Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
1.
Biochem J ; 481(16): 1075-1096, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39105673

RESUMEN

Toxoplasma gondii is a widely distributed apicomplexan parasite causing toxoplasmosis, a critical health issue for immunocompromised individuals and for congenitally infected foetuses. Current treatment options are limited in number and associated with severe side effects. Thus, novel anti-toxoplasma agents need to be identified and developed. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is considered the rate-limiting enzyme in the non-mevalonate pathway for the biosynthesis of the isoprenoid precursors isopentenyl pyrophosphate and dimethylallyl pyrophosphate in the parasite, and has been previously investigated for its key role as a novel drug target in some species, encompassing Plasmodia, Mycobacteria and Escherichia coli. In this study, we present the first crystal structure of T. gondii DXR (TgDXR) in a tertiary complex with the inhibitor fosmidomycin and the cofactor NADPH in dimeric conformation at 2.5 Šresolution revealing the inhibitor binding mode. In addition, we biologically characterize reverse α-phenyl-ß-thia and ß-oxa fosmidomycin analogues and show that some derivatives are strong inhibitors of TgDXR which also, in contrast with fosmidomycin, inhibit the growth of T. gondii in vitro. Here, ((3,4-dichlorophenyl)((2-(hydroxy(methyl)amino)-2-oxoethyl)thio)methyl)phosphonic acid was identified as the most potent anti T. gondii compound. These findings will enable the future design and development of more potent anti-toxoplasma DXR inhibitors.


Asunto(s)
Isomerasas Aldosa-Cetosa , Fosfomicina , Complejos Multienzimáticos , Toxoplasma , Toxoplasma/enzimología , Toxoplasma/efectos de los fármacos , Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo , Isomerasas Aldosa-Cetosa/genética , Fosfomicina/farmacología , Fosfomicina/análogos & derivados , Fosfomicina/química , Cristalografía por Rayos X , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , NADP/metabolismo , NADP/química , Humanos , Modelos Moleculares , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/química , Oxidorreductasas/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 391, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910188

RESUMEN

Metal cofactors are essential for catalysis and enable countless conversions in nature. Interestingly, the metal cofactor is not always static but mobile with movements of more than 4 Å. These movements of the metal can have different functions. In the case of the xylose isomerase and medium-chain dehydrogenases, it clearly serves a catalytic purpose. The metal cofactor moves during substrate activation and even during the catalytic turnover. On the other hand, in class II aldolases, the enzymes display resting states and active states depending on the movement of the catalytic metal cofactor. This movement is caused by substrate docking, causing the metal cofactor to take the position essential for catalysis. As these metal movements are found in structurally and mechanistically unrelated enzymes, it has to be expected that this metal movement is more common than currently perceived. KEY POINTS: • Metal ions are essential cofactors that can move during catalysis. • In class II aldolases, the metal cofactors can reside in a resting state and an active state. • In MDR, the movement of the metal cofactor is essential for substrate docking.


Asunto(s)
Coenzimas , Metales , Metales/metabolismo , Coenzimas/metabolismo , Isomerasas Aldosa-Cetosa/metabolismo , Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/genética , Catálisis , Oxidorreductasas/metabolismo , Oxidorreductasas/química
3.
Food Chem ; 457: 140127, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908252

RESUMEN

The production of the sugars fructose and lactulose from lactose using the enzymes ß-galactosidase and glucose isomerase immobilized on bacterial cellulose (BC) membranes has been investigated. Lactose is hydrolyzed by ß-galactosidase at 30 °C to glucose and galactose at a high conversion rate, while at the same temperature, glucose isomerase is not effective in converting the produced glucose to fructose. The rate of the isomerization reaction of glucose to fructose at 70 °C has been studied. Two types of enzyme immobilization were investigated: immobilization in one stage and immobilization in two stages. The results showed that BC membrane increased three-fold the yield and the reaction rate of fructose and lactulose production from lactose. The noteworthy enhancement of BC membranes' impact on the isomerization reaction by immobilized enzymes grants permission for a novel research avenue within the context of white biotechnology development. Additionally, this effect amplifies the role of BC in sustainability and the circular economy.


Asunto(s)
Celulosa , Enzimas Inmovilizadas , Fructosa , Lactosa , Lactulosa , beta-Galactosidasa , Lactulosa/química , Lactulosa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Lactosa/química , Lactosa/metabolismo , Celulosa/química , Celulosa/metabolismo , Fructosa/química , Fructosa/metabolismo , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Isomerismo , Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Bacterias/enzimología , Bacterias/química , Bacterias/metabolismo
4.
ACS Infect Dis ; 10(5): 1739-1752, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38647213

RESUMEN

Reverse analogs of the phosphonohydroxamic acid antibiotic fosmidomycin are potent inhibitors of the nonmevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, IspC) of Plasmodium falciparum. Some novel analogs with large phenylalkyl substituents at the hydroxamic acid nitrogen exhibit nanomolar PfDXR inhibition and potent in vitro growth inhibition of P. falciparum parasites coupled with good parasite selectivity. X-ray crystallographic studies demonstrated that the N-phenylpropyl substituent of the newly developed lead compound 13e is accommodated in a subpocket within the DXR catalytic domain but does not reach the NADPH binding pocket of the N-terminal domain. As shown for reverse carba and thia analogs, PfDXR selectively binds the S-enantiomer of the new lead compound. In addition, some representatives of the novel inhibitor subclass are nanomolar Escherichia coli DXR inhibitors, whereas the inhibition of Mycobacterium tuberculosis DXR is considerably weaker.


Asunto(s)
Isomerasas Aldosa-Cetosa , Antimaláricos , Fosfomicina , Ácidos Hidroxámicos , Complejos Multienzimáticos , Plasmodium falciparum , Fosfomicina/farmacología , Fosfomicina/análogos & derivados , Fosfomicina/química , Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/metabolismo , Isomerasas Aldosa-Cetosa/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/química , Antimaláricos/farmacología , Antimaláricos/química , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/química , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/enzimología , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Dominio Catalítico , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo
5.
Bioorg Chem ; 145: 107189, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350272

RESUMEN

6-Deoxy-l-sorbose (6-DLS) is an imperative rare sugar employed in food, agriculture, pharmaceutical and cosmetic industeries. However, it is a synthetic and very expensive rare sugars, previously synthesized by chemo-enzymatic methods through a long chain of chemical processes. Recently, enzymatic synthesis of rare sugars has attracted a lot of attention due to its advantages over synthetic methods. In this work, a promising approach for the synthesis of 6-DLS from an inexpensive sugar l-fucose was identified. The genes for l-fucose isomerase from Paenibacillus rhizosphaerae (Pr-LFI) and genes for d-tagatose-3-epimerase from Caballeronia fortuita (Cf-DTE) have been used for cloning and co-expression in Escherichia coli, developed a recombinant plasmid harboring pANY1-Pr-LFI/Cf-DTE vector. The recombinant co-expression system exhibited an optimum activity at 50 °C of temperature and pH 6.5 in the presence of Co2+ metal ion which inflated the catalytic activity by 6.8 folds as compared to control group with no metal ions. The recombinant co-expressed system was stable up to more than 50 % relative activity after 12 h and revealed a melting temperature (Tm) of 63.38 °C exhibiting half-life of 13.17 h at 50 °C. The co-expression system exhibited, 4.93, 11.41 and 16.21 g/L of 6-DLS production from initial l-fucose concentration of 30, 70 and 100 g/L, which equates to conversion yield of 16.44 %, 16.30 % and 16.21 % respectively. Generally, this study offers a promising strategy for the biological production of 6-DLS from an inexpensive substrate l-fucose in slightly acidic conditions with the aid of co-expression system harboring Pr-LFI and CF-DTE genes.


Asunto(s)
Isomerasas Aldosa-Cetosa , Hexosas , Sorbosa , Fucosa , Racemasas y Epimerasas/genética , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/química , Azúcares , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/genética
6.
Int J Biol Macromol ; 254(Pt 2): 127781, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923040

RESUMEN

A novel l-arabinose isomerase (L-AI) from Arthrobacter psychrolactophilus (Ap L-AI) was successfully cloned and characterized. The enzyme catalyzes the isomerization of d-galactose into a rare sugar d-tagatose. The recombinant Ap L-AI had an approximate molecular weight of about 258 kDa, suggesting it was an aggregate of five 58 kDa monomers and became the first record as a homo-pentamer L-AI. The catalytic efficiency (kcat/Km) and Km for d-galactose were 0.32 mM-1 min-1 and 51.43 mM, respectively, while for l-arabinose, were 0.64 mM-1 min-1 and 23.41 mM, respectively. It had the highest activity at pH 7.0-7.5 and 60 °C in the presence of 0.250 mM Mn2+. Ap L-AI was discovered to be an outstanding thermostable enzyme that only lost its half-life value at 60 °C for >1000 min. These findings suggest that l-arabinose isomerase from Arthrobacter psychrolactophilus is a promising candidate for d-tagatose mass-production due to its industrially competitive temperature.


Asunto(s)
Isomerasas Aldosa-Cetosa , Arthrobacter , Galactosa/química , Proteínas Recombinantes/genética , Clonación Molecular , Hexosas/química , Isomerasas Aldosa-Cetosa/química , Concentración de Iones de Hidrógeno
7.
Biochem Biophys Res Commun ; 682: 21-26, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37793321

RESUMEN

Glucose isomerase (GI) is extensively used in the food industry for production of high-fructose corn syrup and for the production of biofuels and other renewable chemicals. Structure-based studies on GI inhibitors are important for improving its efficiency in industrial applications. Here, we report the subatomic crystal structure of Streptomyces rubiginosus GI (SruGI) complexed with its inhibitor, xylitol, at 0.99 Å resolution. Electron density map and temperature factor analysis showed partial binding of xylitol to the M1 metal binding site of SruGI, providing two different conformations of the metal binding site and the substrate binding channel. The xylitol molecule induced a conformational change in the M2 metal ion-interacting Asp255 residue, which subsequently led to a conformational change in the side chain of Asp181 residue. This led to the positional shift of Pro25 by 1.71 Å and side chain rotation of Phe26 by 21°, where located on the neighboring protomer in tetrameric SruGI. The conformation change of these two residues affect the size of the substrate-binding channel of GI. Therefore, xylitol binding to M1 site of SruGI induces not only a conformational changes of the metal-binding site, but also conformational change of substrate-binding channel of the tetrameric SruGI. These results expand our knowledge about the mechanism underlying the inhibitory effect of xylitol on GI.


Asunto(s)
Isomerasas Aldosa-Cetosa , Xilitol , Xilitol/química , Xilitol/farmacología , Sitios de Unión , Conformación Proteica , Metales/metabolismo , Isomerasas Aldosa-Cetosa/química , Glucosa/metabolismo
8.
J Agric Food Chem ; 71(42): 15713-15722, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37823838

RESUMEN

d-Allose is a low-calorie rare sugar with great application potential in the food and pharmaceutical industries. The production of d-allose has been accomplished using l-rhamnose isomerase (L-RI), but concomitantly increasing the enzyme's stability and activity remains challenging. Here, we rationally engineered an L-RI from Clostridium stercorarium to enhance its stability by comprehensive computation-aided redesign of its flexible regions, which were successively identified using molecular dynamics simulations. The resulting combinatorial mutant M2-4 exhibited a 5.7-fold increased half-life at 75 °C while also exhibiting improved catalytic efficiency. Especially, by combining structure modeling and multiple sequence alignment, we identified an α0 region that was universal in the L-RI family and likely acted as a "helix-breaker". Truncating this region is crucial for improving the thermostability of related enzymes. Our work provides a significantly stable biocatalyst with potential for the industrial production of d-allose.


Asunto(s)
Isomerasas Aldosa-Cetosa , Proteínas Bacterianas , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Glucosa/química , Isomerasas Aldosa-Cetosa/química , Estabilidad de Enzimas
9.
Methods Enzymol ; 685: 279-318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37245905

RESUMEN

Methylthio-d-ribose-1-phosphate (MTR1P) isomerase (MtnA) catalyzes the reversible isomerization of the aldose MTR1P into the ketose methylthio-d-ribulose 1-phosphate. It serves as a member of the methionine salvage pathway that many organisms require for recycling methylthio-d-adenosine, a byproduct of S-adenosylmethionine metabolism, back to methionine. MtnA is of mechanistic interest because unlike most other aldose-ketose isomerases, its substrate exists as an anomeric phosphate ester and therefore cannot equilibrate with a ring-opened aldehyde that is otherwise required to promote isomerization. To investigate the mechanism of MtnA, it is necessary to establish reliable methods for determining the concentration of MTR1P and to measure enzyme activity in a continuous assay. This chapter describes several such protocols needed to perform steady-state kinetics measurements. It additionally outlines the preparation of [32P]MTR1P, its use in radioactively labeling the enzyme, and the characterization of the resulting phosphoryl adduct.


Asunto(s)
Isomerasas Aldosa-Cetosa , Ribosa , Cinética , Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo
10.
ChemMedChem ; 18(11): e202200590, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36896721

RESUMEN

In this work, we demonstrate how important it is to investigate not only on-target activity but to keep antibiotic activity against critical pathogens in mind. Since antimicrobial resistance is spreading in bacteria such as Mycobacterium tuberculosis, investigations into new targets are urgently needed. One promising new target is 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. We have recently solved the crystal structure of truncated M. tuberculosis DXPS and used it to perform a virtual screening in collaboration with Atomwise Inc. using their deep convolutional neural network-based AtomNet® platform. Of 94 virtual hit compounds only one showed interesting results in binding and activity studies. We synthesized 30 close derivatives using a straightforward synthetic route that allowed for easy derivatization. However, no improvement in activity was observed for any of the derivatives. Therefore, we tested them against a variety of pathogens and found them to be good inhibitors against Escherichia coli.


Asunto(s)
Isomerasas Aldosa-Cetosa , Mycobacterium tuberculosis , Fosfatos de Azúcar , Antibacterianos/farmacología , Antibacterianos/metabolismo , Óxido Nítrico Sintasa/metabolismo , Escherichia coli/metabolismo , Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo
11.
Enzyme Microb Technol ; 166: 110230, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36966679

RESUMEN

Xylose isomerase catalyzes the isomerization of D-xylose to D-xylulose with promiscuous activity for other saccharides including D-glucose, D-allose, and L-arabinose. The xylose isomerase from the fungus Piromyces sp. E2 (PirE2_XI) is used to engineer xylose usage by the fermenting yeast Saccharomyces cerevisiae, but its biochemical characterization is poorly understood with divergent catalytic parameters reported. We have measured the kinetic parameters of the PirE2_XI and analyzed its thermostability and pH-dependence towards different substrates. The PirE2_XI shows promiscuous activity towards D-xylose, D-glucose, D-ribose and L-arabinose with variable effects depending on different divalent ions and epimerizes D-xylose at C3 to produce D-ribulose in a substrate/product dependent ratio. The enzyme follows Michaelis-Menten kinetics for the substrates used and although KM values for D-xylose are comparable at 30 and 60 °C, the kcat/KM is three-fold greater at 60 °C. The purified PirE2_XI shows maximal activity at 65 °C in the pH range of 6.5-7.5 and is a thermostable enzyme, maintaining full activity over 48 h at 30 °C or 12 h at 60 °C. This is the first report demonstrating epimerase activity of the PirE2_XI and its ability to isomerize D-ribose and L-arabinose, and provides a comprehensive in vitro study of substrate specificity, effect of metal ions and temperature on enzyme activity and these findings advance the knowledge of the mechanism of action of this enzyme.


Asunto(s)
Isomerasas Aldosa-Cetosa , Piromyces , Racemasas y Epimerasas , Xilosa , Arabinosa , Ribosa , Glucosa , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/química
12.
Appl Biochem Biotechnol ; 195(7): 4399-4413, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36696038

RESUMEN

Fructose, which is produced by the isomerization of glucose isomerase, is a crucial precursor for the biosynthesis of rare sugars. In this study, thermophilic glucose isomerases (GI) from Caldicellulosiruptor acetigenus (CAGI), Thermoanaerobacter thermocopriae (TTGI), and Thermotoga petrophila (TPGI) were screened from GenBank database by a virtual probe and were successfully expressed in Escherichia coli BL21(DE3). The results of characterization demonstrated that the optimal pH for CAGI and TTGI were 8.0 and were maintained at 80% in a slightly acidic environment. The relative residual activities of CAGI and TTGI were found to be 40.6% and 52.6%, respectively, following an incubation period of 24 h at 90 ℃. Furthermore, CAGI and TTGI exhibited superior catalytic performance that their reaction equilibrium both reached only after an hour at 85 ℃ with 200 g/L glucose, and the highest conversion rates were 54.2% and 54.1%, respectively. This study identifies competitive enzyme candidates for fructose production in the industry with appreciable cost reduction.


Asunto(s)
Isomerasas Aldosa-Cetosa , Glucosa , Glucosa/química , Fructosa/química , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/química , Clostridiales , Clostridium , Tecnología , Concentración de Iones de Hidrógeno , Proteínas Recombinantes
13.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35101915

RESUMEN

Protein crystallization is an astounding feat of nature. Even though proteins are large, anisotropic molecules with complex, heterogeneous surfaces, they can spontaneously group into two- and three-dimensional arrays with high precision. And yet, the biggest hurdle in this assembly process, the formation of a nucleus, is still poorly understood. In recent years, the two-step nucleation model has emerged as the consensus on the subject, but it still awaits extensive experimental verification. Here, we set out to reconstruct the nucleation pathway of the candidate protein glucose isomerase (GI), for which there have been indications that it may follow a two-step nucleation pathway under certain conditions. We find that the precursor phase present during the early stages of the reaction process is nanoscopic crystallites that have lattice symmetry equivalent to the mature crystals found at the end of a crystallization experiment. Our observations underscore the need for experimental data at a lattice-resolving resolution on other proteins so that a general picture of protein crystal nucleation can be formed.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo , Cristalización , Microscopía por Crioelectrón , Modelos Químicos
14.
Crit Rev Biotechnol ; 42(5): 693-712, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34641740

RESUMEN

Isomerases are enzymes that induce physical changes in a molecule without affecting the original molecular formula. Among this class of enzymes, xylose isomerases (XIs) are the most studied to date, partly due to their extensive application in industrial processes to produce high-fructose corn sirups. In recent years, the need for sustainable initiatives has triggered efforts to improve the biobased economy through the use of renewable raw materials. In this context, D-xylose usage is crucial as it is the second-most abundant sugar in nature. The application of XIs in biotransforming xylose, enabling downstream metabolism in several microorganisms, is a smart strategy for ensuring a low-carbon footprint and producing several value-added biochemicals with broad industrial applications such as in the food, cosmetics, pharmaceutical, and polymer industries. Considering recent advancements that have expanded the range of applications of XIs, this review provides a comprehensive and concise overview of XIs, from their primary sources to the biochemical and structural features that influence their mechanisms of action. This comprehensive review may help address the challenges involved in XI applications in different industries and facilitate the exploitation of xylose bioprocesses.


Asunto(s)
Isomerasas Aldosa-Cetosa , Xilosa , Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo
15.
Nat Commun ; 12(1): 3902, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162863

RESUMEN

Self-assembly of proteins holds great promise for the bottom-up design and production of synthetic biomaterials. In conventional approaches, designer proteins are pre-programmed with specific recognition sites that drive the association process towards a desired organized state. Although proven effective, this approach poses restrictions on the complexity and material properties of the end-state. An alternative, hierarchical approach that has found wide adoption for inorganic systems, relies on the production of crystalline nanoparticles that become the building blocks of a next-level assembly process driven by oriented attachment (OA). As it stands, OA has not yet been observed for protein systems. Here we employ cryo-transmission electron microscopy (cryoEM) in the high nucleation rate limit of protein crystals and map the self-assembly route at molecular resolution. We observe the initial formation of facetted nanocrystals that merge lattices by means of OA alignment well before contact is made, satisfying non-trivial symmetry rules in the process. As these nanocrystalline assemblies grow larger we witness imperfect docking events leading to oriented aggregation into mesocrystalline assemblies. These observations highlight the underappreciated role of the interaction between crystalline nuclei, and the impact of OA on the crystallization process of proteins.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Nanoestructuras/química , Proteínas Recombinantes/química , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Microscopía por Crioelectrón , Cristalización , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Mutación Puntual , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
16.
Acta Crystallogr D Struct Biol ; 77(Pt 5): 599-605, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33950016

RESUMEN

It is important to reveal the exact cause of poor diffractivity in protein crystals in order to determine the accurate structure of protein molecules. It is shown that there is a large amount of local strain in subgrains of glucose isomerase crystals even though the overall crystal quality is rather high, as shown by clear equal-thickness fringes in X-ray topography. Thus, a large stress is exerted on the subgrains of protein crystals, which could significantly lower the resistance of the crystals to radiation damage. It is also demonstrated that this local strain can be reduced through the introduction of dislocations in the crystal. This suggests that the introduction of dislocations in protein crystals can be effective in enhancing the crystal quality of subgrains of protein crystals. By exploiting this effect, the radiation damage in subgrains could be decreased, leading to the collection of X-ray diffraction data sets with high diffractivity.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Difracción de Rayos X/métodos , Conformación Proteica
17.
Biochem Biophys Res Commun ; 557: 329-333, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33895474

RESUMEN

Glutathione (GSH) is the most abundant non-protein thiol and its cellular concentration has been reported as 17 mM in Escherichia coli. This study introduces a label-free method to determine the binding affinity of GSH to proteins, utilizing the intrinsic fluorescence of proteins; the dissociation constants of GSH for d-arabinose 5-phosphate isomerase KdsD, fumarase C, malate dehydrogenase, and RNA polymerase subunit α have been determined as 96 ± 8, 246 ± 42, 292 ± 78, and 296 ± 97 µM, respectively. The dissociation constants, less than 2% of the cellular concentration of GSH, suggests that protein-GSH interactions are strong enough to make all of the GSH-binding sites occupied fully. The method described here may be applicable to other proteins.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , ARN Polimerasas Dirigidas por ADN/química , Fumarato Hidratasa/química , Glutatión/química , Malato Deshidrogenasa/química , Espectrometría de Fluorescencia/métodos , Escherichia coli/metabolismo , Fluorescencia , Expresión Génica , Glutatión/metabolismo , Cinética , Ligandos , Estrés Oxidativo , Proteínas Recombinantes
18.
Bioprocess Biosyst Eng ; 44(8): 1781-1792, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33830378

RESUMEN

To improve the operational stability of glucose isomerase in E. coli TEGI-W139F/V186T, the immobilized cells were prepared with modified diatomite as a carrier and 74.1% activity of free cells was recovered after immobilization. Results showed that the immobilized cells still retained 86.2% of the initial transformational activity after intermittent reused 40 cycles and the yield of D-fructose reached above 42% yield at 60 °C. Moreover, the immobilized cells were employed in the continuous production of High Fructose Corn Syrup (HFCS) in a recirculating packed bed reactor for 603 h at a constant flow rate. It showed that the immobilized cells exhibited good operational stability and the yield of D-fructose retained above 42% within 603 h. The space-time yield of high fructose corn syrup reached 3.84 kg L-1 day-1. The investigation provided an efficient immobilization method for recombinant cells expressing glucose isomerase with higher stability, and the immobilized cells are a promising biocatalyst for HFCS production.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Tierra de Diatomeas/química , Escherichia coli/metabolismo , Jarabe de Maíz Alto en Fructosa/química , Proteínas Recombinantes/química , Proteínas Bacterianas , Reactores Biológicos , Cobalto/química , Enzimas Inmovilizadas , Fructosa/química , Glucosa , Concentración de Iones de Hidrógeno , Iones , Magnesio/química , Microscopía Electrónica de Rastreo , Temperatura
19.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918749

RESUMEN

Glucose isomerase (GI) is an important enzyme that is widely used in industrial applications, such as in the production of high-fructose corn syrup or bioethanol. Studying inhibitor effects on GI is important to deciphering GI-specific molecular functions, as well as potential industrial applications. Analysis of the existing xylitol-bound GI structure revealed low metal occupancy at the M2 site; however, it remains unknown why this phenomenon occurs. This study reports the room-temperature structures of native and xylitol-bound GI from Streptomyces rubiginosus (SruGI) determined by serial millisecond crystallography. The M1 site of native SruGI exhibits distorted octahedral coordination; however, xylitol binding results in the M1 site exhibit geometrically stable octahedral coordination. This change results in the rearrangement of metal-binding residues for the M1 and M2 sites, the latter of which previously displayed distorted metal coordination, resulting in unstable coordination of Mg2+ at the M2 site and possibly explaining the inducement of low metal-binding affinity. These results enhance the understanding of the configuration of the xylitol-bound state of SruGI and provide insights into its future industrial application.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Modelos Moleculares , Conformación Proteica , Xilitol/química , Sitios de Unión , Cristalografía por Rayos X , Metales/química , Unión Proteica , Relación Estructura-Actividad , Temperatura
20.
Biochem Biophys Res Commun ; 547: 69-74, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33610042

RESUMEN

Glucose/xylose isomerase catalyzes the reversible isomerization of d-glucose and d-xylose to d-fructose and d-xylulose, respectively. This enzyme is not only involved in sugar metabolism but also has industrial applications, such as in the production of high fructose corn syrup and bioethanol. Various crystal structures of glucose isomerase have shown the binding configuration of the substrate and its molecular mechanism; however, the metal binding mechanism required for the isomerization reaction has not been fully elucidated. To better understand the functional metal binding, the crystal structures of the metal-bound and metal-free states of Streptomyces rubiginosus glucose isomerase (SruGI) were determined at 1.4 Å and 1.5 Å resolution, respectively. In the meal-bound state of SruGI, Mg2+ is bound at the M1 and M2 sites, while in the metal-free state, these sites are occupied by water molecules. Structural comparison between the metal binding sites of the metal-bound and metal-free states of SruGI revealed that residues Glu217 and Asp257 exhibit a rigid configuration at the bottom of the metal binding site, suggesting that they serve as a metal-binding platform that defined the location of the metal. In contrast, the side chains of Glu218, His220, Asp255, Asp257, and Asp287 showed configuration changes such as shifts and rotations. Notably, in the metal-free state, the side chains of these amino acids are shifted away from the metal binding site, indicating that the metal-binding residues exhibit a minimal open configuration, which allows metal binding without large conformational changes.


Asunto(s)
Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo , Metales/química , Metales/metabolismo , Streptomyces/enzimología , Sitios de Unión , Cobalto/química , Cobalto/metabolismo , Cristalografía por Rayos X , Magnesio/química , Magnesio/metabolismo , Manganeso/química , Manganeso/metabolismo , Modelos Moleculares , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA