropy penalty when rebinding to IL-17RA. The U-shaped segment is further extended, mutated and stapled by a disulfide bridge across its two strands to obtain a number of double-stranded cyclic SIPs, which are partially ordered and conformationally similar to their native status at IL-17RA/IL-17A complex interface. Experimental fluorescence polarization assays substantiate that the stapling can moderately or considerably improve the binding affinity of U-shaped segment-derived peptides by 2-5-fold. In addition, computational structural modeling also reveals that the stapled peptides can bind in a similar mode with the native crystal conformation of U-shaped segment in IL-17RA pocket, where the disulfide bridge is out of the pocket for avoiding intervene of the peptide binding.


Asunto(s)
Interleucina-17 , Receptores de Interleucina-17 , Interleucina-17/química , Interleucina-17/metabolismo , Interleucina-17/farmacología , Receptores de Interleucina-17/química , Receptores de Interleucina-17/metabolismo , Péptidos/química , Modelos Moleculares , Unión Proteica
6.
Nature ; 609(7927): 622-629, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35863378

RESUMEN

The IL-17 family of cytokines and receptors have central roles in host defence against infection and development of inflammatory diseases1. The compositions and structures of functional IL-17 family ligand-receptor signalling assemblies remain unclear. IL-17E (also known as IL-25) is a key regulator of type 2 immune responses and driver of inflammatory diseases, such as allergic asthma, and requires both IL-17 receptor A (IL-17RA) and IL-17RB to elicit functional responses2. Here we studied IL-25-IL-17RB binary and IL-25-IL-17RB-IL-17RA ternary complexes using a combination of cryo-electron microscopy, single-molecule imaging and cell-based signalling approaches. The IL-25-IL-17RB-IL-17RA ternary signalling assembly is a C2-symmetric complex in which the IL-25-IL-17RB homodimer is flanked by two 'wing-like' IL-17RA co-receptors through a 'tip-to-tip' geometry that is the key receptor-receptor interaction required for initiation of signal transduction. IL-25 interacts solely with IL-17RB to allosterically promote the formation of the IL-17RB-IL-17RA tip-to-tip interface. The resulting large separation between the receptors at the membrane-proximal level may reflect proximity constraints imposed by the intracellular domains for signalling. Cryo-electron microscopy structures of IL-17A-IL-17RA and IL-17A-IL-17RA-IL-17RC complexes reveal that this tip-to-tip architecture is a key organizing principle of the IL-17 receptor family. Furthermore, these studies reveal dual actions for IL-17RA sharing among IL-17 cytokine complexes, by either directly engaging IL-17 cytokines or alternatively functioning as a co-receptor.


Asunto(s)
Interleucina-17 , Receptores de Interleucina-17 , Microscopía por Crioelectrón , Interleucina-17/química , Interleucina-17/metabolismo , Ligandos , Dominios Proteicos , Multimerización de Proteína , Receptores de Interleucina-17/química , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/ultraestructura , Transducción de Señal , Imagen Individual de Molécula
7.
Fish Shellfish Immunol ; 126: 217-226, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35636699

RESUMEN

Interleukin 17D (IL-17D), a pro-inflammatory cytokine, is a signature cytokine of T helper 17 (Th17) cells. However, studies characterizing the functions of IL-17D in teleost are scarce. Therefore, we aimed to characterize the properties of IL-17D in Amphiprion clarkii. We performed spatial and temporal expression, AcIL-17D-mediated antibacterial and inflammatory gene expression, NFκB pathway-related gene expression analyses, and bacterial colony counting and cell protection assays. We found that AcIL-17D contains a 630 bp coding sequence and encodes 210 amino acids. The spatial expression analysis of AcIL-17D in 12 tissues showed ubiquitous expression, with the highest expression in the brain, followed by blood and skin. Temporal expression analysis of AcIL-17D in blood showed upregulated expression at 6 and 24 h (polyinosinic: polycytidylic acid and lipopolysaccharide), 12 h (all stimulants), and 48 h (polyinosinic: polycytidylic acid and Vibrio harveyi). AcIL-17D expression in the blood gradually decreased at later hours in response to all the stimulants. After treatment of fathead minnow (FHM) cells with different recombinant AcIL-17D concentrations, the downstream gene expression analysis showed increased expression of antimicrobial genes in the FHM cells, namely [NK-Lysin (NKL), Hepcidin antimicrobial peptide-1 (HAMP-1), Defensin-ß (DEFB1)] and some inflammatory genes such as IL-1ß, TNF-α, IL-11, and STAT3. Further nuclear factor κB (NFκB) subunits (NFκB1, NFκB2, RelA, and Rel-B) showed upregulated gene expression at 12 and 24 h. The bacterial colony counting assay using FHM cells showed lower bacterial colony counts in rAcIL-17D-treated cells than in control. Furthermore, the Water-Soluble Tetrazolium Salt (WST -1) assay confirmed the ability of rAcIL-17D in the protection of FHM cells from bacterial infection and conducted the Hoechst 33342 staining upon treatment with rAcIL-17D and rMBP. Therefore, our findings provide important insights into the activation of IL-17D pathway genes in FHM cells, the protective role of AcIL-17D against bacterial infection, and host defense mechanisms in teleost.


Asunto(s)
Cyprinidae , Interleucina-27 , Perciformes , Secuencia de Aminoácidos , Animales , Clonación Molecular , Cyprinidae/genética , Cyprinidae/metabolismo , Cisteína , Citocinas/genética , Interleucina-17/química , Interleucina-27/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Perciformes/genética , Perciformes/metabolismo , Poli C
8.
Chem Biol Drug Des ; 99(3): 382-390, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34873834

RESUMEN

Interleukin-17 (IL-17) is a family of pro-inflammatory cytokines and has been involved in the pathogenesis of chronic inflammatory and autoimmune diseases. The IL-17E, also known as IL-25, is a distinct member of this family that binds to its unique receptor IL-17Rb to induce the activation of nuclear factor kappa-light-chain enhancer of activated B cells. Here, we systematically examined the intermolecular recognition and association of IL-25 with IL-17Rb and demonstrated that the IL-25 primarily adopts two discrete linear and cyclic epitopes to interact with IL-17Rb. The two epitopes are separately located in the monomers 1 and 2 of IL-25 homodimer and cover sequences 125 DPRGNSELLYHN136 and 77 ELDRDLNRLPQDLY90 . They totally contribute 71.6% binding energy to the full-length IL-25. The linear epitope targets a site spanning over the extracellular fnIIID1 and fnIIID2 domains of IL-17Rb, while the cyclic epitope primarily binds at the fnIIID1 domain. In addition, we also found that the linear and cyclic epitopes are natively folded into ordered single-stranded and double-stranded conformations in IL-25 protein context, respectively, but would become largely disordered when splitting from the context to be free peptides, which, however, cannot bind effectively to IL-17Rb as them in the native state. In this respect, we extended the cyclic epitope to cover the whole IL-25 double-stranded region and added a disulfide bridge across its two strands at three selected anchor residue pairs. It is revealed that the disulfide-stapled peptides can be constrained into a native-like conformation and thus exhibit an improved binding potency to IL-17Rb as compared to their unstapled counterpart.


Asunto(s)
Interleucina-17/química , Péptidos/metabolismo , Receptores de Interleucina-17/metabolismo , Secuencia de Aminoácidos , Humanos , Interleucina-17/metabolismo , Simulación de Dinámica Molecular , Péptidos/química , Unión Proteica , Receptores de Interleucina-17/química , Termodinámica
9.
Front Immunol ; 12: 626895, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34267744

RESUMEN

In mammals, Interleukin-17 cytokine family plays critical roles in both acute and chronic inflammatory responses. In fish species, three Interleukin-17A/F (IL-17A/F) genes have been identified to be homologous to mammalian IL-17A and IL-17F, but little is known about their functional activity. In this study, Pf_IL-17A/F1, 2 and 3 genes were cloned from yellow catfish (Pelteobagrus fulvidraco) and they differed in protein structure and exon length, implying that they may have divergent bioactivity. Real-time quantitative PCR analyses revealed that three Pf_IL-17A/F genes were highly expressed in blood and mucosal tissues (skin+mucus and gill) from healthy adult fish. The mRNA expressions of Pf_IL-17A/F1, 2 and 3 genes were significantly up-regulated in the gill, skin+mucus, head kidney and spleen after challenge with Edwardsiella ictaluri and in the isolated peripheral blood leucocytes (PBLs) of yellow catfish after stimulation with phytohaemagglutinin (PHA), lipopolysaccharides (LPS), peptidoglycan (PGN) and polyinosinic-polycytidylic acid (Poly I:C). These results indicate that Pf_IL-17A/F1, 2 and 3 genes may play a vital role in the regulation of immune against pathogens. Additionally, the recombinant (r) Pf_IL-17A/F1, 2 and 3 proteins significantly induced the mRNA expressions of proinflammatory cytokines, chemokines and antibacterial peptides genes, and the rPf_IL-17A/F 2 and 3 proteins promoted phagocytosis of PBLs more powerfully than the rPf_IL-17A/F1. Furthermore, the rPf_IL-17A/F1, 2 and 3 proteins might activate the NF-κB and MAPK signal pathways by IL-17RA, ACT1, TRAF6, TRAF2, TRAF5 and TAK1, indicating that the three Pf_IL-17A/F proteins may play different roles in promoting inflammatory response.


Asunto(s)
Bagres/genética , Bagres/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Animales , Riñón Cefálico/inmunología , Interleucina-17/química , Interleucina-17/clasificación , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Lipopolisacáridos/farmacología , Peptidoglicano/farmacología , Fitohemaglutininas/farmacología , Poli I-C/farmacología , Bazo/inmunología
10.
Cytokine ; 142: 155476, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33706174

RESUMEN

The proinflammatory cytokines IL-17A and IL-17F have been identified as key drivers of a range of human inflammatory diseases, such as psoriasis, which has led to several therapeutic antibodies targeted at IL-17A. The two cytokines have been shown to tightly associate as functional homo and hetero dimers, which induce signalling via the formation of a cell surface signalling complex with a single copy of both IL-17RA and IL-17RC. Striking differences in affinity have been observed for IL-17RA binding to IL-17AA, IL-17AF and IL-17FF, however, the functional significance and molecular basis for this has remained unclear. We have obtained comprehensive backbone NMR assignments for full length IL-17AA (79%), IL-17AF (93%) and IL-17FF (89%), which show that the dimers adopt almost identical backbone topologies in solution to those observed in reported crystal structures. Analysis of the line widths and intensities of assigned backbone amide NMR signals has revealed striking differences in the conformational plasticity and dynamics of IL-17AA compared to both IL-17AF and IL-17FF. Our NMR data indicate that a number of regions of IL-17AA are interconverting between at least two distinct conformations on a relatively slow timescale. Such conformational heterogeneity has previously been shown to play an important role in the formation of many high affinity protein-protein complexes. The locations of the affected IL-17AA residues essentially coincides with the regions of both IL-17A and IL-17F previously shown to undergo significant structural changes on binding to IL-17RA. Substantially less conformational exchange was revealed by the NMR data for IL-17FF and IL-17AF. We propose that the markedly different conformational dynamic properties of the distinct functional IL-17 dimers plays a key role in determining their affinities for IL-17RA, with the more dynamic and plastic nature of IL-17AA contributing to the significantly tighter affinity observed for binding to IL-17RA. In contrast, the dynamic properties are expected to have little influence on the affinity of IL-17 dimers for IL-17RC, which has recently been shown to induce only small structural changes in IL-17FF upon binding.


Asunto(s)
Interleucina-17/química , Interleucina-17/metabolismo , Receptores de Interleucina-17/metabolismo , Secuencia de Aminoácidos , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína
11.
Fish Shellfish Immunol ; 111: 6-15, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33387658

RESUMEN

Two interleukin (IL)-17 N genes (CcIL-17Na and b) present on different linkage groups were identified in the common carp (Cyprinus carpio) genome and confirmed by polymerase chain reaction (PCR) and real time (RT)-PCR in this experiment. Synteny analysis revealed that IL-17 N is transcribed by the complement sequence of TOP3B's intron 2. It is flanked by SDF2L and PPM1F in all fish studied to date, except fugu (Takifugu rubripes). The open reading frames of the two CcIL-17Ns are 411 base pairs long and encode 136 amino acids. The amino acid identity/similarity between CcIL-17Na and b is 91.2%/97.1%. The CcIL-17Ns share identity (46.8-90.4%) with their orthologs from other teleosts. Identities/similarities to other members of the IL-17 family in common carp were low at 21.4-30.2%/31.4-51.4%. In the phylogenetic tree, IL-17Ns from spotted gar (Lepisosteus oculatus, the ancestor of teleosts) and coelacanth (Latimeria chalumnae, the ancestor of tetrapods) were grouped within the same branch with a high bootstrap value of 97%, which indicates that IL-17 N is an ancient and conserved gene. Quantitative RT-PCR results showed that CcIL-17Ns were most highly expressed in the brain of healthy individuals. The expression in brain was significantly induced at 6 h post Aeromonas hydrophila infection; at 1 day post infection, expression in liver, muscle, skin, spleen, and head kidney was up-regulated. In addition, the upregulated expression of proinflammatory cytokines IL-1ß, IFN-γ, IL-6, chemokine CCL20, NF - κ B and TRAF6 in kidney tissue by ccIL-17 N recombinant protein also indicate that IL-17 N can promote inflammation through NF-κB pathway and induce the expression of chemokines and inflammatory factors.


Asunto(s)
Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Interleucina-17/genética , Interleucina-17/inmunología , Perciformes/genética , Perciformes/inmunología , Inmunidad Adaptativa/genética , Secuencia de Aminoácidos , Animales , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Interleucina-17/química , Filogenia , Alineación de Secuencia/veterinaria
12.
Molecules ; 25(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182817

RESUMEN

Most data published on curcumin and curcumin-based formulations are very promising. In cancer research, the majority of data has been obtained in vitro. Less frequently, researchers used experimental animals. The results of several clinical studies are conclusive, and these studies have established a good foundation for further research focusing on implementing curcumin in clinical oncology. However, the issues regarding timely data reporting and lack of disclosure of the exact curcumin formulations used in these studies should not be neglected. This article is a snapshot of the current status of publicly available data on curcumin clinical trials and a detailed presentation of results obtained so far with some curcumin formulations. Phenomena related to the observed effects of curcumin shown in clinical trials are presented, and its modifying effect on gut microbiota and metabolic reprogramming is discussed. Based on available data, there is a strong indication that curcumin and its metabolites present molecules that do not necessarily need to be abundant in order to act locally and benefit systemically. Future clinical studies should be designed in a way that will take that fact into consideration.


Asunto(s)
Curcumina/uso terapéutico , Oncología Médica/tendencias , Investigación Biomédica Traslacional/tendencias , Animales , Antineoplásicos/uso terapéutico , Disponibilidad Biológica , Ensayos Clínicos como Asunto , Curcumina/química , Microbioma Gastrointestinal , Humanos , Interleucina-17/química , National Institutes of Health (U.S.) , Neoplasias/tratamiento farmacológico , Nicotinamida N-Metiltransferasa/química , Medicina de Precisión , Estados Unidos
13.
ACS Comb Sci ; 22(10): 519-532, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32786323

RESUMEN

Cyclic peptides with engineered protein-binding activity have gained increasing attention for use in therapeutic and biotechnology applications. We describe the efficient isolation and characterization of cyclic peptide binders from genetically encoded combinatorial libraries using yeast surface display. Here, peptide cyclization is achieved by disuccinimidyl glutarate-mediated cross-linking of amine groups within a linear peptide sequence that is expressed as a yeast cell surface fusion. Using this approach, we first screened a library of cyclic heptapeptides using magnetic selection, followed by fluorescence activated cell sorting (FACS) to isolate binders for a model target (lysozyme) with low micromolar binding affinity (KD ∼ 1.2-3.7 µM). The isolated peptides bind lysozyme selectively and only when cyclized. Importantly, we showed that yeast surface displayed cyclic peptides can be used to efficiently obtain quantitative estimates of binding affinity, circumventing the need for chemical synthesis of the selected peptides. Subsequently, to demonstrate broader applicability of our approach, we isolated cyclic heptapeptides that bind human interleukin-17 (IL-17) using yeast-displayed IL-17 as a target for magnetic selection, followed by FACS using recombinant IL-17. Molecular docking simulations and follow-up experimental analyses identified a candidate cyclic peptide that likely binds IL-17 in its receptor binding region with moderate apparent affinity (KD ∼ 300 nM). Taken together, our results show that yeast surface display can be used to efficiently isolate and characterize cyclic peptides generated by chemical modification from combinatorial libraries.


Asunto(s)
Membrana Celular/química , Interleucina-17/química , Péptidos Cíclicos/aislamiento & purificación , Proteínas Recombinantes/química , Saccharomyces cerevisiae/química , Fenómenos Biofísicos , Ciclización , Citometría de Flujo , Humanos , Simulación del Acoplamiento Molecular , Biblioteca de Péptidos , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Saccharomyces cerevisiae/ultraestructura , Relación Estructura-Actividad , Propiedades de Superficie
14.
J Dtsch Dermatol Ges ; 18(7): 675-681, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32447845

RESUMEN

Various immune cells and their messenger substances influence the development of psoriasis. Cytokines of the IL-17 family are of particular importance. In addition to IL-17A, which plays a central role in the pathogenesis of psoriasis, other subtypes of the IL-17 family also have a proinflammatory effect. This review provides an up-to-date overview of the immunopathogenesis of psoriasis with regard to the six IL-17 subtypes, in particular their physiological and pathogenic properties, as well as their significance for psoriasis therapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Interleucina-17/fisiología , Psoriasis/inmunología , Humanos , Interleucina-17/química , Psoriasis/tratamiento farmacológico , Receptores de Interleucina-17/fisiología
15.
Adv Protein Chem Struct Biol ; 121: 253-303, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32312425

RESUMEN

Protein-protein interactions are central to biology and provide opportunities to modulate disease with small-molecule or protein therapeutics. Recent developments in the understanding of the tractability of protein-protein interactions are discussed with a focus on the ligandable nature of protein-protein interaction surfaces. General principles of inhibiting protein-protein interactions are illustrated with structural biology examples from six members of the IL-23/IL-17 signaling family (IL-1, IL-6, IL-17, IL-23 RORγT and TNFα). These examples illustrate the different approaches to discover protein-protein interaction inhibitors on a target-specific basis that has proven fruitful in terms of discovering both small molecule and biologic based protein-protein interaction inhibitors.


Asunto(s)
Artritis/tratamiento farmacológico , Enfermedades Autoinmunes/tratamiento farmacológico , Factores Inmunológicos/uso terapéutico , Interleucina-17/antagonistas & inhibidores , Interleucina-23/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Artritis/genética , Artritis/inmunología , Artritis/patología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Sitios de Unión/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Factores Inmunológicos/química , Interleucina-17/química , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-23/química , Interleucina-23/genética , Interleucina-23/inmunología , Modelos Moleculares , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/química , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
16.
Biotechniques ; 69(1): 427-433, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32336115

RESUMEN

Refolding of human interleukin 17A (IL-17A) has been reported; however, the key refolding protocol was not robust enough to deliver consistent results and to be easily scaled up for crystallization. Here we report an optimized refolding method for IL-17A. Although co-crystal structures of IL-17A with ligands have been obtained with a high-affinity peptide and an anti-IL-17A Fab as stabilizers, neither the production yield nor the characterization of the IL-17A/Fab complex was reported. To facilitate co-crystallization of IL-17A with small-molecule compounds derived from our DNA encoded library, we also describe the method for yield enhancement of anti-IL-17A Fab production and characterize the IL-17A/Fab complex for the first time, providing an essential prerequisite for structure-based drug discovery targeting IL-17A.


Asunto(s)
Cristalización/métodos , Interleucina-17/química , Bibliotecas de Moléculas Pequeñas/química , ADN/química , Humanos , Fragmentos Fab de Inmunoglobulinas/química
17.
Bioorg Med Chem Lett ; 30(12): 127205, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32336498

RESUMEN

The nuclear receptor retinoic acid receptor-related orphan receptor gamma t (RORγt) is a transcription factor that drives Th17 cell differentiation and IL-17 production in both innate and adaptive immune cells. The IL-23/IL-17 pathway is implicated in major autoimmune and inflammatory diseases. RORγt lies at the core of this pathway and represents an attractive opportunity for intervention with small molecule therapeutics. Despite diverse chemical series having been reported, combining high potency and nuclear receptor selectivity with good physicochemical properties remains a challenging endeavor in the field of RORγt drug discovery. We recently described the discovery and evaluation of a new class of potent and selective RORγt inverse agonists based on a thiazole scaffold. Herein we describe the successful optimization of this class by incorporation of an additional amide moiety at the 4-position of the thiazole core. In several optimization cycles, we have reduced human PXR activation, improved solubility, and increased potency while maintaining nuclear receptor selectivity. X-ray crystallographic analysis of compound 1g bound in the sterol binding site of the ligand binding domain of RORγt was largely consistent with an earlier structure, guiding further insight into the molecular mechanism for RORγt inhibition with this series. Compound 1g is orally bioavailable, potent in a human whole blood assay and proved to be efficacious in an ex-vivo IL-17A assay, and was selected for preclinical evaluation.


Asunto(s)
Amidas/química , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Bibliotecas de Moléculas Pequeñas/química , Tiazoles/química , Enfermedades Autoinmunes/tratamiento farmacológico , Sitios de Unión , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Humanos , Inflamación/tratamiento farmacológico , Interleucina-17/química , Modelos Moleculares , Estructura Molecular , Unión Proteica , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Tiazoles/farmacología
18.
Immunity ; 52(3): 499-512.e5, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32187518

RESUMEN

Interleukin-17A (IL-17A), IL-17F, and IL-17A/F heterodimers are key cytokines of the innate and adaptive immune response. Dysregulation of the IL-17 pathway contributes to immune pathology, and it is therefore important to elucidate the molecular mechanisms that govern IL-17 recognition and signaling. The receptor IL-17RC is thought to act in concert with IL-17RA to transduce IL-17A-, IL-17F-, and IL-17A/F-mediated signals. We report the crystal structure of the extracellular domain of human IL-17RC in complex with IL-17F. In contrast to the expected model, we found that IL-17RC formed a symmetrical 2:1 complex with IL-17F, thus competing with IL-17RA for cytokine binding. Using biophysical techniques, we showed that IL-17A and IL-17A/F also form 2:1 complexes with IL-17RC, suggesting the possibility of IL-17RA-independent IL-17 signaling pathways. The crystal structure of the IL-17RC:IL-17F complex provides a structural basis for IL-17F signaling through IL-17RC, with potential therapeutic applications for respiratory allergy and inflammatory bowel diseases.


Asunto(s)
Interleucina-17/inmunología , Multimerización de Proteína/inmunología , Receptores de Interleucina-17/inmunología , Transducción de Señal/inmunología , Unión Competitiva , Cristalografía por Rayos X , Células HEK293 , Humanos , Interleucina-17/química , Interleucina-17/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores de Interleucina-17/química , Receptores de Interleucina-17/metabolismo
19.
Adv Exp Med Biol ; 1172: 97-117, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31628653

RESUMEN

The IL-17 family in humans consists of six distinct cytokines (IL-17A-F) that can interact with five IL-17 receptors (IL-17RA-E). The interaction between these cytokines and their receptors are critical in mediating host defenses while also making major contributions to inflammatory and autoimmune responses as demonstrated through both in vitro and in vivo experiments as well as human clinical trials. Inhibition of the IL-17A/IL-17RA interaction by monoclonal antibodies has also displayed remarkable efficacies in clinical trials against psoriasis and other autoimmune diseases. Recently, we and others reported the identification and characterization of both small-molecule and peptide IL-17A antagonists. These non-antibody IL-17A antagonists can effectively and selectively disrupt the IL-17A/IL-17RA complex and may provide alternative modalities to treat IL-17-related autoimmune and inflammatory diseases. This chapter summarizes the reported crystal structures of the IL-17 cytokines, their complexes with IL-17RA, and their complexes with both monoclonal antibodies as well as small-molecule and peptide antagonists.


Asunto(s)
Interleucina-17 , Receptores de Interleucina-17 , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Enfermedades Autoinmunes/inmunología , Cristalización , Humanos , Interleucina-17/antagonistas & inhibidores , Interleucina-17/química , Interleucina-17/inmunología , Receptores de Interleucina-17/antagonistas & inhibidores , Receptores de Interleucina-17/química , Receptores de Interleucina-17/inmunología
20.
Biochemistry (Mosc) ; 84(Suppl 1): S193-S205, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31213202

RESUMEN

Cytokines of the IL-17 family play a key role in the host organism defense against bacterial and fungal infections. At the same time, upregulated synthesis of IL-17 cytokines is associated with immunoinflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and others. The members of this family are important therapeutic targets in the treatment of various human chronic inflammatory disorders. Elucidation of signaling pathways involving IL-17 family proteins and analysis of the structure of cytokine complexes with specific antibodies, inhibitors, and receptors are essential for the development of new drugs for the therapy of immunoinflammatory rheumatic diseases.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Interleucina-17 , Terapia Molecular Dirigida , Linfocitos T/inmunología , Anticuerpos Monoclonales/farmacología , Humanos , Interleucina-17/antagonistas & inhibidores , Interleucina-17/química , Interleucina-17/fisiología , Estructura Cuaternaria de Proteína , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA