Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.388
Filtrar
1.
ACS Chem Neurosci ; 15(9): 1755-1769, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602894

RESUMEN

Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cobre , Factor de Crecimiento Nervioso , Péptidos Cíclicos , Factor A de Crecimiento Endotelial Vascular , Células PC12 , Animales , Ratas , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cobre/metabolismo , Cobre/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ionóforos/farmacología , Proteínas de Transporte de Catión/metabolismo , Receptor trkA/metabolismo
2.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673887

RESUMEN

Zinc is an essential trace element that plays a crucial role in T cell immunity. During T cell activation, zinc is not only structurally important, but zinc signals can also act as a second messenger. This research investigates zinc signals in T cell activation and their function in T helper cell 1 differentiation. For this purpose, peripheral blood mononuclear cells were activated via the T cell receptor-CD3 complex, and via CD28 as a costimulatory signal. Fast and long-term changes in intracellular zinc and calcium were monitored by flow cytometry. Further, interferon (IFN)-γ was analyzed to investigate the differentiation into T helper 1 cells. We show that fast zinc fluxes are induced via CD3. Also, the intracellular zinc concentration dramatically increases 72 h after anti-CD3 and anti-CD28 stimulation, which goes along with the high release of IFN-γ. Interestingly, we found that zinc signals can function as a costimulatory signal for T helper cell 1 differentiation when T cells are activated only via CD3. These results demonstrate the importance of zinc signaling alongside calcium signaling in T cell differentiation.


Asunto(s)
Antígenos CD28 , Diferenciación Celular , Interferón gamma , Activación de Linfocitos , Piridinas , Tionas , Zinc , Humanos , Calcio/metabolismo , Antígenos CD28/agonistas , Antígenos CD28/metabolismo , Complejo CD3/metabolismo , Diferenciación Celular/efectos de los fármacos , Interferón gamma/metabolismo , Ionóforos/farmacología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Transducción de Señal/efectos de los fármacos , Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/efectos de los fármacos , Zinc/metabolismo , Zinc/farmacología , Piridinas/química , Piridinas/farmacología , Tionas/química , Tionas/farmacología
3.
J Agric Food Chem ; 72(18): 10640-10654, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38661066

RESUMEN

Coronaviruses have consistently posed a major global concern in the field of livestock industry and public health. However, there is currently a lack of efficient drugs with broad-spectrum antiviral activity to address the challenges presented by emerging mutated strains or drug resistance. Additionally, the method for identifying multitarget drugs is also insufficient. Aminopeptidase N (APN) and 3C-like proteinase (3CLpro) represent promising targets for host-directed and virus-directed strategies, respectively, in the development of effective drugs against various coronaviruses. In this study, maduramycin ammonium demonstrated a broad-spectrum antiviral effect by targeting both of the proteins. The binding domains 4 Å from the ligand of both target proteins shared a structural similarity, suggesting that screening and designing drugs based on these domains might exhibit broad-spectrum and highly effective antiviral activity. Furthermore, it was identified that the polyether ionophores' ability to carry zinc ion might be one of the reasons why they were able to target APN and exhibit antiviral effect. The findings of this experiment provide novel perspectives for future drug screening and design, while also offering valuable references for the utilization of polyether ionophores in the management of livestock health.


Asunto(s)
Antivirales , Antígenos CD13 , Ionóforos , Ganado , Animales , Antivirales/farmacología , Antivirales/química , Ionóforos/farmacología , Ionóforos/química , Antígenos CD13/metabolismo , Antígenos CD13/química , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Drogas Veterinarias/farmacología , Drogas Veterinarias/química , Coronavirus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Policétidos Poliéteres
4.
Res Vet Sci ; 172: 105249, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579633

RESUMEN

The effect of salinomycin sodium alone and in combination with functional oils on performance and microbiota of broiler infected Eimeria were evaluated. 512 broilers were randomly assigned to 4 treatments (8 replicates, 16 birds/pen): a Control group (any additives); Ionophore group: salinomycin supplementation at 66 ppm (SS66); Ionophore +0.075% Functional oil (FO) group (SS66 + FO supplementation at 750 ppm); and Ionophore +0.10% FO group (SS66 + FO supplementation at 1000 ppm). At 14 days of age, birds were gavaged with 1 mL of a saline solution containing sporulated oocysts of E. tenella, E. acervulina and E. maxima. Performance indices were measured weekly. At 28 days, intestinal content was collected for microbiota analysis. Broilers of Control group presented the worst performance indices. Broilers of Ionophore + FO (0.075% and 0.10%) groups exhibited a higher BW at 28 days of age. The supplementation of Ionophore +0.075% FO resulted in a higher relative proportion of Firmicutes and a lower proportion of Actinobacteria in the ileum-jejunum. Lactobacillaceae was the dominant family in the jejunal, and ileal microbiotas of broilers fed diets supplemented with Ionophore, Ionophore +0.075% FO and Ionophore +0.10% FO. The supplementation of ionophore yielded higher numbers of Lactobacillaceae, Enterobactereaceae and Cloritridiaceae in the cecal. Ionophore associated with FO controlled the Lactobacillaceae, Enterobactereaceae and Cloritridiaceae families present in the cecum. Therefore, the combination of salinomycin with functional oil showed synergistic effect on performance and modulation of intestinal microbiota of broilers challenged with Eimeria.


Asunto(s)
Alimentación Animal , Pollos , Coccidiosis , Dieta , Suplementos Dietéticos , Eimeria , Microbioma Gastrointestinal , Policétidos Poliéteres , Enfermedades de las Aves de Corral , Piranos , Animales , Pollos/crecimiento & desarrollo , Piranos/farmacología , Piranos/administración & dosificación , Coccidiosis/veterinaria , Coccidiosis/tratamiento farmacológico , Coccidiosis/parasitología , Microbioma Gastrointestinal/efectos de los fármacos , Eimeria/efectos de los fármacos , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Alimentación Animal/análisis , Dieta/veterinaria , Distribución Aleatoria , Ionóforos/farmacología , Ionóforos/administración & dosificación , Coccidiostáticos/farmacología , Coccidiostáticos/administración & dosificación , Masculino
5.
Mol Biol Cell ; 35(5): ar70, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38536415

RESUMEN

Lysosome turnover and biogenesis are induced in response to treatment of cells with agents that cause membrane rupture, but whether other stress conditions engage similar homeostatic mechanisms is not well understood. Recently we described a form of selective turnover of lysosomes that is induced by metabolic stress or by treatment of cells with ionophores or lysosomotropic agents, involving the formation of intraluminal vesicles within intact organelles through microautophagy. Selective turnover involves noncanonical autophagy and the lipidation of LC3 onto lysosomal membranes, as well as the autophagy gene-dependent formation of intraluminal vesicles. Here, we find a form of microautophagy induction that requires activity of the lipid kinase PIKfyve and is associated with the nuclear translocation of TFEB, a known mediator of lysosome biogenesis. We show that LC3 undergoes turnover during this process, and that PIKfyve is required for the formation of intraluminal vesicles and LC3 turnover, but not for LC3 lipidation onto lysosomal membranes, demonstrating that microautophagy is regulated by PIKfyve downstream of noncanonical autophagy. We further show that TFEB activation requires noncanonical autophagy but not PIKfyve, distinguishing the regulation of biogenesis from microautophagy occurring in response to agents that induce lysosomal stress.


Asunto(s)
Lisosomas , Microautofagia , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Membranas Intracelulares/metabolismo , Ionóforos , Lisosomas/metabolismo , Humanos , Línea Celular Tumoral
6.
Free Radic Biol Med ; 216: 33-45, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479632

RESUMEN

NADPH oxidase is a target of hyperglycemia in type 2 diabetes mellitus (T2DM), which causes dysregulation of enzyme. Alterations in regulation of NADPH oxidase activity mediated receptor and non-receptor signaling in bone marrow granulocytes of mice with obesity-induced T2DM were studied. The animals fed high fat diet (516 kcal/100 g) for 16 weeks. NADPH oxidase-related generation of reactive species (RS) at normo- and hyperthermia was estimated using chemiluminescent analysis. The redox status of the cells was assessed by Redox Sensor Red CC-1. Baseline biochemical indicators in blood (glucose, cholesterol, HDL and LDL levels) were significant higher in T2DM mice versus controls. Using specific inhibitors, signaling mediated by formyl peptide receptors (FPRs) to NADPH oxidase was shown to involve PLC, PKC, cytochrome p450 in both control and T2DM groups and PLA2 in controls. In T2DM regulation of NADPH oxidase activity via mFpr1, a high-affinity receptors, occurred with a significant increase of the role of PKC isoforms and suppression of PLA2 participation. Significant differences between this regulation via mFpr2, low-affinity receptors, were not found. Non-receptor activation of NADPH oxidase with ionomycin (Ca2+ ionophore) or phorbol ester (direct activator of PKC isoforms) did not revealed differences in the kinetic parameters between groups at 37 °C and 40 °C. When these agents were used together (synergistic effect), lower sensitivity of cells to ionophore was observed in T2DM at both temperatures. Redox status in responses to opsonized zymosan was higher in T2DM mice at 37 °C and similar to control levels at 40 °C. ROC-analysis identified Tmax, RS production and effect of opsonized zymosan as the most significant predictors for discriminating between groups. It was concluded that Ca2+-dependent/PKC-mediated regulation of NADPH oxidase activity was altered in BM granulocytes from diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones , Animales , Zimosan/farmacología , Granulocitos , NADPH Oxidasas/genética , Isoformas de Proteínas , Ionóforos/farmacología , Fosfolipasas A2 , Obesidad/complicaciones , Especies Reactivas de Oxígeno/farmacología
7.
Sci Adv ; 10(12): eadl4018, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517966

RESUMEN

In a phenotypical screen of 56 acute myeloid leukemia (AML) patient samples and using a library of 10,000 compounds, we identified a hit with increased sensitivity toward SF3B1-mutated and adverse risk AMLs. Through structure-activity relationship studies, this hit was optimized into a potent, specific, and nongenotoxic molecule called UM4118. We demonstrated that UM4118 acts as a copper ionophore that initiates a mitochondrial-based noncanonical form of cell death known as cuproptosis. CRISPR-Cas9 loss-of-function screen further revealed that iron-sulfur cluster (ISC) deficiency enhances copper-mediated cell death. Specifically, we found that loss of the mitochondrial ISC transporter ABCB7 is synthetic lethal to UM4118. ABCB7 is misspliced and down-regulated in SF3B1-mutated leukemia, creating a vulnerability to copper ionophores. Accordingly, ABCB7 overexpression partially rescued SF3B1-mutated cells to copper overload. Together, our work provides mechanistic insights that link ISC deficiency to cuproptosis, as exemplified by the high sensitivity of SF3B1-mutated AMLs. We thus propose SF3B1 mutations as a biomarker for future copper ionophore-based therapies.


Asunto(s)
Cobre , Leucemia Mieloide Aguda , Humanos , Cobre/metabolismo , Factores de Empalme de ARN/genética , Mutación , Leucemia Mieloide Aguda/genética , Ionóforos/farmacología , Fosfoproteínas/metabolismo
8.
Angew Chem Int Ed Engl ; 63(22): e202403314, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38517056

RESUMEN

Artificial ion transport systems have emerged as an important class of compounds that promise applications in chemotherapeutics as anticancer agents or to treat channelopathies. Stimulus-responsive systems that offer spatiotemporally controlled activity for targeted applications remain rare. Here we utilize dynamic hydrogen bonding interactions of a 4,6-dihydroxy-isophthalamide core to generate a modular platform enabling access to stimuli-responsive ion transporters that can be activated in response to a wide variety of external stimuli, including light, redox, and enzymes, with excellent OFF-ON activation profiles. Alkylation of the two free hydroxyl groups with stimulus-responsive moieties locks the amide bonds through intramolecular hydrogen bonding and hence makes them unavailable for anion binding and transport. Triggering using a particular stimulus to cleave both cages reverses the hydrogen bonding arrangement, to generate a highly preorganized anion binding cavity for efficient transmembrane transport. Integration of two cages that are responsive to orthogonal stimuli enables multi-stimuli activation, where both stimuli are required to trigger transport in an AND logic process. Importantly, the strategy provides a facile method to post-functionalize the highly active transporter core with a variety of stimulus-responsive moieties for targeted activation with multiple triggers.


Asunto(s)
Enlace de Hidrógeno , Aniones/química , Ionóforos/química , Oxidación-Reducción , Estructura Molecular , Transporte Iónico
9.
Parasitol Res ; 123(2): 139, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381180

RESUMEN

The flow of calcium ions (Ca2+) is involved in numerous vital activities of Toxoplasma gondii. Calreticulin is a type of Ca2+-binding protein in the endoplasmic reticulum (ER) that is involved in Ca2+ signaling pathway regulation, Ca2+ storage, and protein folding. In this work, the calreticulin (CALR), a protein predicted to possess a conserved domain of calreticulin in T. gondii, was characterized. The CALR localized in the ER. Using reverse genetics, we discovered that CALR is not necessary for the lytic cycle, including invasion and replication. However, depletion of CALR affected microneme secretion triggered by A23187, which is a Ca2+ ionophore used to increase cytoplasmic Ca2+ concentration. Furthermore, we discovered that CALR influences Ca2+ release. Transcriptomic comparison between Δcalr and Δku80 parasites showed that 226 genes in the Δcalr parasites were significantly downregulated (p < 0.05). The cellular biological functions of the downregulated genes were mainly involved in calmodulin-dependent protein kinase pathways. Furthermore, in the absence of CALR, tachyzoites were still able to cause acute infection in mice. These results imply that by influencing ER Ca2+ release content, CALR may further impair the ionophore-induced secretion of the parasite. However, this protein is not required for the completion of the parasite's lytic cycle or for the acute virulence of the parasite.


Asunto(s)
Calreticulina , Proteínas Protozoarias , Toxoplasma , Animales , Ratones , Calreticulina/genética , Calreticulina/metabolismo , Retículo Endoplásmico , Ionóforos , Micronema , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
10.
Methods Mol Biol ; 2772: 273-283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411821

RESUMEN

Single-particle tracking (SPT) of biomolecules in the plant endoplasmic reticulum has the potential to inform on the formation of protein-protein complexes, metabolons, and the transport of molecules through both the ER membrane and lumen. Plant cells are particularly challenging for observing and tracking single molecules due to their unique structure, size, and considerable autofluorescence. However, by using variable-angle or highly inclined epifluorescence microscopy (VAEM) and transient expression in tobacco, it is possible to observe single-particle dynamics in the ER. Selecting the appropriate fluorophore, and ensuring the correct fluorophore density in the ER, is essential for successful SPT. By using tuneable fluorophores, which can be photoconverted and photoactivated, it is possible to vary the density of visible fluorophores in the ER dynamically. Here we describe methods to prepare plant samples for VAEM and two methods for determining and analyzing single-particle tracks from VAEM time series.


Asunto(s)
Microscopía , Imagen Individual de Molécula , Nicotiana , Retículo Endoplásmico , Colorantes Fluorescentes , Ionóforos
11.
J Am Chem Soc ; 146(10): 6566-6579, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38422385

RESUMEN

Superior photostability, minimal phototoxicity, red-shifted absorption/emission wavelengths, high brightness, and an enlarged Stokes shift are essential characteristics of top-tier organic fluorophores, particularly for long-lasting super-resolution imaging in live cells (e.g., via stimulated emission depletion (STED) nanoscopy). However, few existing fluorophores possess all of these properties. In this study, we demonstrate a general approach for simultaneously enhancing these parameters through the introduction of 9,9-dimethyl-9,10-dihydroacridine (DMA) as an electron-donating auxochrome. DMA not only induces red shifts in emission wavelengths but also suppresses photooxidative reactions and prevents the formation of triplet states in DMA-based fluorophores, greatly improving photostability and remarkably minimizing phototoxicity. Moreover, the DMA group enhances the fluorophores' brightness and enlarges the Stokes shift. Importantly, the "universal" benefits of attaching the DMA auxochrome have been exemplified in various fluorophores including rhodamines, difluoride-boron complexes, and coumarin derivatives. The resulting fluorophores successfully enabled the STED imaging of organelles and HaloTag-labeled membrane proteins.


Asunto(s)
Colorantes Fluorescentes , Humanos , Rodaminas , Microscopía Fluorescente/métodos , Células HeLa , Ionóforos
12.
Chembiochem ; 25(7): e202400013, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38329925

RESUMEN

Carboxylic polyether ionophores (CPIs) are among the most prevalent agricultural antibiotics (notably in the US) and these compounds have been in use for decades. The potential to reposition CPIs beyond veterinary use, e. g. through chemical modifications to enhance their selectivity window, is an exciting challenge and opportunity, considering their general resilience towards resistance development. Given the very large societal impact of these somewhat controversial compounds, it is surprising that many aspects of their mechanisms and activities in cells remain unclear. Here, we report comparative biological activities of the CPI routiennocin and two stereoisomers, including its enantiomer. We used an efficient convergent synthesis strategy to access the compounds and conducted a broad survey of antibacterial activities against planktonic cells and biofilms as well as the compounds' effects on mammalian cells, the latter assessed both via standard cell viability assays and broad morphological profiling. Interestingly, similar bioactivity of the enantiomeric pair was observed across all assays, strongly suggesting that chiral interactions do not play a decisive role in the mode of action. Overall, our findings are consistent with a mechanistic model involving highly dynamic behaviour of CPIs in biological membranes.


Asunto(s)
Antibacterianos , Policétidos Poliéteres , Animales , Antibacterianos/farmacología , Ionóforos/química , Mamíferos/metabolismo
13.
Biochem Pharmacol ; 222: 116092, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408679

RESUMEN

Clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) is an antimicrobial agent whose actions as a zinc or copper ionophore and an iron chelator revived the interest in similar compounds for the treatment of fungal and bacterial infections, neurodegeneration and cancer. Recently, we reported zinc ionophores, including clioquinol, cause vasorelaxation in isolated arteries through mechanisms that involve sensory nerves, endothelium and vascular smooth muscle. Here, we report that clioquinol also uniquely acts as a competitive alpha-1 (α1) adrenoceptor antagonist. We employed ex vivo functional vascular contraction and pharmacological techniques in rat isolated mesenteric arteries, receptor binding assays using stabilized solubilized α1 receptor variants, or wild-type human α1-adrenoceptors transfected in COS-7 cells (African green monkey kidney fibroblast-like cells), and molecular dynamics homology modelling based on the recently published α1A adrenoceptor cryo-EM and α1B crystal structures. At higher concentrations, all ionophores including clioquinol cause a non-competitive antagonism of agonist-mediated contraction due to intracellular zinc delivery, as reported previously. However, at lower concentration ranges, clioquinol has an additional mechanism of competitively inhibiting α1-adrenoceptors that contributes to decreasing vascular contractility. Molecular dynamic simulation showed that clioquinol binds stably to the orthosteric binding site (Asp106) of the receptor, confirming the structural basis for competitive α1-adrenoceptor antagonism by clioquinol.


Asunto(s)
Clioquinol , Ratas , Humanos , Animales , Chlorocebus aethiops , Clioquinol/farmacología , Oxiquinolina , Receptores Adrenérgicos alfa 1/metabolismo , Ionóforos , Zinc
14.
J Sep Sci ; 47(4): e2300761, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403454

RESUMEN

The combination of ionophoric coccidiostats and amino acids (AAs) is important in poultry feeding to enhance immunity and improve the growth and feed efficiency of birds suffering from coccidiosis. A simple, rapid, and economical high-performance liquid chromatography-ultraviolet detection (HPLC-UV) method for the simultaneous determination of three ionophoric coccidiostats, namely salinomycin (SAL), maduramicin (MAD), and monensin (MON) in addition to three AAs; L-tryptophan (L-TRP), alpha-ketoleucin (KLEU), and L-valine (L-VAL) in feed premixes was developed and validated. Chromatographic separation was achieved in less than 12 min using a phenyl hexyl column with a mobile phase consisting of acetonitrile/methanol/water (25:20:55, v/v/v) adjusted to pH 3 using phosphoric acid. Isocratic elution was performed at a flow rate of 1 mL/min with UV detection at 210 nm. The method showed good linearity in the ranges 0.50-5.0 mg/mL for MON, 0.20-2.0 mg/mL for MAD and SAL, 10.0-100.0 µg/mL for L-TRP and KLEU, and 50.0-500.0 µg/mL for VAL. The developed method was successfully applied to determine the studied analytes in feed premixes with good recoveries and precision. The good validation criteria of the proposed method allow its utilization in quality control laboratories.


Asunto(s)
Coccidiostáticos , Coccidiostáticos/análisis , Cromatografía Líquida de Alta Presión , Ionóforos/análisis , Aminoácidos , Monensina/análisis
15.
Methods Mol Biol ; 2753: 403-407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285355

RESUMEN

Zebrafish embryos are an important organism used as an in vivo model in a wide variety of disciplines from the past to the present. Immunohistochemistry analyses are an important method used to determine the localization of specific antigens in tissue sections with labeled antibodies depending on antigen-antibody interactions in zebrafish embryos. Immunofluorescence assays are an immunohistochemistry method that uses fluorophores to determine diverse cellular antigens. Zebrafish embryos and larvae, with their small size, are the most ideal model organisms for whole-mount immunohistochemical and immunofluorescent methods today. The small size of these organisms allows simultaneous evaluation of different tissues and organs, and results are obtained in a shorter time. In this section, whole-mount immunohistochemical and immunofluorescent analysis methods in zebrafish embryos, and larvae are summarized in detail, taking into account different studies and recent advances.


Asunto(s)
Perciformes , Pez Cebra , Animales , Técnica del Anticuerpo Fluorescente , Anticuerpos , Colorantes Fluorescentes , Ionóforos , Larva
16.
Commun Biol ; 7(1): 53, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184735

RESUMEN

Fluorescence emission is common in plants. While fluorescence microscopy has been widely used to study living plants, its application in quantifying the fluorescence of fossil plants has been limited. Fossil plant fluorescence, from original fluorophores or formed during fossilization, can offer valuable insights into fluorescence in ancient plants and fossilization processes. In this work, we utilize two-photon fluorescence microspectroscopy to spatially and spectrally resolve the fluorescence emitted by amber-embedded plants, leaf compressions, and silicified wood. The advanced micro-spectroscope utilized, with its pixel-level spectral resolution and line-scan excitation capabilities, allows us to collect comprehensive excitation and emission spectra with high sensitivity and minimal laser damage to the specimens. By applying linear spectral unmixing to the spectrally resolved fluorescence images, we can differentiate between (a) the matrix and (b) the materials that comprise the fossil. Our analysis suggests that the latter correspond to durable tissues such as lignin and cellulose. Additionally, we observe potential signals from chlorophyll derivatives/tannins, although minerals may have contributed to this. This research opens doors to exploring ancient ecosystems and understanding the ecological roles of fluorescence in plants throughout time. Furthermore, the protocols developed herein can also be applied to analyze non-plant fossils and biological specimens.


Asunto(s)
Ecosistema , Fósiles , Microscopía Fluorescente , Ámbar , Celulosa , Colorantes Fluorescentes , Ionóforos
17.
Sci Rep ; 14(1): 1802, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245618

RESUMEN

Artemisinin combination therapy remains effective for the treatment of falciparum malaria. However, Plasmodium falciparum can escape the effects of artemisinin by arresting their growth. The growth-arrested parasites cannot be distinguished from nonviable parasites with standard microscopy techniques due to their morphological similarities. Here, we demonstrated the efficacy of a new laboratory assay that is compatible with the artemisinin susceptibility test. As a result of the differential cell permeabilities of two DNA-binding fluorophores, growth-arrested P. falciparum can be distinguished from parasites killed by artemisinin, since the latter lose cell membrane permeability. This fluorescence-based assay increased the sensitivity and specificity of the ring survival assay in the assessment of artemisinin susceptibility. When combined with a third fluorophore-conjugated anti-human leukocyte antibody, this trio fluorophore assay became more useful in identifying growth-arrested parasites in mock human blood samples. This novel assay is a simple and rapid technique for monitoring artemisinin resistance with greater sensitivity and accuracy compared with morphology-based observations under a light microscope.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Eritrocitos/parasitología , Ionóforos/farmacología , Resistencia a Medicamentos
18.
Chembiochem ; 25(5): e202300857, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38206088

RESUMEN

As the research of biological systems becomes increasingly complex, there is a growing demand for fluorophores with a diverse range of wavelengths. In this study, we introduce phosphole-based fluorophores that surpass existing options like dansyl chloride. The reactive S-Cl bond in chlorosulfonylimino-5-phenylphosphole derivatives allows rapid and direct coupling to peptides making the fluorophores easily introducible to peptides. This coupling process occurs under mild conditions, demonstrated for [F7 ,P34 ]-NPY and its shorter analogues. Peptides linked with our fluorophores exhibit similar receptor activation to the control peptide, while maintaining high stability and low toxicity, making them ideal biolabeling reagents. In fluorescence microscopy experiments, they can be easily visualized even at low concentrations, without suffering from the typical issue of bleaching. These phosphole-based fluorophores represent a significant leap forward in the field. Their versatility, ease of modification, superior performance, and applicability in biological labeling make them a promising choice for researchers seeking advanced tools to unravel the details of complex biological systems.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Ionóforos , Microscopía Fluorescente , Péptidos
19.
mBio ; 15(2): e0315523, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38214510

RESUMEN

Ionophores are antibacterial compounds that affect bacterial growth by changing intracellular concentrations of the essential cations, sodium and potassium. They are extensively used in animal husbandry to increase productivity and reduce infectious diseases, but our understanding of the potential for and effects of resistance development to ionophores is poorly known. Thus, given their widespread global usage, it is important to determine the potential negative consequences of ionophore use on human and animal health. In this study, we demonstrate that exposure to the ionophore monensin can select for resistant mutants in the human and animal pathogen Staphylococcus aureus, with a majority of the resistant mutants showing increased growth rates in vitro and/or in mice. Whole-genome sequencing and proteomic analysis of the resistant mutants show that the resistance phenotype is associated with de-repression of de novo purine synthesis, which could be achieved through mutations in different transcriptional regulators including mutations in the gene purR, the repressor of the purine de novo synthesis pathway. This study shows that mutants with reduced susceptibility to the ionophore monensin can be readily selected and highlights an unexplored link between ionophore resistance, purine metabolism, and fitness in pathogenic bacteria.IMPORTANCEThis study demonstrates a novel link between ionophore resistance, purine metabolism, and virulence/fitness in the key human and animal pathogen Staphylococcus aureus. The results show that mutants with reduced susceptibility to the commonly used ionophore monensin can be readily selected and that the reduced susceptibility observed is associated with an increased expression of the de novo purine synthesis pathway. This study increases our understanding of the impact of the use of animal feed additives on both human and veterinary medicine.


Asunto(s)
Monensina , Infecciones Estafilocócicas , Humanos , Animales , Ratones , Monensina/farmacología , Virulencia , Staphylococcus aureus , Proteómica , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Ionóforos/farmacología , Ionóforos/metabolismo , Purinas
20.
Chem Biodivers ; 21(2): e202301834, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38179845

RESUMEN

We discovered a new tetronomycin analog, C-32-OH tetronomycin (2) from the Streptomyces sp. K20-0247 strain, which produces tetronomycin (1). After NMR analysis of 2, we determined the planar structure. Futhermore, the absolute stereochemistry of 2 was deduced based on the biosynthetic pathway of 1 in the K20-0247 strain and a comparison of experimental electronic circular dichroism (ECD) results of 1 with 2. While 2 exihibits potent antibacterial activity aganist Gram-positive baceria including vancomycin-intermediate Staphylococcus aureus (VISA) strains and vancomycin-resistant Enterococci (VRE), the antibacterial activity of 2 shows 16-32-folds weaker than that of 1 suggesting that the C-34 methyl group in 1 is one of the very important functinal group. Moreover, we evaluated the ionophore activity of 1 and 2 and neither compound shows ionophore activity at reasonable concetrations. Our research suggests that 1 and 2 would have different target(s) from an ionophore mechanism in the antibacterial activity and tetronomycins are promising natural products for broad-spectrum antibiotics.


Asunto(s)
Antibacterianos , Éteres , Antibacterianos/farmacología , Bacterias Grampositivas , Ionóforos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA