RESUMEN
Growing research has suggested an association between chronic inflammation and Intervertebral disc degeneration (IVDD), but whether there is a causal effect remains unknown. This study adopted two-sample Mendelian randomization (MR) approach to explore the etiological role of chronic inflammation in IVDD risk. Here, summary statistics for C-reactive protein (CRP), interleukin (IL)-1 α , IL-1 ß , IL-6 expression and IVDD were obtained from genome-wide association studies (GWAS) of European ancestry. MR analyses were conducted by using inverse variance weighted (IVW), Wald Ratio, weighted median, and MR-Egger method. Sensitivity analyses were conducted to assess the robustness of the results. The MR analyses suggested a lack of causal association of CRP, IL-6 , and IL-1 α levels on IVDD (CRP-IVDD: odds ratio [OR] = 0.97, 95% confidence interval [CI] 0.86-1.09, P = 0.583; IL-6-IVDD: OR = 1.04, 95% CI 0.86-1.27, P = 0.679; IL-1 α -IVDD: OR = 1.09, 95%CI 1.00-1.18, P = 0.058). However, there was a sign of a connection between genetically elevated IL-1 ß levels and a decreased IVDD incidence (OR = 0.87, 95%CI 0.77-0.99, P = 0.03). Our findings suggest a connection between IL-1 ß levels and the risk of IVDD. However, due to the support of only one SNP, heterogeneity and pleiotropy tests cannot be performed, the specific underlying mechanisms warrant further investigation.
Asunto(s)
Estudio de Asociación del Genoma Completo , Degeneración del Disco Intervertebral , Análisis de la Aleatorización Mendeliana , Humanos , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/genética , Proteína C-Reactiva/análisis , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/sangre , Interleucina-6/genética , Interleucina-6/sangre , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/sangre , Polimorfismo de Nucleótido SimpleRESUMEN
Damage-associated molecular patterns (DAMPs) are endogenous molecules released in tissues upon cellular damage and necrosis, acting to initiate sterile inflammation. Constitutive DAMPs (cDAMPs) have the particularity to be present within the intracellular compartments of healthy cells, where they exert diverse functions such as regulation of gene expression and cellular homeostasis. However, after injury to the central nervous system (CNS), cDAMPs are rapidly released by stressed, damaged or dying neuronal, glial and endothelial cells, and can trigger inflammation without undergoing structural modifications. Several cDAMPs have been described in the injured CNS, such as interleukin (IL)-1α, IL-33, nucleotides (e.g. ATP), and high-mobility group box protein 1. Once in the extracellular milieu, these molecules are recognized by the remaining surviving cells through specific DAMP-sensing receptors, thereby inducing a cascade of molecular events leading to the production and release of proinflammatory cytokines and chemokines, as well as cell adhesion molecules. The ensuing immune response is necessary to eliminate cellular debris caused by the injury, allowing for damage containment. However, seeing as some molecules associated with the inflammatory response are toxic to surviving resident CNS cells, secondary damage occurs, aggravating injury and exacerbating neurological and behavioral deficits. Thus, a better understanding of these cDAMPs, as well as their receptors and downstream signaling pathways, could lead to identification of novel therapeutic targets for treating CNS injuries such as SCI, TBI, and stroke. In this review, we summarize the recent literature on cDAMPs, their specific functions, and the therapeutic potential of interfering with cDAMPs or their signaling pathways.
Asunto(s)
Alarminas , Sistema Nervioso Central , Humanos , Alarminas/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/lesiones , Inflamación/metabolismo , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Interleucina-33/metabolismo , Interleucina-1alfa/metabolismo , Transducción de Señal/fisiologíaRESUMEN
Age is a major risk factor for cancer, but how aging impacts tumor control remains unclear. In this study, we establish that aging of the immune system, regardless of the age of the stroma and tumor, drives lung cancer progression. Hematopoietic aging enhances emergency myelopoiesis, resulting in the local accumulation of myeloid progenitor-like cells in lung tumors. These cells are a major source of interleukin (IL)-1âº, which drives the enhanced myeloid response. The age-associated decline of DNA methyltransferase 3A enhances IL-1⺠production, and disrupting IL-1 receptor 1 signaling early during tumor development normalized myelopoiesis and slowed the growth of lung, colonic, and pancreatic tumors. In human tumors, we identified an enrichment for IL-1âº-expressing monocyte-derived macrophages linked to age, poorer survival, and recurrence, unraveling how aging promotes cancer and offering actionable therapeutic strategies.
Asunto(s)
Envejecimiento , ADN Metiltransferasa 3A , Interleucina-1alfa , Neoplasias Pulmonares , Macrófagos , Mielopoyesis , Animales , Humanos , Ratones , Envejecimiento/inmunología , ADN Metiltransferasa 3A/deficiencia , Hematopoyesis , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Interleucina-1beta/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mielopoyesis/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Transducción de SeñalRESUMEN
To evaluate the efficacy of yellow light-emitting diode (LED) irradiation at 590 nm, alone or in combination with anti-inflammatory active substances against ultraviolet (UV)-induced inflammation in keratinocytes. HaCaT keratinocytes were pretreated with LED yellow light (590 nm) alone or in combination with an antiinflammatory active substance such as glycerophosphoinositol choline (GC), extract of grains of paradise (Aframomum melegueta Schum, AM), or a bisabolol and ginger root extract mixture (Bb-GE) before UVB irradiation. Following each treatment, we measured the levels of inflammatory mediators secreted by keratinocytes. HaCaT keratinocytes treated with UVB (300 mJ cm-²) and then cultured for 24 h exhibited significantly upregulated expression of proinflammatory factors, including interleukin (IL)-1α, prostaglandin E2 (PGE2), and IL-8. After pretreatment with 590 nm LED, UVB-induced inflammatory responses were significantly inhibited. Co-pretreatment with 590 nm LED irradiation and GC further inhibited the expression of IL-1α and IL-8. IL-8 expression was inhibited by co-pretreatment with 590 nm LED irradiation and AM, whereas PGE2 expression was inhibited by co-pretreatment with 590 nm LED irradiation and Bb-GE. Co-treatment with 590 nm LED irradiation and various active substances modulated UVB-induced inflammation in keratinocytes, suggesting the potential application of this approach to prevent damage caused by voluntary sun exposure in daily life.
Asunto(s)
Inflamación , Interleucina-8 , Queratinocitos , Rayos Ultravioleta , Humanos , Queratinocitos/efectos de la radiación , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Rayos Ultravioleta/efectos adversos , Interleucina-8/metabolismo , Dinoprostona/metabolismo , Interleucina-1alfa/metabolismo , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Láseres de Semiconductores/uso terapéutico , Antiinflamatorios/farmacología , Sesquiterpenos Monocíclicos/farmacología , Células HaCaTRESUMEN
Interleukin-1α is a suggested dual-function cytokine that diverged from interleukin-1ß in mammals potentially by acquiring additional biological roles that relate to highly conserved regions in the pro-domain of interleukin-1α, including a nuclear localisation sequence and histone acetyltransferase-binding domains. Why evolution modified pro-interleukin-1α's subcellular location and protein interactome, and how this shaped interleukin-1α's intracellular role, is unknown. Here we show that TurboID proximity labelling with pro-interleukin-1α suggests a nuclear role for pro-interleukin-1α that involves interaction with histone acetyltransferases, including EP300. We also identify and validate inactivating mutations in the pro-interleukin-1α nuclear localisation sequence of multiple mammalian species, including toothed whales, castorimorpha and marsupials. However, histone acetyltransferase-binding domains are conserved in those species that have lost pro-interleukin-1α nuclear localisation. Together, these data suggest that histone acetyltransferase binding and nuclear localisation occurred together, and that while some species lost the nuclear localisation sequence in their pro-interleukin-1α, histone acetyltransferase binding ability was maintained. The nuclear localisation sequence was lost from several distinct species at different evolutionary times, suggesting convergent evolution, and that the loss of the nuclear localisation sequence confers some important biological outcome.
Asunto(s)
Núcleo Celular , Evolución Molecular , Interleucina-1alfa , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Animales , Núcleo Celular/metabolismo , Humanos , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/genética , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Unión Proteica , Secuencia de AminoácidosRESUMEN
Monkeypox virus (MPV) is known to inflict injuries and, in some cases, lead to fatalities in humans. However, the underlying mechanisms responsible for its pathogenicity remain poorly understood. We investigated functions of MPV core proteins, H3L, A35R, A29L, and I1L, and discovered that H3L induced transcriptional perturbations and injuries. We substantiated that H3L upregulated IL1A expression. IL1A, in consequence, caused cellular injuries, and this detrimental effect was mitigated when countered with IL1A blockage. We also observed that H3L significantly perturbed the transcriptions of genes in cardiac system. Mechanistically, H3L occupied the promoters of genes governing cellular injury, leading to alterations in the binding patterns of H3K27me3 and H3K4me3 histone marks, ultimately resulting in expression perturbations. In vivo and in vitro models confirmed that H3L induced transcriptional disturbances and cardiac dysfunction, which were ameliorated when IL1A was blocked or repressed. Our study provides valuable insights into comprehensive understanding of MPV pathogenicity, highlights the significant roles of H3L in inducing injuries, and potentially paves the way for the development of therapeutic strategies targeting IL1A.
Asunto(s)
Proteínas Virales , Animales , Humanos , Ratones , Proteínas Virales/metabolismo , Proteínas Virales/genética , Histonas/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Ratones Endogámicos C57BLRESUMEN
LNTRODUCTION: Postmenopausal osteoporosis (PMOP) can cause postmenopausal women to experience pain and interference. Identifying and exploring potential early diagnostic biomarkers of PMOP is of substantial clinical value and social significance. This study aimed to screen for potential novel diagnostic biomarkers of PMOP through a multiomics approach, providing new directions and ideas for the early prevention and treatment of this disease. MATERIALS AND METHODS: Fifteen postmenopausal women with osteoporosis and 12 without were recruited. Clinical information was collected, and various clinical biochemical parameters were tested. Plasma and fecal samples were collected and analyzed using Olink proteomics and gut microbial metabolomics. RESULTS: The functions of the differentially abundant metabolites were mainly related to autophagy and arginine and proline metabolism and were involved in immunoinflammatory metabolic processes. Olink showed significant differences in the expression of seven inflammation-related proteins between the two groups. CONCLUSION: We demonstrated that metabolic differences between PMOP patients and healthy controls were associated with inflammatory responses and found seven proteins with significant differences. Among these proteins, CDCP1, IL10, and IL-1alpha combined with clinical indicators had high discriminant efficiency in identifying PMOP. This is also the first study to demonstrate noteworthy changes in CDCP1 levels in patients with PMOP.
Asunto(s)
Biomarcadores , Microbioma Gastrointestinal , Metabolómica , Humanos , Femenino , Biomarcadores/sangre , Biomarcadores/metabolismo , Metabolómica/métodos , Persona de Mediana Edad , Microbioma Gastrointestinal/fisiología , Proteómica/métodos , Anciano , Interleucina-1alfa/sangre , Interleucina-1alfa/metabolismo , Posmenopausia/sangre , Posmenopausia/metabolismo , Interleucina-10/sangre , Interleucina-10/metabolismo , Heces/química , Heces/microbiologíaRESUMEN
Bermekimab is a human-derived recombinant monoclonal antibody that exhibits immunoregulatory activity by specifically blocking interleukin-1α activity. Four phase 2 studies evaluated efficacy and safety of bermekimab in patients with moderate-to-severe atopic dermatitis (AD). In addition, a novel human skin explant model was developed to assess bermekimab pharmacokinetics/pharmacodynamics and proteomic/transcriptomic effects. Study 1 (NCT03496974, N = 38) was an open-label, dose escalation study of subcutaneous bermekimab (200 mg or 400 mg). Study 2 (NCT04021862, N = 87) was a double-blind, placebo-controlled, randomized (1:1:1) study of subcutaneous bermekimab (400 mg every week (qw) or every 2 weeks) or placebo. GENESIS (NCT04791319, N = 198) was a double-blind, placebo- and active-comparator-controlled, randomized (1:1:2:2) study of placebo, subcutaneous bermekimab (350 mg or 700 mg qw), or dupilumab. LUNA (NCT04990440, N = 6) was a double-blind, placebo-controlled, randomized (4:1) study of intravenous bermekimab 800 mg qw or placebo. A novel human ex vivo skin pharmacodynamic assay supported phase 0 (NCT03953196) and phase 1 (NCT04544813) studies. In Study 1, 400 mg subcutaneous bermekimab showed improvement in efficacy assessments (e.g., ≥ 75% improvement of EASI over baseline, IGA 0/1, and worst itch); however, efficacy was not confirmed in Study 2 or GENESIS. Consequently, GENESIS and LUNA were terminated early. The novel human ex vivo skin pharmacodynamic assay demonstrated that bermekimab reduced downstream skin injury responses. Although bermekimab showed potential as an AD treatment in preclinical and early open-label trials, larger controlled studies (Study 2 and GENESIS) did not confirm those initial results.
Asunto(s)
Dermatitis Atópica , Interleucina-1alfa , Humanos , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/inmunología , Interleucina-1alfa/antagonistas & inhibidores , Interleucina-1alfa/metabolismo , Masculino , Femenino , Adulto , Método Doble Ciego , Persona de Mediana Edad , Inyecciones Subcutáneas , Resultado del Tratamiento , Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacología , Adulto Joven , Piel/efectos de los fármacos , Piel/patología , Piel/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacología , Adolescente , Índice de Severidad de la Enfermedad , AncianoRESUMEN
Acne is a chronic inflammatory skin condition that involves Cutibacterium acnes (C. acnes), which is classified into six main phylotypes (IA1, IA2, IB, IC, II and III). Acne development is associated with loss of C. acnes phylotype diversity, characterised by overgrowth of phylotype IA1 relative to other phylotypes. It was also shown that purified extracellular vesicles (EVs) secreted by C. acnes can induce an acne-like inflammatory response in skin models. We aimed to determine if the inflammatory profile of EVs secreted by C. acnes phylotype IA1 from an inflammatory acne lesion was different from C. acnes phylotype IA1 from normal skin, thus playing a direct role in the severity of inflammation. EVs were produced in vitro after culture of two clinical strains of C. acnes phylotype IA1, T5 from normal human skin and A47 from an inflammatory acne lesion, and then incubated with either human immortalised keratinocytes, HaCaT cells, or skin explants obtained from abdominoplasty. Subsequently, quantitative PCR (qPCR) was performed for human ß-defensin 2 (hBD2), cathelicidin (LL-37), interleukin (IL)-1ß, IL-6, IL-8, IL-17α and IL-36γ, and ELISA for IL-6, IL-8 and IL-17α. We found that EVs produced in vitro by C. acnes derived from inflammatory acne lesions significantly increased the pro-inflammatory cytokines and anti-microbial peptides at both transcriptional and protein levels compared with EVs derived from normal human skin. We show for the first time that C. acnes EVs from inflammatory acne play a crucial role in acne-associated inflammation in vitro and that C. acnes phylotype IA1 collected from inflammatory acne lesion and normal skin produce different EVs and inflammatory profiles in vitro.
Asunto(s)
Acné Vulgar , Vesículas Extracelulares , Queratinocitos , Propionibacterium acnes , Humanos , Vesículas Extracelulares/metabolismo , Acné Vulgar/microbiología , Queratinocitos/microbiología , Piel/microbiología , Inflamación/microbiología , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Células HaCaT , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Citocinas/metabolismo , Interleucina-17/metabolismo , PropionibacteriaceaeRESUMEN
Facial skin redness can be an indicator of skin inflammation, however the physiological connection between facial redness and inflammatory status, as well as its role in age-related skin changes, remains poorly understood. This study aims to investigate the association between the pattern of facial skin redness and biological inflammatory status, as well as age-related changes occurring in the skin. Four studies were conducted recruiting healthy Northern Asian females. Disordered spatial patterns of facial skin redness signals were assessed using image analysis, i.e., the a* gradient algorithm, which quantifies the disordered shape and pattern of localized redness signals on facial skin. This redness pattern was compared with (1) inflammatory protein markers (IL-1Ra/ IL-1α and IL-8) measured from stripped corneocyte samples, (2) gene expression profiles obtained through transcriptome analysis using skin biopsy samples, and (3) the distribution pattern of blood vessel measured using a photoacoustic microscope. The association between the skin redness pattern and current and future ageing-related skin changes was examined through a longitudinal study tracking the same subjects for 10 years. A significant correlation was observed between the a* gradient and the levels of inflammatory cytokines (IL-1Ra/IL-1α and IL-8). Transcriptome analysis revealed upregulation of genes related to acute inflammation, chronic inflammation, cellular senescence, and angiogenesis in subjects with higher a* gradients. The high a* gradient group exhibited an extension of blood vessel diameter and increased blood vessel density, while the medium a* gradient group only exhibited blood vessel extension. Lastly, the 10-year longitudinal study demonstrated that the a* gradient was associated with current and future skin ageing-related attributes, such as increased skin texture and wrinkle formation. The spatial pattern of localized redness on the skin reflects the biological inflammatory status, and this inflammatory condition helps predict current and future age-related skin changes.
Asunto(s)
Interleucina-1alfa , Envejecimiento de la Piel , Piel , Humanos , Femenino , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Adulto , Persona de Mediana Edad , Piel/patología , Interleucina-8/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/genética , Perfilación de la Expresión Génica , Inflamación , Cara , Anciano , Adulto Joven , Estudios Longitudinales , Transcriptoma , Dermatitis/genética , Dermatitis/patologíaRESUMEN
BACKGROUND: Lung fibroblasts play a central role in maintaining lung homeostasis and facilitating repair through the synthesis and organization of the extracellular matrix (ECM). This study investigated the cross-talk between interleukin-1 alpha (IL-1α) and transforming growth factor-ß (TGF-ß) signaling, two key regulators in tissue repair and fibrosis, in the context of lung fibroblast repair in the healthy lung. RESULTS: Stimulation of lung fibroblasts with TGF-ß1 and TGF-ß2 induced collagen-I and fibronectin protein expression (p < 0.05), a response inhibited with co-treatment with IL-1α (p < 0.05). Additionally, TGF-ß1 and TGF-ß2 induced myofibroblast differentiation, and collagen-I gel contraction, which were both suppressed by IL-1α (p < 0.05). In contrast, interleukin (IL)-6, IL-8 and thymic stromal lymphopoietin induced by IL-1α, were unaffected by TGF-ß1 or TGF-ß2. Mechanistically, IL-1α administration led to the suppression of TGF-ß1 and TGF-ß2 signaling, through downregulation of mRNA and protein for TGF-ß receptor II and the downstream adaptor protein TRAF6, but not through miR-146a that is known to be induced by IL-1α. DISCUSSION: IL-1α acts as a master regulator, modulating TGF-ß1 and TGF-ß2-induced ECM production, remodeling, and myofibroblast differentiation in human lung fibroblasts, playing a vital role in balancing tissue repair versus fibrosis. Further research is required to understand the dysregulated cross-talk between IL-1α and TGF-ß signaling in chronic lung diseases and the exploration of therapeutic opportunities. METHODS: Primary human lung fibroblasts (PHLF) were treated with media control, or 1 ng/ml IL-1α with or without 50 ng/ml TGF-ß1 or TGF-ß2 for 1, 6 and 72 h. Cell lysates were assessed for the expression of ECM proteins and signaling molecules by western blot, miRNA by qPCR, mRNA by RNA sequencing and cell supernatants for cytokine production by ELISA. PHLFs were also seeded in non-tethered collagen-I gels to measure contraction, and myofibroblast differentiation using confocal microscopy.
Asunto(s)
Matriz Extracelular , Fibroblastos , Interleucina-1alfa , Pulmón , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Humanos , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Matriz Extracelular/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Pulmón/metabolismo , Pulmón/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/citología , Diferenciación Celular , Miofibroblastos/metabolismo , Miofibroblastos/efectos de los fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , MicroARNs/genética , MicroARNs/metabolismo , Fibronectinas/metabolismo , Fibronectinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Factor de Crecimiento Transformador beta2RESUMEN
In this study, we uncovered the novel mechanism of IL-1α-mediated downregulated in adenoma (DRA) (SLC26A3) downregulation in the context of Brachyspira spp.-induced malabsorptive diarrhea. Experimentally infected pigs with Brachyspira spp. had significantly reduced DRA expression in the colon accompanied by IL-1α upregulation. This response was recapitulated in vitro by exposing Caco-2 cells to either Brachyspira lysate or IL-1α. Both p38 and MAPK-activated protein kinase 2 (MAPKAPK-2 also referred as MK-2) showed an increased phosphorylation after exposure to either. SB203580 application, a p38 inhibitor blocked the MK-2 phosphorylation and attenuated the DRA and IL-1α response to both lysate and IL-1α. Exposure to IL-1 receptor antagonist (IL-1RA) produced a similar response. In addition, exposure of cells to either of these blockers without IL-1α or lysate results in increased DRA and decreased IL-1α expression, revealing that DRA needs IL-1α signaling for basal physiological expression. Dual inhibition with both blockers completely inhibited the effect from IL-1α while significantly attenuating the response from Brachyspira lysate, suggesting a minor contribution from another pathway. Together this demonstrates that Brachyspira activates p38 MAPK signaling driving IL-1α expression, which activates IL-1R1 causing DRA downregulation while also driving upregulation of IL-1α through p38 in a positive feedback mechanism. In conclusion, we elucidated a major pathway involved in DRA downregulation and its role in Brachyspira-induced diarrhea. In addition, these observations will aid in our understanding of other inflammatory and infectious diarrhea conditions.NEW & NOTEWORTHY The diarrheal disease caused by the two infectious spirochete spp. B. hyodysenteriae and B. hampsonii reduced the expression of DRA (SLC26A3), a major Cl-/HCO-3 exchanger involved in Cl- absorption. This is attributed to the upregulation of IL-1α driven by p38 MAPK. This work also describes a potential new mechanism in inflammatory diseases while showing the importance of IL-1α in maintaining DRA levels.
Asunto(s)
Diarrea , Interleucina-1alfa , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Diarrea/microbiología , Diarrea/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Humanos , Porcinos , Células CACO-2 , Interleucina-1alfa/metabolismo , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/genética , Colon/metabolismo , Colon/microbiología , Regulación hacia Abajo , Fosforilación , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Piridinas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas , Antiportadores de Cloruro-Bicarbonato , Péptidos y Proteínas de Señalización IntracelularRESUMEN
Perturbation of cell polarity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) progression. Scribble (SCRIB) is a well-characterized polarity regulator that has diverse roles in the pathogenesis of human neoplasms. To investigate the impact of SCRIB deficiency in PDAC development and progression, Scrib expression was genetically ablated in well-established mouse models of PDAC. Scrib loss in combination with KrasG12D did not influence development of pancreatic intraepithelial neoplasms in mice. However, Scrib deletion cooperated with KrasG12D and concomitant Trp53 heterozygous deletion to promote invasive PDAC and metastatic dissemination, leading to reduced overall survival. Immunohistochemical and transcriptome analyses revealed that Scrib-null tumors display a pronounced reduction of collagen content and an abundance of cancer-associated fibroblasts (CAF). Mechanistically, IL1α levels were reduced in Scrib-deficient tumors, and Scrib knockdown downregulated IL1α in mouse PDAC organoids (mPDO), which impaired CAF activation. Furthermore, Scrib loss increased YAP activation in mPDOs and established PDAC cell lines, enhancing cell survival. Clinically, SCRIB expression was decreased in human PDAC, and SCRIB mislocalization was associated with poorer patient outcome. These results indicate that SCRIB deficiency enhances cancer cell survival and remodels the tumor microenvironment to accelerate PDAC development and progression, establishing the tumor suppressor function of SCRIB in advanced pancreatic cancer. Significance: SCRIB loss promotes invasive pancreatic cancer development via both cell-autonomous and non-cell-autonomous processes and is associated with poorer outcomes, denoting SCRIB as a tumor suppressor and potential biomarker for the prediction of recurrence.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Supresoras de Tumor , Animales , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Ratones , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Humanos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Línea Celular Tumoral , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Organoides/metabolismo , Organoides/patología , Ratones Noqueados , Metástasis de la Neoplasia , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficienciaRESUMEN
BACKGROUND: Lung ischemia reperfusion injury (IRI) is the principal cause of primary graft dysfunction (PGD) after lung transplantation, affecting short-term and long-term mortality post-transplantation. PANoptosis, a newly identified form of regulated cell death involving apoptosis, necroptosis, and pyroptosis, is now considered a possible cause of organ damage and IRI. However, the specific role of PANoptosis to the development of lung IRI following lung transplantation is still not fully understood. METHODS: In this study, we identified differentially expressed genes (DEGs) by analyzing the gene expression data from the GEO database related to lung IRI following lung transplantation. PANoptosis-IRI DEGs were determined based on the intersection of PANoptosis-related genes and screened DEGs. Hub genes associated with lung IRI were further screened using Lasso regression and the SVM-RFE algorithm. Additionally, the Cibersort algorithm was employed to assess immune cell infiltration and investigate the interaction between immune cells and hub genes. The upstream miRNAs that may regulate hub genes and compounds that may interact with hub genes were also analyzed. Moreover, an external dataset was utilized to validate the differential expression analysis of hub genes. Finally, the expressions of hub genes were ultimately confirmed using quantitative real-time PCR, western blotting, and immunohistochemistry in both animal models of lung IRI and lung transplant patients. RESULTS: PANoptosis-related genes, specifically interferon regulatory factor 1 (IRF1) and interleukin 1 alpha (IL1A), have been identified as potential biomarkers for lung IRI following lung transplantation. In mouse models of lung IRI, both the mRNA and protein expression levels of IRF1 and IL1A were significantly elevated in lung tissues of the IRI group compared to the control group. Moreover, lung transplant recipients exhibited significantly higher protein levels of IRF1 and IL1A in PBMCs when compared to healthy controls. Patients who experienced PGD showed elevated levels of IRF1 and IL1A proteins in their blood samples. Furthermore, in patients undergoing lung transplantation, the protein levels of IRF1 and IL1A were notably increased in peripheral blood mononuclear cells (PBMCs) compared to healthy controls. In addition, patients who developed primary graft dysfunction (PGD) exhibited even higher protein levels of IRF1 and IL1A than those without PGD. Furthermore, PANoptosis was observed in the lung tissues of mouse models of lung IRI and in the PBMCs of patients who underwent lung transplantation. CONCLUSIONS: Our research identified IRF1 and IL1A as biomarkers associated with PANoptosis in lung IRI, suggesting their potential utility as targets for diagnosing and therapeutically intervening in lung IRI and PGD following lung transplantation.
Asunto(s)
Factor 1 Regulador del Interferón , Interleucina-1alfa , Trasplante de Pulmón , Pulmón , Daño por Reperfusión , Trasplante de Pulmón/efectos adversos , Daño por Reperfusión/inmunología , Daño por Reperfusión/metabolismo , Animales , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Humanos , Ratones , Pulmón/patología , Pulmón/inmunología , Masculino , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Necroptosis , Ratones Endogámicos C57BL , Piroptosis , Modelos Animales de Enfermedad , Disfunción Primaria del Injerto/genética , Disfunción Primaria del Injerto/etiología , Disfunción Primaria del Injerto/inmunología , Disfunción Primaria del Injerto/diagnósticoRESUMEN
Antiretroviral treatment (ART) has converted HIV from a lethal disease to a chronic condition, yet co-morbidities persist. Incomplete immune recovery and chronic immune activation, especially in the gut mucosa, contribute to these complications. Inflammasomes, multi-protein complexes activated by innate immune receptors, appear to play a role in these inflammatory responses. In particular, preliminary data indicate the involvement of IFI16 and NLRP3 inflammasomes in chronic HIV infection. This study explores inflammasome function in monocytes from people with HIV (PWH); 22 ART-treated with suppressed viremia and 17 untreated PWH were compared to 33 HIV-negative donors. Monocytes were primed with LPS and inflammasomes activated with ATP in vitro. IFI16 and NLRP3 mRNA expression were examined in a subset of donors. IFI16 and NLRP3 expression in unstimulated monocytes correlated negatively with CD4 T cell counts in untreated PWH. For IFI16, there was also a positive correlation with viral load. Monocytes from untreated PWH exhibit increased release of IL-1α, IL-1ß, and TNF compared to treated PWH and HIV-negative donors. However, circulating monocytes in PWH are not pre-primed for inflammasome activation in vivo. The findings suggest a link between IFI16, NLRP3, and HIV progression, emphasizing their potential role in comorbidities such as cardiovascular disease. The study provides insights into inflammasome regulation in HIV pathogenesis and its implications for therapeutic interventions.
Asunto(s)
Infecciones por VIH , Inflamasomas , Interleucina-1alfa , Interleucina-1beta , Monocitos , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Monocitos/metabolismo , Monocitos/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Interleucina-1beta/metabolismo , Inflamasomas/metabolismo , Masculino , Femenino , Adulto , Persona de Mediana Edad , Interleucina-1alfa/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Fosfoproteínas/metabolismo , Enfermedad Crónica , Carga ViralRESUMEN
Cannabidiol (CBD), which is derived from hemp, is gaining recognition because of its anti-inflammatory and lipid-modulating properties that could be utilized to treat acne. We conducted experiments to quantitatively assess the effects of CBD on acne-related cellular pathways. SEB-1 sebocytes and HaCaT keratinocytes were exposed to various CBD concentrations. CBD exhibited a concentration-dependent impact on cell viability and notably reduced SEB-1 viability; furthermore, it induced apoptosis and a significant increase in the apoptotic area at higher concentrations. Additionally, CBD remarkably reduced pro-inflammatory cytokines, including CXCL8, IL-1α, and IL-1ß. Additionally, it inhibited lipid synthesis by modulating the AMPK-SREBP-1 pathway and effectively reduced hyperkeratinization-related protein keratin 16. Simultaneously, CBD stimulated the synthesis of elastin, collagen 1, and collagen 3. These findings emphasize the potential of CBD for the management of acne because of its anti-inflammatory, apoptotic, and lipid-inhibitory effects. Notably, the modulation of the Akt/AMPK-SREBP-1 pathway revealed a novel and promising mechanism that could address the pathogenesis of acne.
Asunto(s)
Acné Vulgar , Apoptosis , Cannabidiol , Supervivencia Celular , Queratinocitos , Transducción de Señal , Humanos , Acné Vulgar/tratamiento farmacológico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Apoptosis/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Cicatriz/tratamiento farmacológico , Cicatriz/patología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Células HaCaT , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo III/metabolismo , Elastina/metabolismo , Glándulas Sebáceas/patología , Glándulas Sebáceas/efectos de los fármacos , Glándulas Sebáceas/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Línea CelularRESUMEN
Macrophage (Mφ) plasticity is critical for normal wound repair; however, in type 2 diabetic wounds, Mφs persist in a low-grade inflammatory state that prevents the resolution of wound inflammation. Increased NLRP3 inflammasome activity has been shown in diabetic wound Mφs; however, the molecular mechanisms regulating NLRP3 expression and activity are unclear. Here, we identified that diabetic wound keratinocytes induce Nlrp3 gene expression in wound Mφs through IL-1 receptor-mediated signaling, resulting in enhanced inflammasome activation in the presence of pathogen-associated molecular patterns and damage-associated molecular patterns. We found that IL-1α is increased in human and murine wound diabetic keratinocytes compared with nondiabetic controls and directly induces Mφ Nlrp3 expression through IL-1 receptor signaling. Mechanistically, we report that the histone demethylase, JMJD3, is increased in wound Mφs late post-injury and is induced by IL-1α from diabetic wound keratinocytes, resulting in Nlrp3 transcriptional activation through an H3K27me3-mediated mechanism. Using genetically engineered mice deficient in JMJD3 in myeloid cells (Jmjd3f/flyz2Cre+), we demonstrate that JMJD3 controls Mφ-mediated Nlrp3 expression during diabetic wound healing. Thus, our data suggest a role for keratinocyte-mediated IL-1α/IL-1R signaling in driving enhanced NLRP3 inflammasome activity in wound Mφs. These data also highlight the importance of cell cross-talk in wound tissues and identify JMJD3 and the IL-1R signaling cascade as important upstream therapeutic targets for Mφ NLRP3 inflammasome hyperactivity in nonhealing diabetic wounds.
Asunto(s)
Inflamasomas , Histona Demetilasas con Dominio de Jumonji , Queratinocitos , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores de Interleucina-1 , Transducción de Señal , Cicatrización de Heridas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Queratinocitos/metabolismo , Animales , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Macrófagos/metabolismo , Ratones , Transducción de Señal/fisiología , Humanos , Cicatrización de Heridas/fisiología , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Inflamasomas/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Masculino , Ratones Endogámicos C57BLRESUMEN
Osteoarthritis (OA) is increasing worldwide, and previous work found that OA increases systemic cartilage oligomeric matrix protein (COMP), which has also been implicated in prostate cancer (PCa). As such, we sought to investigate whether OA augments PCa progression. Cellular proliferation and migration of RM1 murine PCa cells treated with interleukin (IL)-1α, COMP, IL-1α + COMP, or conditioned media from cartilage explants treated with IL-1α (representing OA media) and with inhibitors of COMP were assessed. A validated murine model was used for tumor growth and marker expression analysis. Both proliferation and migration were greater in PCa cells treated with OA media compared to controls (p < 0.001), which was not seen with direct application of the stimulants. Migration and proliferation were not negatively affected when OA media was mixed with downstream and COMP inhibitors compared to controls (p > 0.05 for all). Mice with OA developed tumors 100% of the time, whereas mice without OA only 83.4% (p = 0.478). Tumor weight correlated with OA severity (Pearson correlation = 0.813, p = 0.002). Moreover, tumors from mice with OA demonstrated increased Ki-67 expression compared to controls (mean 24.56% vs. 6.91%, p = 0.004) but no difference in CD31, PSMA, or COMP expression (p > 0.05). OA appears to promote prostate cancer in vitro and in vivo.
Asunto(s)
Proteína de la Matriz Oligomérica del Cartílago , Proliferación Celular , Osteoartritis , Neoplasias de la Próstata , Masculino , Animales , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Ratones , Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Proteína de la Matriz Oligomérica del Cartílago/genética , Línea Celular Tumoral , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/etiología , Movimiento Celular/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Interleucina-1alfa/metabolismoRESUMEN
OBJECTIVE: To evaluate the therapeutic effect of normal mouse serum on radiation pneumonitis in mice and explore the possible mechanism. METHODS: Mouse models of radiation pneumonitis induced by thoracic radiation exposure were given intravenous injections of 100 µL normal mouse serum or normal saline immediately after the exposure followed by injections once every other day for a total of 8 injections. On the 15th day after irradiation, histopathological changes of the lungs of the mice were examined using HE staining, the levels of TNF-α, TGF-ß, IL-1α and IL-6 in the lung tissue and serum were detected using ELISA, and the percentages of lymphocytes in the lung tissue were analyzed with flow cytometry. Highth-roughput sequencing of exosome miRNA was carried out to explore the changes in the signaling pathways. The mRNA expression levels of the immune-related genes were detected by qRT-PCR, and the protein expressions of talin-1, tensin2, FAK, vinculin, α-actinin and paxillin in the focal adhesion signaling pathway were detected with Western blotting. RESULTS: In the mouse models of radiation pneumonitis, injections of normal mouse serum significantly decreased the lung organ coefficient, lowered the levels of TNF-α, TGF-ß, IL-1α and IL-6 in the serum and lung tissues, and ameliorated infiltration of CD45+, CD4+ and Treg lymphocytes in the lung tissue (all P < 0.05). The expression levels of Egfr and Pik3cd genes at both the mRNA and protein levels and the protein expressions of talin-1, tensin2, FAK, vinculin, α?actinin and paxillin were all significantly down-regulated in the mouse models after normal mouse serum treatment. CONCLUSION: Normal mouse serum ameliorates radiation pneumonitis in mice by inhibiting the expressions of key proteins in the Focal adhesion signaling pathway.
Asunto(s)
Neumonitis por Radiación , Transducción de Señal , Animales , Ratones , Adhesiones Focales , Pulmón/efectos de la radiación , Pulmón/metabolismo , Interleucina-6/metabolismo , Modelos Animales de Enfermedad , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Factor de Crecimiento Transformador beta/metabolismo , MicroARNs , Interleucina-1alfa/metabolismoRESUMEN
Intense exercise leads to increased production of free radicals, resulting in an inflammatory response in athletes. For this reason, it was decided to investigate whether a single intensive exercise until exhaustion applied after a 2-week rest period would result in a violation of the pro-oxidant-antioxidant balance. Twenty-seven trained female basketball players (age: 16.55 ± 0.96 years, body mass: 66.40 ± 13.68 kg, height: 173.45 ± 5.14 cm) were enrolled to the study following the application of inclusion and exclusion criteria. Study was conducted at the end of the competitive training phase. Participants underwent incremental treadmill exercise, with blood samples collected before the test, immediately post-exercise, and after a 3-h restitution period. Total antioxidant capacity (TAC) levels increased significantly after exercise and remained unchanged after 3 h. Concentration of interleukin-10 (IL-10) and creatine kinase (CK) significantly increased after exercise and then decreased. Concentration of interleukin-2 (IL-2) was significantly reduced immediately and 3 h after exercise, while interleukin-13 (IL-13), interleukin-1α (IL-1α), and tryptophan (TRP) decreased 3 h after exercise. No significant changes were observed in other biochemical parameters. Obtained results show an increased antioxidant capacity which reduced oxidative stress and inflammation in response to intense exercise indicating that rested athletes have a high adaptation and elevated tolerance to effort.