Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
Environ Sci Pollut Res Int ; 31(32): 44815-44827, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955968

RESUMEN

To reveal the toxicological mechanisms of pesticide mixtures on soil organisms, this study concentrated on evaluating enzymatic activity and gene expression changes in the earthworm Eisenia fetida (Savigny 1826). Despite being frequently exposed to multiple pesticides, including the common combination of abamectin (ABA) and carbendazim (CAR), environmental organisms have primarily been studied for the effects of individual pesticides. Acute toxicity results exhibited that the combination of ABA and CAR caused a synergistic impact on E. fetida. The levels of MDA, ROS, T-SOD, and caspase3 demonstrated a significant increase across most individual and combined groups, indicating the induction of oxidative stress and cell death. Additionally, the expression of three genes (hsp70, gst, and crt) exhibited a significant decrease following exposure to individual pesticides and their combinations, pointing toward cellular damage and impaired detoxification function. In contrast, a noteworthy increase in ann expression was observed after exposure to both individual pesticides and their mixtures, suggesting the stimulation of reproductive capacity in E. fetida. The present findings contributed to a more comprehensive understanding of the potential toxicity mechanisms of the ABA and CAR mixture, specifically on oxidative stress, cell death, detoxification dysfunction, and reproductive capacity in earthworms. Collectively, these data offered valuable toxicological insights into the combined effects of pesticides on soil organisms, enhancing our understanding of the underlying risks associated with the coexistence of different pesticides in natural soil environments.


Asunto(s)
Bencimidazoles , Carbamatos , Ivermectina , Oligoquetos , Contaminantes del Suelo , Suelo , Animales , Oligoquetos/efectos de los fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Carbamatos/toxicidad , Bencimidazoles/toxicidad , Suelo/química , Contaminantes del Suelo/toxicidad , Estrés Oxidativo , Plaguicidas/toxicidad
2.
Environ Sci Pollut Res Int ; 31(32): 44717-44729, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954342

RESUMEN

As a widely used pesticide, abamectin could be a threat to nontarget organisms. In this study, the toxic mechanism of abamectin on osmoregulation in Procambarus clarkii was explored for the first time. The results of this study showed that with increasing abamectin concentration, the membrane structures of gill filaments were damaged, with changes in ATPase activities, transporter contents, biogenic amine contents, and gene expression levels. The results of this study indicated that at 0.2 mg/L abamectin, ion diffusion could maintain osmoregulation. At 0.4 mg/L abamectin, passive transport was inhibited due to damage to the membrane structures of gill filaments, and active transport needed to be enhanced for osmoregulation. At 0.6 mg/L abamectin, the membrane structures of gill filaments were seriously damaged, and the expression level of osmoregulation-related genes decreased, but the organisms were still mobilizing various transporters, ATPases, and biogenic amines to address abamectin stress. This study provided a theoretical basis for further study of the effects of contaminations in aquatic environment on the health of crustaceans.


Asunto(s)
Astacoidea , Ivermectina , Osmorregulación , Animales , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Astacoidea/efectos de los fármacos , Astacoidea/fisiología , Contaminantes Químicos del Agua/toxicidad , Branquias/efectos de los fármacos
3.
Environ Sci Pollut Res Int ; 31(32): 45425-45440, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965109

RESUMEN

Ivermectin (IVM) is a widely used antiparasitic. Concerns have been raised about its environmental effects in the wetlands of Río de la Plata basin where cattle have been treated with IVM for years. This study investigated the sublethal effects of environmentally relevant IVM concentrations in sediments on the Neotropical fish Prochilodus lineatus. Juvenile P. lineatus were exposed to IVM-spiked sediments (2 and 20 µg/Kg) for 14 days, alongside a control sediment treatment without IVM. Biochemical and oxidative stress responses were assessed in brain, gills, and liver tissues, including lipid damage, glutathione levels, enzyme activities, and antioxidant competence. Muscle and brain acetylcholinesterase activity (AChE) and stable isotopes of 13C and 15N in muscle were also measured. The lowest IVM treatment resulted in an increase in brain lipid peroxidation, as measured by thiobarbituric acid reactive substances (TBARs), decreased levels of reduced glutathione (GSH) in gills and liver, increased catalase activity (CAT) in the liver, and decreased antioxidant capacity against peroxyl radicals (ACAP) in gills and liver. The highest IVM treatment significantly reduced GSH in the liver. Muscle (AChE) was decreased in both treatments. Multivariate analysis showed significant overall effects in the liver tissue, followed by gills and brain. These findings demonstrate the sublethal effects of IVM in P. lineatus, emphasizing the importance of considering sediment contamination and trophic habits in realistic exposure scenarios.


Asunto(s)
Antiparasitarios , Ivermectina , Contaminantes Químicos del Agua , Animales , Ivermectina/toxicidad , Antiparasitarios/toxicidad , Contaminantes Químicos del Agua/toxicidad , Ganado , América del Sur , Estrés Oxidativo/efectos de los fármacos , Sedimentos Geológicos/química , Branquias/efectos de los fármacos , Branquias/metabolismo
4.
Toxicon ; 246: 107789, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38843999

RESUMEN

In recent years, contamination of aquatic systems with Avermectin (AVM) has emerged as a significant concern. This contamination poses substantial challenges to freshwater aquaculture. Plant-derived Quercetin (QUE), known for its anti-inflammatory, antioxidant, and ferroptosis-inhibiting properties, is commonly employed as a supplement in animal feed. However, its protective role against chronic renal injury in freshwater carp induced by AVM remains unclear. This study assesses the influence of dietary supplementation with QUE on the consequences of chronic AVM exposure on carp renal function. The carp were subjected to a 30-day exposure to AVM and were provided with a diet containing 400 mg/kg of QUE. Pathological observations indicated that QUE alleviated renal tissue structural damage caused by AVM. RT-QPCR study revealed that QUE effectively reduced the increased expression levels of pro-inflammatory factors mRNA produced by AVM exposure, by concurrently raising the mRNA expression level of the anti-inflammatory factor. Quantitative analysis using DHE tests and biochemical analysis demonstrated that QUE effectively reduced the buildup of ROS in the renal tissues of carp, activity of antioxidant enzymes CAT, SOD, and GSH-px, which were inhibited by AVM, and increased the content of GSH, which was induced by prolonged exposure to AVM. QUE also reduced the levels of MDA, a marker of oxidative damage. Furthermore, assays for ferroptosis markers indicated that QUE increased the mRNA expression levels of gpx4 and slc7a11, which were reduced due to AVM induction, and it caused a reduction in the mRNA expression levels of ftl, ncoa4, and cox2, along with a drop in the Fe2+ concentration. In summary, QUE mitigates chronic AVM exposure-induced renal inflammation in carp by inhibiting the transcription of pro-inflammatory cytokines. By blocking ROS accumulation, renal redox homeostasis is restored, thereby inhibiting renal inflammation and ferroptosis. This provides a theoretical basis for the development of freshwater carp feed formula.


Asunto(s)
Carpas , Ferroptosis , Ivermectina , Quercetina , Animales , Quercetina/análogos & derivados , Quercetina/farmacología , Ferroptosis/efectos de los fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Riñón/efectos de los fármacos , Riñón/patología , Suplementos Dietéticos , Antioxidantes/farmacología , Alimentación Animal/análisis , Plaguicidas/toxicidad
5.
Pestic Biochem Physiol ; 202: 105941, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879332

RESUMEN

Emamectin benzoate (EMB) is extensively used as a crop protection agent. Overuse of EMB poses a serious threat to the quality of water and non-target organisms in the environment. Resveratrol (RES) is a natural phytoalexin with the function of anti-oxidation and anti-inflammation. Nonetheless, it is unclear whether EMB affects the expression of cytokines and induces autophagy, apoptosis, and necroptosis of hepatocytes (L8824 cell) in grass carp (Ctenopharyngodon idella), and whether RES has an attenuate function in this process. Therefore, we established the L8824 cells model of EMB exposure and treated it with RES. The results showed that compared with the control (CON) group, EMB exposure significantly increased the nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, and the expression of iNOS and phosphorylated nuclear factor kappa B (p-NF-κB) (P < 0.05). In addition, compared with the CON group, the results of flow cytometry and dansylcadaverine (MDC) staining showed a significant increase in apoptosis and autophagy in the EMB-exposed group (P < 0.05) with the activation of the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cysteine-aspartic acid protease 3 (Caspase-3)/cysteine-aspartic acid protease 9 (Caspase-9) pathway and microtubule-associated protein light chain 3 (LC3)/sequestosome 1 (p62)/Beclin1 pathway. EMB exposure significantly increased the mRNA and protein expression of receptor-interacting protein 1 (RIPK1)/receptor-interacting protein 3 (RIPK3)/mixed the lineage kinase domain-like (MLKL) pathway (P < 0.05). Moreover, EMB exposure significantly increased the expression of genes related to immunity (immunoglobulin G (IgG), immunoglobulin M (IgM), and immunoglobulin D (IgD), and antimicrobial peptide-related genes expression including ß-defensin and hepcidin) (P < 0.05). The addition of RES significantly diminished autophagy, apoptosis, necroptosis, and immunity-related gene expression by inhibiting iNOS activity, NO content, and the protein expression of iNOS and p-NF-κB. In conclusion, RES attenuated autophagy, apoptosis, and necroptosis in EMB-exposed L8824 cells via suppression of the NO system/NF-κB signaling pathway.


Asunto(s)
Carpas , Ivermectina , FN-kappa B , Óxido Nítrico , Resveratrol , Transducción de Señal , Animales , Carpas/metabolismo , FN-kappa B/metabolismo , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Ivermectina/farmacología , Óxido Nítrico/metabolismo , Transducción de Señal/efectos de los fármacos , Resveratrol/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Apoptosis/efectos de los fármacos , Línea Celular , Autofagia/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo
6.
J Hazard Mater ; 475: 134847, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885583

RESUMEN

Herein, we developed a technique for loading nanopesticides onto Metal-Organic Frameworks (MOFs) to control Spodoptera litura. The average short-axis length of the synthesized carrier emamectin benzoate@PCN-222 @hyaluronic acid (EB@PCN-222 @HA) was ∼40 nm, with an average long-axis length of ∼80 nm. This enabled the manipulation of its size, contact angle, and surface tension on the surface of leaves. Pesticide-loading capacity, determined via thermogravimetric analysis, was measured at ∼16 %. To ensure accurate pesticide release in the alkaline intestine of Spodoptera litura, EB@PCN-222 @HA was engineered to decompose under alkaline conditions. In addition, the carrier delayed the degradation rate of EB, enhancing EB's stability. Loading Nile red onto PCN-222 @HA revealed potential entry into the insect body through feeding, which was supported by bioassay experiments. Results demonstrated the sustained-release performance of EB@PCN-222 @HA, extending its effective duration. The impact of different carrier concentrations on root length, stem length, fresh weight, and germination rate of pakchoi and tomato were assessed. Promisingly, the carrier exhibited a growth-promoting effect on the fresh weight of both the crops. Furthermore, cytotoxicity experiments confirmed its safety for humans. In cytotoxicity assays, PCN-222 @HA showed minimal toxicity at concentrations up to 100 mg/L, with cell survival rates above 80 %. Notably, the EB@PCN-222 @HA complex demonstrated reduced cytotoxicity compared to EB alone, supporting its safety for human applications. This study presents a safe and effective approach for pest control using controlled-release pesticides with extended effective durations.


Asunto(s)
Ivermectina , Estructuras Metalorgánicas , Spodoptera , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Ivermectina/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/toxicidad , Animales , Concentración de Iones de Hidrógeno , Spodoptera/efectos de los fármacos , Insecticidas/toxicidad , Insecticidas/química , Composición de Medicamentos , Ácido Hialurónico/química , Ácido Hialurónico/toxicidad , Solanum lycopersicum
7.
Chemosphere ; 361: 142423, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830461

RESUMEN

This study investigates the effects of glyphosate-based herbicide (GLY) and pure emamectin benzoate (EB) insecticide on the brackish copepod Pseudodiaptomus annandalei. The 96h median lethal concentration (96 h LC50) was higher in the GLY exposure (male: 3420.96 ± 394.67 µg/L; female: 3093.46 ± 240.67 µg/L) than in the EB (male: 79.10 ± 7.30 µg/L; female: 6.38 ± 0.72 µg/L). Based on the result of 96h LC50, we further examined the effects of GLY and EB exposures at sub-lethal concentrations on the naupliar production of P. annandalei. Subsequently, a multigenerational experiment was conducted to assess the long-term impact of GLY and EB at concentrations 375 µg/L, and 0.025 µg/L respectively determined by sub-lethal exposure testing. During four consecutive generations, population growth, clutch size, prosome length and width, and sex ratio were measured. The copepods exposed to GLY and EB showed lower population growth but higher clutch size than the control group in most generations. Gene expression analysis indicated that GLY and EB exposures resulted in the downregulation of reproduction-related (vitellogenin) and growth-related (myosin heavy chain) genes, whereas a stress-related gene (heat shock protein 70) was upregulated after multigenerational exposure. The results of the toxicity test after post-multigenerational exposure indicated that the long-term GLY-exposed P. annandalei displayed greater vulnerability towards GLY toxicity compared to newly-exposed individuals. Whereas, the tolerance of EB was significantly higher in the long-term exposed copepod than in newly-exposed individuals. This suggests that P. annandalei might have greater adaptability towards EB toxicity than towards GLY toxicity. This study reports for the first time the impacts of common pesticides on the copepod P. annandalei, which have implications for environmental risk assessment and contributes to a better understanding of copepod physiological responses towards pesticide contaminations.


Asunto(s)
Copépodos , Glicina , Glifosato , Herbicidas , Insecticidas , Ivermectina , Reproducción , Contaminantes Químicos del Agua , Animales , Copépodos/efectos de los fármacos , Copépodos/genética , Glicina/análogos & derivados , Glicina/toxicidad , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Herbicidas/toxicidad , Reproducción/efectos de los fármacos , Insecticidas/toxicidad , Femenino , Contaminantes Químicos del Agua/toxicidad , Masculino , Expresión Génica/efectos de los fármacos
8.
Food Chem Toxicol ; 190: 114827, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901726

RESUMEN

The frequency presence of emamectin benzoate in agricultural production highlights the need for studying their toxicity against human intestinal epithelial barrier (IEB). Herein, we combined a Caco-2 cell model with transcriptome analysis to assess the intestinal toxicity of emamectin benzoate and its disease-causing potential. Results showed that the half maximal inhibitory concentration (IC50) of emamectin benzoate on Caco-2 cell viability after 24, 48, and 72 h of exposure were 18.1, 9.9, and 8.3 µM, respectively. Emamectin benzoate exposure enhanced the Caco-2 monolayer paracellular permeability, damaged the IEB, and increased cellular apoptosis. Key driver gene analysis of 42 apoptosis - related DEGs, identified 10 genes (XIAP, KRAS, MCL1, NRAS, PIK3CA, CYCS, MAPK8, CASP3, FADD, and TNFRSF10B) with the strongest correlation with emamectin benzoate - induced apoptosis. Transcriptomics identified 326 differentially expressed genes (DEGs, 204 upregulated and 122 downregulated). The functional terms of neurodegeneration - multiple diseases was enriched with the most number of DEGs, and the Parkinson disease pathway had the highest enrichment degree. Our findings provided support for environmental toxicology studies and the health risk assessment of emamectin benzoate.


Asunto(s)
Apoptosis , Mucosa Intestinal , Ivermectina , Humanos , Apoptosis/efectos de los fármacos , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Transcriptoma/efectos de los fármacos
9.
Environ Sci Pollut Res Int ; 31(31): 43987-43995, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38914898

RESUMEN

One of the most pressing global environmental issues is the widespread abundance and distribution of microplastics (MPs). MPs can act as vectors for other contaminants in the environment making these small plastic particles hazardous for ecosystems. The presence of MPs in aquatic environments may pose threats to aquatic organisms that ingest them. This study examined effects of abamectin (ABM) and polyethylene terephthalate (PET) MP fragments on histopathological and enzymatic biomarkers in zebrafish (Danio rerio). Zebrafish were exposed for 96 h to pristine PET-MPs at concentrations of 5 mg/L and 10 mg/L, ABM alone at 0.006 mg/L, and the same concentration of ABM in the presence of PET-MPs in aquaria. Histopathological analysis revealed tissue content changes in liver and kidney in the presence of ABM individually and in combination with MPs. Results of enzymatic analysis showed that MPs increased the bioavailability and toxicity of pesticides due to inhibition of catalase (CAT) and acid phosphatase (ACP) enzymes. However, MPs did not affect the toxicity of ABM for glutathione s-transferase (GST) enzyme. Despite the inhibition of acetylcholinesterase (AChE) in MPs or ABM treatments, and some neurotoxicity, no change in activity of this enzyme and neurotoxicity was observed in the combined MPs and ABM treatments, although toxicity effects of MPs and ABM on zebrafish require more detailed studies.


Asunto(s)
Ivermectina , Tereftalatos Polietilenos , Pez Cebra , Animales , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Glutatión Transferasa/metabolismo , Acetilcolinesterasa/metabolismo
10.
Toxicon ; 244: 107755, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740097

RESUMEN

Avermectin (AVM) has been utilized extensively in agricultural production since it is a low-toxicity pesticide. However, the pollution caused by its residues to fisheries aquaculture has been neglected. As an abundant polyphenolic substance in plants, ferulic acid (FA) possesses anti-inflammatory and antioxidant effects. The goal of the study is to assess the FA's ability to reduce liver damage in carp brought on by AVM exposure. Four groups of carp were created at random: the control group; the AVM group; the FA group; and the FA + AVM group. On day 30, and the liver tissues of carp were collected and examined for the detection of four items of blood lipid as well as the activity of the antioxidant enzymes catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) in carp liver tissues by biochemical kits, and the transcript levels of indicators of oxidative stress, inflammation and apoptosis by qPCR. The results showed that liver injury, inflammation, oxidative stress, and apoptosis were attenuated in the FA + AVM group compared to the AVM group. In summary, dietary addition of FA could ameliorate the hepatotoxicity caused by AVM in carp by alleviating oxidative stress, inflammation, apoptosis in liver tissues.


Asunto(s)
Apoptosis , Carpas , Ácidos Cumáricos , Inflamación , Ivermectina , Hígado , Estrés Oxidativo , Animales , Ácidos Cumáricos/farmacología , Estrés Oxidativo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Apoptosis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Suplementos Dietéticos , Antioxidantes/farmacología
11.
Chemosphere ; 359: 142288, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750729

RESUMEN

Helicoverpa armigera, a ubiquitous polyphagous pest, poses a significant threat to global agriculture, causing substantial economic losses and demonstrating resistance to synthetic pesticides. This study investigates the potential of emamectin benzoate (EMB), an avermectin derivative, as an effective control agent against H. armigera. The larvae of the NBII-MP-NOC-01 strain of H. armigera were reared on an artificial diet. The impact of dietary EMB was examined on four midgut enzymes; alanine aminotransferase (ALT), aspartate aminotransferase (AST), acid phosphatase (ACP), and alkaline phosphatase (ALP). Results showed a dose-dependent and time-dependent reduction in ALT and AST activity, while an initial increase and subsequent decline in ACP and ALP activity at higher EMB concentrations. Computational modelling of enzyme structures and molecular docking studies revealed differential binding of EMB with the midgut enzymes. The strongest interaction was observed between EMB and ALT residues, contrasting with weakest interactions observed with AST. The study also showed that decreased activity of transaminases in H. armigera caused by EMB may be because of stability-activity trade-off, while in phosphatases reverse may be the case. This research provides crucial insights into the biochemical responses and the intricate insecticide-enzyme interactions in H. armigera caused by EMB exposure. This study lays the foundation for further research aimed at developing environmentally friendly approaches for managing H. armigera, addressing the challenges associated with conventional pesticides.


Asunto(s)
Fosfatasa Ácida , Alanina Transaminasa , Fosfatasa Alcalina , Aspartato Aminotransferasas , Insecticidas , Ivermectina , Larva , Simulación del Acoplamiento Molecular , Mariposas Nocturnas , Animales , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Larva/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Insecticidas/toxicidad , Insecticidas/química , Insecticidas/metabolismo , Fosfatasa Alcalina/metabolismo , Fosfatasa Ácida/metabolismo , Alanina Transaminasa/metabolismo , Aspartato Aminotransferasas/metabolismo , Helicoverpa armigera
12.
Fish Shellfish Immunol ; 150: 109624, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740228

RESUMEN

Avermectin is one of the widely used anthelmintics in aquaculture and exhibits substantial toxicity to aquatic organisms. Silybin is extensively used for its anti-inflammatory, antioxidant and anti-apoptotic biological properties. Heart is essential for the survival of fish and plays a vital role in pumping blood oxygen and nutrients. Residual avermectin in water poses harm to carp. However, there is still insufficient research on whether silybin can mitigate the toxicity of avermectin to carp heart tissues. In this research, we established a model involving carp subjected to acute avermectin exposure and administered diets containing silybin to explore the potential protective effects of silybin against avermectin-induced cardiotoxicity. The results revealed that avermectin induced oxidative stress, inflammation, endoplasmic reticulum (ER) stress, mitochondrial pathway apoptosis and autophagy in the cardiac tissues of carp. Compared with the avermectin group, silybin significantly reduced ROS accumulation in cardiac tissues, restored antioxidant enzyme activity, inhibited mRNA transcript levels of pro-inflammatory-related factors, and attenuated ER stress, mitochondrial pathway apoptosis and autophagy. Protein-protein interaction (PPI) analysis demonstrated that silybin mitigated avermectin-induced cardiac oxidative stress, inflammation, ER stress, mitochondrial pathway apoptosis and autophagy. Silybin exerted anti-inflammatory effects through the Nuclear Factor kappa B (NF-κB) pathway, antioxidant effects through the Nuclear factor erythroid 2-related factor 2 (Nrf2) - Kelch-like ECH-associated protein 1 (Keap1) pathway, alleviated cardiac ER stress through the Glucose-regulated protein 78 (GRP78)/Activating Transcription Factor 6 (ATF6)/C/EBP homologous protein (CHOP) axis, suppressed apoptosis through the mitochondrial pathway, and inhibited excessive autophagy initiation through the PTEN-induced putative kinase 1 (PINK1)/Parkin RBR E3 ubiquitin protein ligase (PARKIN) signaling pathway. This study provided evidence supporting the protective effect of silybin against avermectin-induced cardiotoxicity in carp, highlighting its potential as a dietary additive to protect fish from adverse effects caused by avermectin exposure.


Asunto(s)
Antihelmínticos , Carpas , Ivermectina , Sustancias Protectoras , Silibina , Silibina/farmacología , Silibina/uso terapéutico , Estrés del Retículo Endoplásmico , Cardiotoxicidad/tratamiento farmacológico , Carpas/fisiología , Animales , Ivermectina/toxicidad , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Apoptosis/efectos de los fármacos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción CHOP/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Inflamación/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Biomarcadores/sangre , Corazón/efectos de los fármacos , Corazón/fisiología , Miocardio/patología
13.
Langmuir ; 40(21): 10992-11010, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743441

RESUMEN

The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.


Asunto(s)
Portadores de Fármacos , Hidrogeles , Insecticidas , Ivermectina , Resinas de Plantas , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacología , Ivermectina/toxicidad , Hidrogeles/química , Hidrogeles/farmacología , Animales , Concentración de Iones de Hidrógeno , Insecticidas/química , Insecticidas/farmacología , Resinas de Plantas/química , Portadores de Fármacos/química , Temperatura , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Liberación de Fármacos , Mariposas Nocturnas/efectos de los fármacos , Rosaceae/química , Zinc/química , Zinc/farmacología , Resinas Acrílicas
14.
Sci Total Environ ; 933: 173126, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734105

RESUMEN

Studying the toxic effects of pesticides on bees has consistently been a prominent area of interest for researchers. Nonetheless, existing research has predominantly concentrated on individual toxicity assessments, leaving a gap in our understanding of mixed toxicity. This study delves into the individual and combined toxic effects of abamectin (ABA) and lambda-cyhalothrin (LCY) on honey bees (Apis mellifera) in laboratory settings. We discovered that ABA (96 h-LC50 value of 0.079 mg/L) exhibited greater acute toxicity to honey bees compared to LCY (96 h-LC50 value of 9.177 mg/L). Moreover, the mixture of ABA and LCY presented an acute antagonistic effect on honey bees. Additionally, our results indicated that exposure to LCY, at medium concentration, led to a reduction in the abundance of gut core bacterium Snodgrassella. However, an increase in the abundance of Bifidobacterium was noted when exposed to a medium concentration of LCY and its mixture with ABA. Transcriptomic analysis revealed significant regulation of certain genes in the medium concentration of all three treatments compared to the control group, primarily enriching in metabolism and immune-related pathways. Following chronic exposure to field-relevant concentrations of ABA, LCY, and their mixture, there were significant alterations in the activities of immunity-related enzyme polyphenol oxidase (PPO) and detoxification enzymes glutathione S-transferase (GST) and carboxylesterase (CarE). Additionally, the expression of four genes (abaecin, cyp9e2, cyp302a1, and GstD1) associated with immune and detoxification metabolism was significantly altered. These findings suggest a potential health risk posed by the insecticides ABA and LCY to honey bees. Despite exhibiting acute antagonistic effect, mixed exposure still induced damage to bees at all levels. This study advances our knowledge of the potential adverse effects of individual or combined exposure to these two pesticides on non-target pollinators and offers crucial guidance for the use of insecticides in agricultural production.


Asunto(s)
Insecticidas , Ivermectina , Nitrilos , Piretrinas , Animales , Piretrinas/toxicidad , Abejas/efectos de los fármacos , Abejas/fisiología , Nitrilos/toxicidad , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Insecticidas/toxicidad
15.
PLoS One ; 19(5): e0296255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701093

RESUMEN

Ivermectin (IVM) is an anti-parasitic drug which is used for treating parasitic infestations. It has been used in humans for treating intestinal strongyloidiasis and onchocerciasis however, currently researchers are investigating its potential for treating coronavirus SARS-CoV-2. Due to its broad-spectrum activities, IVM is being used excessively in animals which has generated an interest for researchers to investigate its toxic effects. Cytotoxic and genotoxic effects have been reported in animals due to excessive usage of IVM. Therefore, this study aims to evaluate the cytotoxic and genotoxic effects of IVM on the Madin-Darby-Bovine-Kidney (MDBK) cell line by examining the expression of a DNA damage-responsive gene (OGG1). Cytotoxicity of IVM was tested using an assay (MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), whereas the genotoxicity was evaluated using comet assay along with micronucleus assay. Moreover, the gene expression of DNA damage response gene (OGG1) was measured by qRT-PCR, after extraction of RNA from the MDBK cell line using the TRIzol method and its conversion to cDNA by reverse-transcriptase PCR. During the experiment, cell viability percentage was measured at different doses of IVM i.e., 25%, 50%, 75%, along with LC50/2, LC50 and LC50*2. It was observed that the gene expression of OGG1 increased as the concentration of IVM increased. It was concluded that IVM has both cytotoxic and genotoxic effects on the MDBK cell line. Furthermore, it is recommended that studies related to the toxic effects of IVM at molecular level and on other model organisms should be conducted to combat its hazardous effects.


Asunto(s)
Daño del ADN , Ivermectina , Ivermectina/toxicidad , Ivermectina/farmacología , Animales , Daño del ADN/efectos de los fármacos , Línea Celular , Bovinos , Supervivencia Celular/efectos de los fármacos , Pruebas de Micronúcleos , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Ensayo Cometa , Mutágenos/toxicidad , Antiparasitarios/farmacología , Antiparasitarios/toxicidad , Riñón/efectos de los fármacos , Riñón/citología
16.
Chemosphere ; 358: 142058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642777

RESUMEN

Glyphosate (GLY) is a widely used broad-spectrum herbicide, and ivermectin (IVM) is a commonly used antiparasitic in livestock farming. Both substances can be found in water bodies from agricultural areas and can have negative impacts on ecosystems. The aim of this study was to evaluate the lethal and sublethal toxicity individually and in combination of a glyphosate-based herbicide (GBH) and an ivermectin commercial formulation (ICF). Groups of 10 larvae were exposed for 504 h, in triplicate to a concentration gradient of the commercial formulation of glyphosate and ivermectin, individually, and to a series of dilutions of a non-equitoxic mixture of both compounds based on environmental concentrations. Additionally, biomarkers of oxidative stress (catalase, glutathione S-transferase, and reduced glutathione) and neurotoxicity (acetylcholinesterase and butyrylcholinesterase) were evaluated at sublethal and environmental concentrations of ivermectin (0.00125 mg/L) and glyphosate (0.7 mg/L) individually and in mixture. The ICF (LC50-504h: 0.047 mg ai IVM/L) was more toxic to larvae than the GBH (LC50-504h: 24.73 mg ae GLY/L). In terms of lethality, exposure to the mixture was synergistic at all exposure times. Both compounds separately caused alterations in the biomarkers of oxidative stress and neurotoxicity. Regarding sublethal effects in organisms exposed to the mixture, potentiation was observed in acetylcholinesterase. The simultaneous exposure to both substances in water bodies can have synergistic and negative effects on aquatic organisms.


Asunto(s)
Glicina , Glifosato , Herbicidas , Ivermectina , Larva , Estrés Oxidativo , Contaminantes Químicos del Agua , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Animales , Glicina/análogos & derivados , Glicina/toxicidad , Larva/efectos de los fármacos , Herbicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Sinergismo Farmacológico , Acetilcolinesterasa/metabolismo , Plaguicidas/toxicidad , Biomarcadores/metabolismo
17.
Water Res ; 257: 121660, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38688190

RESUMEN

Pesticides and plastics bring convenience to agriculture and life, but also bring residual pollution in the environment. Emamectin benzoate (EMB) is the most popular pesticide at present. The harm of microplastics (MPs) to water and aquatic organisms is gradually increasing, and the possibility that it appears synchronously with various pesticides increases. However, the damage of EMB and MPs to the carp midgut and its mechanism have not been clarified. Therefore, based on the EMB or/and MPs exposure models, this study explored the mechanism of midgut injury through transcriptomics, immunofluorescence, western blot methods, and so on. Studies in vivo and in vitro showed that EMB or MPs exposure caused cilia shortening, lysosome damage, and ROS overproduction, which led to Fe2+ content increase, GSH/GSSG system disorder, lipid peroxidation, and ferroptosis. This process further led to the down-regulation of Cx43, Occludin, Claudin, and ZO-1, which further caused barrier damage, immune-related genes (immunoglobulin, IFN-γ) decrease and inflammation-related genes (TNF-α, IL-1ß) increase. Combined exposure was more significant than that of single exposure, and the addition of EN6 and NAC proved that lysosome/ROS/ferroptosis regulated these midgut damages. In conclusion, EMB or/and MPs exposure induce tight junction disorder, immune disorder and inflammation in carp midgut through the lysosome/ROS/ferroptosis pathway.


Asunto(s)
Carpas , Inflamación , Ivermectina , Lisosomas , Microplásticos , Animales , Microplásticos/toxicidad , Lisosomas/efectos de los fármacos , Inflamación/inducido químicamente , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Ferroptosis/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo
18.
Sci Total Environ ; 930: 172738, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38670362

RESUMEN

Pesticide usage is a common practice to increase crop yields. Nevertheless, the existence of pesticide residues in the surrounding environment presents a significant hazard to pollinators, specifically the potential undisclosed dangers related to emerging nanopesticides. This study examines the impact of abamectin nanocapsules (AbaNCs), created through electrostatic self-assembly, as an insecticide on honey bees. It was determined that AbaNCs upregulated detoxification genes, including CYP450, as well as antioxidant and immune genes in honey bees. Furthermore, AbaNCs affected the activity of crucial enzymes such as superoxide dismutase (SOD). Although no apparent damage was observed in bee gut tissue, AbaNCs significantly decreased digestive enzyme activity. Microbiome sequencing revealed that AbaNCs disrupted gut microbiome, resulting in a reduction of beneficial bacteria such as Bifidobacterium and Lactobacillus. Additionally, these changes in the gut microbiome were associated with decreased activity of digestive enzymes, including lipase. This study enhances our understanding of the impact of nanopesticides on pollinating insects. Through the revelation of the consequences arising from the utilization of abamectin nanocapsules, we have identified potential stress factors faced by these pollinators, enabling the implementation of improved protective measures.


Asunto(s)
Microbioma Gastrointestinal , Insecticidas , Ivermectina , Nanocápsulas , Animales , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Abejas/fisiología , Abejas/efectos de los fármacos , Insecticidas/toxicidad
19.
Pestic Biochem Physiol ; 201: 105888, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685219

RESUMEN

Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hemípteros , Proteínas de Insectos , Resistencia a los Insecticidas , Insecticidas , Ivermectina/análogos & derivados , Pirazoles , Piridazinas , ortoaminobenzoatos , Animales , Hemípteros/efectos de los fármacos , Hemípteros/genética , Insecticidas/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Piridazinas/farmacología , Resistencia a los Insecticidas/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Pirazoles/farmacología , Filogenia , Neonicotinoides/farmacología , Técnicas de Silenciamiento del Gen , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Ivermectina/farmacología , Ivermectina/toxicidad
20.
Pestic Biochem Physiol ; 201: 105903, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685225

RESUMEN

Abamectin (AB) is widely used in agriculture and has been employed as an insecticide, nematicide, and livestock pest control agent. However, it may also pose a serious threat to mammals. The primary purpose of this research was to compare the sex variations between male and female rats during exposure and to assess the risk of toxicity of abamectin, which are still largely unknown. The twenty albino rats were divided randomly into four groups (n = 5): 1) the male control group; 2) the male treatment group treated with AB (1 mg/kg B.W.); 3) the female control group; and 4) the female treatment group treated with AB (1 mg/kg B.W.). AB administration caused a drop in body weight in females more than males with showing oxidative stress in both sexes of animals, as characterized by an increase in MDA content and a decrease in glutathione (GSH) content and superoxide dismutase (SOD) activity. Reported sex-specific effects suggested that females are more susceptible from males in brain tissues for alteration of antioxidant markers while females' liver and kidney tissues showed more level of lipid peroxidation than males. In addition, mitochondrial dysfunction was associated with a significant decrease in NADH dehydrogenase (Complex I) and a significant decrease in mitochondrial ATPase, which led to apoptosis and histopathological alterations in the targeted tissues, indicating that females are higher sensitive than males to these biological events. In brief, the results of this study led to female rats are generally more sensitive than male rats to neurobehavioral and hepatic complications associated with abamectin treatment. Further evaluation should be performed to determine the adverse outcome pathways involved and to determine the effects of sex on improving the risk assessment of abamectin in both sexes.


Asunto(s)
Apoptosis , Ivermectina , Ivermectina/análogos & derivados , Mitocondrias , Estrés Oxidativo , Animales , Ivermectina/toxicidad , Femenino , Masculino , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratas , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Peroxidación de Lípido/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Malondialdehído/metabolismo , Insecticidas/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA