Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Ultrason Sonochem ; 110: 107057, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39236443

RESUMEN

While probiotics have a wide range of beneficial properties, they can also negatively affect the taste or aroma of foods products by resulting in the phenomenon of post-acidification. Ultrasound (US) is a tool to modulate the metabolism of probiotic bacteria, counteracting post-acidification and improving the performance and functional properties of microorganisms without affecting their viability. The purpose of this paper was to evaluate the effect of 10 different combinations of power (20 and 40 %) and duration (2, 4, 6, 8 and 10 min) of US treatment on two functional strains of Lactiplantibacillus plantarum (c16 and c19) isolated from table olives, with the aim of understanding how, some of the main functional and technological traits (viability, acidification, growth profile under different conditions, antibiotic resistance, viability at pH 2.0 and 0.3 % bile salts), were affected. It was found that the effects were strain dependent, and the best results were obtained for strain c19 in the combinations at 20 % for 8 and 10 min and 40 % for 2 min, where an improvement in functional characteristics was found, with some effects on biofilm stability, inhibition of acidification, without adverse results on some technological properties.


Asunto(s)
Olea , Olea/microbiología , Concentración de Iones de Hidrógeno , Biopelículas/efectos de los fármacos , Ondas Ultrasónicas , Viabilidad Microbiana/efectos de los fármacos , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/fisiología , Lactobacillus plantarum/metabolismo , Probióticos
2.
Gene ; 931: 148882, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-39182659

RESUMEN

Characterizing probiotic features of organisms isolated from diverse environments can lead to the discovery of novel strains with promising functional features and health attributes. The present study attempts to characterize a novel probiotic strain isolated from the gut of the tribal population of Odisha, India. Based on 16S rRNA-based phylogeny, the strain was identified as a species of the Lactiplantibacillus genus and was named Lactiplantibacillus plantarum strain ILSF15. The current investigation focuses on elucidating this strain's genetic and physiological properties associated with probiotic attributes such as biosafety risk, host adaptation/survival traits, and beneficial functional features. The novel strain was observed, in vitro, exhibiting features such as acid/bile tolerance, adhesion to the host enteric epithelial cells, cholesterol assimilation, and pathogen exclusion, indicating its ability to survive the harsh environment of the human GIT and resist the growth of harmful microorganisms. Additionally, the L. plantarum ILSF15 strain was found to harbor genes associated with the metabolism and synthesis of various bioactive molecules, including amino acids, carbohydrates, lipids, and vitamins, highlighting the organism's ability to efficiently utilize diverse resources and contribute to the host's nutrition and health. Several genes involved in host adaptation/survival strategies and host-microbe interactions were also identified from the ILSF15 genome. Moreover, L. plantarum strains, in general, were found to have an open pangenome characterized by high genetic diversity and the absence of specific lineages associated with particular habitats, signifying its versatile nature and potential applications in probiotic and functional food industries.


Asunto(s)
Filogenia , Probióticos , ARN Ribosómico 16S , India , Humanos , ARN Ribosómico 16S/genética , Genoma Bacteriano , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/aislamiento & purificación , Microbioma Gastrointestinal/genética , Lactobacillaceae/genética , Lactobacillaceae/aislamiento & purificación , Lactobacillaceae/clasificación , Genómica/métodos
3.
Pol J Microbiol ; 73(3): 275-295, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39213263

RESUMEN

In this study, Lactobacillus fermentum DM7-6 (DM7-6), Lactobacillus plantarum DM9-7 (DM9-7), and Bacillus subtilis YF9-4 (YF9-4) were isolated from traditional fermented products. The survival rate of DM7-6, DM9-7, and YF9-4 in simulated intestinal gastric fluid reached 61.29%, 44.82%, and 55.26%, respectively. These strains had inhibition ability against common pathogens, and the inhibition zone diameters were more than 7 mm. Antioxidant tests showed these strains had good scavenging capacity for superoxide anion, hydroxyl radical and DPPH, and the total reduction capacity reached 65%. Then DM7-6, DM9-7 and YF9-4 were fed to broilers to study the effects on antioxidant capacity, immune response, biochemical indices, tissue morphology, and gut microbiota. 180 healthy broilers were allocated randomly into six experimental groups. SOD, GSH-Px, and T-AOC in broilers serum were detected, and the results showed probiotics significantly improve antioxidant capacity compared to CK group, while antibiotics showed the opposite result. Besides, IgA, IgM, IgG, TNF-α, and IL-2 indicated it could significantly improve immunity by adding probiotics in broilers diets. However, antibiotics reduced immunoglobulin levels and enhanced inflammation index. Biochemical indicators and tissue morphology showed probiotics had a protective effect on metabolic organs. Gut microbiota analysis proved antibiotics could significantly decrease microbial community diversity and increase the proportion of opportunistic pathogens, while probiotics could improve the diversity of gut microbiota and promote the colonization of beneficial microorganisms. In summary, probiotics DM7-6, DM9-7, and YF9-4 can improve the broiler's health by improving antioxidant capacity and immune function, regulating gut microbiota, and can be used as alternative probiotics for antibiotics-free breeding of broilers.


Asunto(s)
Antibacterianos , Antioxidantes , Pollos , Microbioma Gastrointestinal , Probióticos , Animales , Pollos/microbiología , Probióticos/administración & dosificación , Antioxidantes/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Antibacterianos/farmacología , China , Alimentación Animal/análisis , Limosilactobacillus fermentum , Alimentos Fermentados/microbiología , Bacillus subtilis , Lactobacillus plantarum/aislamiento & purificación , Cruzamiento , Fermentación
4.
N Biotechnol ; 83: 121-132, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39111568

RESUMEN

The study aimed to isolate and characterize lactic acid bacteria from various traditional fermented fish products from North East India, including Xindol, Hentak, and Ngari, which hold significant dietary importance for the indigenous tribes. Additionally, the study sought to examine their untargeted metabolomic profiles. A total of 43 strains of Bacillus, Priestia, Staphylococcus, Pediococcus, and Lactiplantibacillus were isolated, characterized by 16 S rRNA gene and tested for probiotic properties. Five strains passed pH and bile salt tests with strain dependent antimicrobial activity, which exhibited moderate autoaggregation and hydrophobicity properties. Lactiplantibacillus plantarum MKTJ24 exhibited the highest hydrophobicity (42 %), which was further confirmed by adhesion assay in HT-29 cell lines (100 %). Lactiplantibacillus plantarum MKTJ24 treatment in LPS-stimulated HT-29 cells up-regulated expression of mucin genes compared to LPS-treated cells. Treatment of RAW 264.7 cells with Lactiplantibacillus plantarum MKTJ24 decreased LPS-induced reactive oxygen species (ROS) and nitric oxide (NO) productions. Further, genome analysis of Lactiplantibacillus plantarum MKTJ24 revealed the presence of several probiotic markers and immunomodulatory genes. The genome was found to harbor plantaricin operon involved in bacteriocin production. A pangenome analysis using all the publicly available L. plantarum genomes specifically isolated from fermented fish products identified 120 unique genes in Lactiplantibacillus plantarum MKTJ24. Metabolomic analysis indicated dominance of ascorbic acids, pentafluropropionate, cyclopropaneacetic acid, florobenzylamine, and furanone in Xindol. This study suggests that Lactiplantibacillus plantarum MKTJ24 has potential probiotic and immunomodulatory properties that could be used in processing traditional fermented fish products on an industrial scale to improve their quality and enhance functional properties.


Asunto(s)
Antiinflamatorios , Probióticos , Probióticos/farmacología , Animales , Ratones , Humanos , Células HT29 , India , Antiinflamatorios/farmacología , Productos Pesqueros/microbiología , Células RAW 264.7 , Peces/microbiología , Peces/metabolismo , Alimentos Fermentados/microbiología , Fermentación , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/metabolismo
5.
Fungal Biol ; 128(6): 1992-2006, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39174235

RESUMEN

The aim of this study is to develop safe biological methods for controlling fungal deterioration of historical manuscripts. Therefore, fifteen fungal isolates were obtained from paper sheets and leather skins of a deteriorated historical manuscript (dated back to the 13th century). Those isolates were identified using both traditional methods and ITS-sequencing analysis. Aspergillus niger accounted for seven strains, Penicillium citrinum for one strain, Aspergillus flavus for three, Aspergillus fumigatus for one, Aspergillus nidulans for one, and Penicillium chrysogenum for two of the fungal strains that were obtained. The ability of fungal strains for the secretion of cellulase, amylase, gelatinase, and pectinase as hydrolytic enzymes was evaluated. The capability of the probiotic-bacterial strain Lactobacillus plantarum DSM 20174 for inhibition of fungal strains that cause severe deterioration was studied using ethyl acetate-extract. The metabolic profile of the ethyl acetate-extract showed the presence of both high- and low-molecular-weight active compounds as revealed by GC-MS analysis. The safe dose to prevent fungal growth was determined by testing the ethyl acetate extract's biocompatibility against Wi38 and HFB4 as normal cell lines. The extract was found to have a concentration-dependent cytotoxic impact on Wi38 and HFB4, with IC50 values of 416 ± 4.5 and 349.7 ± 5.9 µg mL-1, respectively. It was suggested that 100 µg mL-1 as a safe concentration could be used for paper preservation. Whatman filter paper treated with ethyl acetate extract was used to cultivate the fungal strain Penicillium citrinum AX2. According to data analysis, fungal inhibition measurement, SEM, ATR-FT-IR, XRD, color change measurement, and mechanical property assessment, the recommended concentration of ethyl acetate extract was adequate to protect paper inoculated with the highest enzymatic producer fungi, P. citrinum AX2.


Asunto(s)
Lactobacillus plantarum , Probióticos , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/aislamiento & purificación , Penicillium/crecimiento & desarrollo , Penicillium/efectos de los fármacos , Penicillium/aislamiento & purificación , Penicillium/metabolismo , Antibiosis , Humanos , Antifúngicos/farmacología
6.
BMC Microbiol ; 24(1): 310, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174931

RESUMEN

BACKGROUND: Bovine mastitis results in significant economic losses for the dairy industry globally due to milk production losses and decreased herd efficiency. This research aimed to isolate, select, and characterize indigenous lactobacilli with probiotic properties. A total of 40 lactobacilli were isolated from healthy milk samples of cattle and identified at the species level through 16S rDNA sequencing. All isolates were initially screened for antimicrobial activity, and selected isolates underwent in vitro assessment of probiotic properties. RESULTS: Among the lactobacilli isolates, varying levels of activity (9 to 19 mm) against cattle mastitogens; Stapylococcus aureus (Staph. aureus), Escherichia coli (E. coli) and Streptococcus dysgalactiae (Strep. dysgalactiae) were observed in the well diffusion assay. These isolates demonstrated auto-aggregation (ranging from 14.29 ± 0.96% to 62.11 ± 1.09%) and co-aggregate (ranging from 9.21 ± 0.14% to 55.74 ± 0.74%) with mastitogens after 2 h. Lactobacillus (Lb.) plantarum CM49 showed sensitivity to most antibiotics tested and exhibited strong inhibitory effects, with mean log10 reductions of 3.46 for Staph. aureus, 2.82 for E. coli, and 1.45 for Strep. dysgalactiae in co-culture experiments. Furthermore, Lb. plantarum CM49 significantly decreased the adhesion rate of mastitogens on the bovine mammary cell line and mouse model, demonstrating its potential effectiveness in preventing mastitis. CONCLUSION: It is concluded that Lb. plantarum CM49 has remarkable probiotic potential with activity against cattle mastitogens in the laboratory and cell culture and competitively excludes mastitogens from bovine mammary cells and ameliorates Staph. aureus-induced mastitis in mice.


Asunto(s)
Escherichia coli , Lactobacillus plantarum , Mastitis Bovina , Leche , Probióticos , Staphylococcus aureus , Animales , Bovinos , Probióticos/farmacología , Mastitis Bovina/microbiología , Mastitis Bovina/prevención & control , Lactobacillus plantarum/fisiología , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/genética , Femenino , Leche/microbiología , Staphylococcus aureus/efectos de los fármacos , Ratones , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , ARN Ribosómico 16S/genética , Antibacterianos/farmacología , Streptococcus/efectos de los fármacos , Streptococcus/genética , Streptococcus/fisiología , Pruebas de Sensibilidad Microbiana
7.
Microbiol Spectr ; 12(8): e0046424, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39016604

RESUMEN

The present study aimed to investigate the effects of the initial microbiota on microbial succession and metabolite transition during eggplant fermentation. Samples of traditional Japanese eggplant pickles, shibazuke, which were spontaneously fermented by plant-associated microbiota, were used for the analysis. Microbiota analysis indicated two successional patterns: early dominance of lactic acid bacteria superseded by aerobic bacteria and early dominance of lactic acid bacteria maintained to the end of the production process. Next, shibazuke production was modeled using filter-sterilized eggplant juice, fermenting the average composition of the initial shibazuke microbiota, which was artificially constructed from six major species identified during shibazuke production. In contrast to shibazuke production, all batches of eggplant juice fermentation showed almost identical microbial succession and complete dominance of Lactiplantibacillus plantarum in the final microbiota. These findings revealed the fate of initial microbiota under shibazuke production conditions: the early dominance of lactic acid bacteria that was maintained throughout, with L. plantarum ultimately predominating the microbiota. Furthermore, a comparison of the results between shibazuke production and eggplant juice fermentation suggested that L. plantarum is involved in the production of lactic acid, alanine, and glutamic acid during eggplant fermentation regardless of the final microbiota. IMPORTANCE: The findings shown in this study provide insight into the microbial succession during spontaneous pickle fermentation and the role of Lactiplantibacillus plantarum in eggplant pickle production. Moreover, the novel method of using filter-sterilized vegetable juice with an artificial microbiota to emulate spontaneous fermentation can be applied to other spontaneously fermented products. This approach allows for the evaluation of the effect of specific initial microbiota in the absence of plant-associated bacteria from raw materials potentially promoting a greater understanding of microbial behavior in complex microbial ecosystems during vegetable fermentation.


Asunto(s)
Fermentación , Jugos de Frutas y Vegetales , Microbiota , Solanum melongena , Solanum melongena/microbiología , Microbiota/fisiología , Jugos de Frutas y Vegetales/microbiología , Microbiología de Alimentos/métodos , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/aislamiento & purificación , Ácido Láctico/metabolismo
8.
Food Chem ; 451: 139344, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663238

RESUMEN

A novel bacteriocin, plantaricin ZFM9, was purified from Lactiplantibacillus plantarum ZFM9 using a combination of ammonium sulfate precipitation, XAD-2 macroporous resin, Sephadex G-50, Sephadex LH-20, and reversed-phase high performance liquid chromatography. The molecular mass of plantaricin ZFM9 was 1151.606 Da, and the purity was 98.3%. Plantaricin ZFM9 has thermal stability (95.6% retention at 120 °C for 30 min), pH stability (pH ≤ 5), and sensitivity to the pepsin, trypsin, papain, and proteinase K. Plantaricin ZFM9 exhibited broad-spectrum antimicrobial activity and notably inhibit methicillin-resistant Staphylococcus aureus D48 (MRSA). According to the results of electron microscopy and fluorescence leakage assay, it was found that plantaricin ZFM9 caused damage to the cells membrane and leakage of the contents of S. aureus D48. In addition, Lipid II was not the anti-MRSA target of plantaricin ZFM9. This study underscores the potential of plantaricin ZFM9 for applications in the food field and biopharmaceuticals against MRSA infection.


Asunto(s)
Antibacterianos , Bacteriocinas , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Bacteriocinas/farmacología , Bacteriocinas/química , Bacteriocinas/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Peso Molecular , Lactobacillus plantarum/química , Lactobacillus plantarum/aislamiento & purificación
9.
Mar Drugs ; 20(2)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35200617

RESUMEN

This study aimed to investigate the protective effect of the metabolites produced by a new Lactiplantibacillus plantarum strain BF1-13, isolated from deep seawater (DSW), on the intestinal epithelial barrier against the dysfunction induced by hydrogen peroxide (H2O2) and to elucidate the mechanism underlying the effect. Protective effect of the metabolites by strain BF1-13 on the barrier function of the intestinal epithelial model treated with H2O2 was investigated by the transepithelial electrical resistance (TEER). The metabolites enhanced the Claudin-4 (CLDN-4) expression, including at the transcription level, indicated by immunofluorescence staining and quantitative RT-PCR. The metabolites also showed a suppression of aquaporin3 (AQP3) expression. Lactic acid (LA) produced by this strain of homofermentative lactic acid bacteria (LAB) had a similar enhancement on CLDN-4 expression. The metabolites of L. plantarum strain BF1-13 alleviated the dysfunction of intestinal epithelial barrier owing to its enhancement on the tight junctions (TJs) by LA, along with its suppression on AQP3-facilitating H2O2 intracellular invasion into Caco-2 cells. This is the first report on the enhancement of TJs by LA produced by LAB.


Asunto(s)
Mucosa Intestinal/efectos de los fármacos , Lactobacillus plantarum/metabolismo , Sustancias Protectoras/farmacología , Acuaporina 3/genética , Células CACO-2 , Humanos , Peróxido de Hidrógeno/toxicidad , Mucosa Intestinal/patología , Ácido Láctico/metabolismo , Lactobacillus plantarum/aislamiento & purificación , Sustancias Protectoras/aislamiento & purificación , Agua de Mar , Uniones Estrechas/efectos de los fármacos
10.
Sci Rep ; 12(1): 1940, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121802

RESUMEN

Lactiplantibacillus plantarum is one of the most diverse species of lactic acid bacteria found in various habitats. The aim of this work was to perform preliminary phenotypic and genomic characterization of two novel and potentially probiotic L. plantarum strains isolated from Indian foods, viz., dhokla batter and jaggery. Both the strains were bile and acid tolerant, utilized various sugars, adhered to intestinal epithelial cells, produced exopolysaccharides and folate, were susceptible for tetracycline, erythromycin, and chloramphenicol, did not cause hemolysis, and exhibited antimicrobial and plant phenolics metabolizing activities. The genetic determinants of bile tolerance, cell-adhesion, bacteriocins production, riboflavin and folate biosynthesis, plant polyphenols utilization, and exopolysaccharide production were found in both the strains. One of the strains contained a large number of unique genes while the other had a simultaneous presence of glucansucrase and fructansucrase genes which is a rare trait in L. plantarum. Comparative genome analysis of 149 L. plantarum strains highlighted high variation in the cell-adhesion and sugar metabolism genes while the genomic regions for some other properties were relatively conserved. This work highlights the unique properties of our strains along with the probiotic and technically important genomic features of a large number of L. plantarum strains.


Asunto(s)
ADN Bacteriano/genética , Alimentos Fermentados/microbiología , Genómica , Células HT29 , Lactobacillus plantarum/genética , Extractos Vegetales , Probióticos , Adhesión Bacteriana , ADN Bacteriano/metabolismo , Microbiología de Alimentos , Regulación Bacteriana de la Expresión Génica , Genotipo , Humanos , India , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/metabolismo , Fenotipo , Filogenia , Probióticos/aislamiento & purificación , Probióticos/metabolismo , Secuenciación Completa del Genoma
11.
J Microbiol ; 59(12): 1092-1103, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34865198

RESUMEN

As the functions of probiotics within the same species may not be shared, it is important to analyze the genetic characteristics of strains to determine their safety and usefulness before industrial applications. Hence the present study was undertaken to determine functional genes, and beneficial activities of strain LRCC5314, a bacterial strain isolated from kimchi through comparative genomic analysis. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain LRCC5314 was a member of the species L. plantarum. Whole genome size of strain LRCC5314 was sequence was 3.25 Mb long, with a G + C content of 44.5 mol% and 3,031 predicted genes. Strain LRCC5314 could metabolize hexoses through homofermentation, which produces only lactic acid from hexoses. According to gene annotation, strain LRCC-5314 contained genes of EPS production and CRISPR. Moreover, the strain contained genes that could encode a complete biosynthetic pathway for the production of tryptophan, which can be used as a precursor of serotonin. Notably, the tryptophan and serotonin activities strain LRCC5314 were higher than those of reference strains, L. plantarum ATCC 14917T, DSM 20246, DSM 2601, and ATCC 8014, which reach tryptophan amount of 0.784 ± 0.045 µM/ml in MRS broth and serotonin concentration of 19.075 ± 0.295 ng/ml in HT-22 cells. These findings indicated that L. plantarum LRCC5314 could provide a source for serotonin production and could be used as a functional probiotic for stress regulation.


Asunto(s)
Genes Bacterianos , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Serotonina/biosíntesis , Triptófano/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fermentación , Alimentos Fermentados/microbiología , Genoma Bacteriano , Lactobacillus plantarum/clasificación , Lactobacillus plantarum/aislamiento & purificación , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Filogenia , Polisacáridos Bacterianos/biosíntesis , Probióticos , Triptófano/biosíntesis , Triptófano/genética , Secuenciación Completa del Genoma
13.
Sci Rep ; 11(1): 21022, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697350

RESUMEN

Peri-implantitis is a common reversible disease after tooth implantation, caused by a variety of pathogenic microorganisms. Based on non-surgical or surgical treatment principles, supplementation by local or systemic drugs might enhance treatment efficacy. Porphyromonas gingivalis (Pg) (ATCC 33,277) and Prevotella intermedius (Pi) (ATCC 25,611) were used as test strains. The effects of Pln 149 on the biofilm formation and growth of four periodontal pathogens were evaluated by RT-PCR, fluorescence microscopy, and scanning electron microscopy. The antibacterial mechanism was tested by the patch-clamp technique. The cytotoxicity of Pln 149 (125 µg/ml) to bone marrow stromal cell (BMSC) was assessed using an MTT assay. Pln 149 exhibited significant inhibitory effects on Pg and Pi (P < 0.05), with significant differences in the biofilm images of fluorescence microscope and scanning electron microscope (P < 0.05). Pln 149 could change the sodium channel currents and exerted no cytotoxicity on bone marrow stromal cell. Pln 149 could inhibit the biofilm formation and growth of periodontal pathogens. Considering the absence of antimicrobial resistance and cytotoxicity, we suggest that the Pln 149 from Lactobacillus plantarum 149 might be a promising option for managing peri-implantitis.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/farmacología , Lactobacillus plantarum/metabolismo , Periimplantitis/tratamiento farmacológico , Periimplantitis/microbiología , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Antibiosis , Bacteriocinas/química , Biopelículas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Lactobacillus plantarum/genética , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/ultraestructura , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Péptidos/química , Péptidos/farmacología
14.
BMC Microbiol ; 21(1): 198, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187371

RESUMEN

BACKGROUND: Probiotics are important tools in therapies against vaginal infections and can assist traditional antibiotic therapies in restoring healthy microbiota. Recent research has shown that microorganisms belonging to the genus Lactobacillus have probiotic potential. Thus, this study evaluated the potential in vitro probiotic properties of three strains of Lactiplantibacillus plantarum, isolated during the fermentation of high-quality cocoa, against Gardnerella vaginalis and Neisseria gonorrhoeae. Strains were evaluated for their physiological, safety, and antimicrobial characteristics. RESULTS: The hydrophobicity of L. plantarum strains varied from 26.67 to 91.67%, and their autoaggregation varied from 18.10 to 30.64%. The co-aggregation of L. plantarum strains with G. vaginalis ranged from 14.73 to 16.31%, and from 29.14 to 45.76% with N. gonorrhoeae. All L. plantarum strains could moderately or strongly produce biofilms. L. plantarum strains did not show haemolytic activity and were generally sensitive to the tested antimicrobials. All lactobacillus strains were tolerant to heat and pH resistance tests. All three strains of L. plantarum showed antimicrobial activity against the tested pathogens. The coincubation of L. plantarum strains with pathogens showed that the culture pH remained below 4.5 after 24 h. All cell-free culture supernatants (CFCS) demonstrated activity against the two pathogens tested, and all L. plantarum strains produced hydrogen peroxide. CFCS characterisation in conjunction with gas chromatography revealed that organic acids, especially lactic acid, were responsible for the antimicrobial activity against the pathogens evaluated. CONCLUSION: The three strains of L. plantarum presented significant probiotic characteristics against the two pathogens of clinical importance. In vitro screening identified strong probiotic candidates for in vivo studies for the treatment of vaginal infections.


Asunto(s)
Antibiosis/fisiología , Cacao/microbiología , Alimentos Fermentados/microbiología , Gardnerella vaginalis/fisiología , Lactobacillus plantarum/fisiología , Neisseria gonorrhoeae/fisiología , Probióticos , Fermentación , Humanos , Lactobacillus plantarum/aislamiento & purificación
15.
World J Microbiol Biotechnol ; 37(7): 115, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34125306

RESUMEN

The aim of this work was to obtain freeze-dried biomass of the native Patagonian Lactiplantibacillus plantarum strain UNQLp 11 from a whey permeate (WP)-based medium and compare it with the growth in commercial MRS broth medium. Survival and activity of the freeze-dried Lb. plantarum strain were investigated after inoculation in wine as a starter culture for malolactic fermentation (MLF). The effect of storage and rehydration condition of the dried bacteria and the nutrient supplementation of wine were also studied. The freeze-dried cultures from WP and those grown in MRS showed similar survival results. Rehydration in MRS broth for 24 h and the addition of a rehydration medium to wine as nutrient supplementation improved the survival under wine harsh conditions and guaranteed the success of MLF. Storage at 4 °C under vacuum was the best option, maintaining high cell viability for at least 56 days, with malic acid consumption higher than 90% after 7 days of inoculation in a wine-like medium. These results represent a significant advance for sustainable production of dried malolactic starter cultures in an environmentally friendly process, which is low cost and easy to apply in winemaking under harsh physicochemical conditions.


Asunto(s)
Medios de Cultivo/química , Lactobacillus plantarum/crecimiento & desarrollo , Malatos/química , Suero Lácteo/química , Vino/microbiología , Técnicas Bacteriológicas , Biomasa , Fermentación , Microbiología de Alimentos , Liofilización , Lactobacillus plantarum/química , Lactobacillus plantarum/aislamiento & purificación , Viabilidad Microbiana
16.
J Dairy Res ; 88(2): 210-216, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33934726

RESUMEN

This paper reveals the technological properties of lactic acid bacteria isolated from raw milk (colostrum and mature milk) of Wagyu cattle raised in Okayama Prefecture, Japan. Isolates were identified based on their physiological and biochemical characteristics as well as 16S rDNA sequence analysis. Streptococcus lutetiensis and Lactobacillus plantarum showed high acid and diacetyl-acetoin production in milk after 24 h of incubation at 40 and 30°C, respectively. These strains are thought to have potential for use as starter cultures and adjunct cultures for fermented dairy products.


Asunto(s)
Bovinos/microbiología , Lactobacillales/fisiología , Leche/microbiología , Animales , Carga Bacteriana , Calostro/microbiología , Productos Lácteos Cultivados/microbiología , ADN/análisis , Fermentación , Japón , Ácido Láctico/biosíntesis , Lactobacillales/genética , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/fisiología , ARN Ribosómico 16S/genética , Streptococcus/aislamiento & purificación , Streptococcus/fisiología
17.
Biomed Res Int ; 2021: 6676502, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33954196

RESUMEN

Obesity and associated metabolic disorders, including cardiovascular disease and diabetes, are rapidly becoming serious global health problems. It has been reported that Lactobacillus plantarum (L. plantarum) extracts have the beneficial activities of antiobesity and antidiabetes, although few studies have compared the beneficial effects among various L. plantarum extracts. In this study, three new L. plantarum (named LP, LS, and L14) strains were identified, and the antiobesogenic and diabetic effects of their extracts were investigated and compared using 3T3-L1 cells in vitro. Lipid accumulation in maturing 3T3-L1 cells was significantly decreased by the addition of LS and L14 extracts. The mRNA expression levels of Pparγ, C/ebpα, Fabp4, Fas, and Dgat1 were significantly decreased by the addition of LP, LS, and L14 extracts. Interestingly, the protein expression levels of PPARγ, C/EBPα, FABP4, and FAS were downregulated in mature 3T3-L1 cells with the addition of the L14 extract. Moreover, the LS and L14 extract treatments stimulated glucose uptake in maturing adipocytes. The L14 extract treatments exhibited a significant reduction in TNF-α protein expression, which is a key factor of insulin resistance in adipocytes. Of the three extracts, L14 extract markedly reduced adipogenic differentiation and insulin resistance in vitro, suggesting that the L14 extract may be used as a therapeutic agent for obesity-associated metabolic disorders.


Asunto(s)
Adipocitos/citología , Adipogénesis , Resistencia a la Insulina , Lactobacillus plantarum/fisiología , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis/genética , Animales , Muerte Celular , Supervivencia Celular , Regulación de la Expresión Génica , Glucosa/metabolismo , Resistencia a la Insulina/genética , Lactobacillus plantarum/aislamiento & purificación , Metabolismo de los Lípidos , Ratones
18.
Food Chem ; 358: 129863, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33940298

RESUMEN

Traditional high-salt fermented Suanyu is an ethnic fermented fish product in southwest China. Lactic acid bacteria (LAB) are the most appropriate strains because of their technological properties during ripening fermentation. The diversity of LAB in high-salt fermented Chinese Suanyu was examined through high-throughput sequencing (HTS), and the most suitable LAB strain was acquired through strain isolation and characterization, surimi simulation fermentation system, and principal component analysis (PCA). The processing adaptability of the strain was examined via Suanyu fermentation. Results showed that Lactobacillus, Tetragenococcus, and Weissella were the dominant bacteria in Suanyu, and their contributions were 53.99%, 35.60%, and 4.10%, respectively. The most suitable strain (Lactobacillus plantarum B7) rapidly produced acid, exhibited a strong antibacterial activity, showed salt tolerance, and had no amino acid decarboxylase activity. pH decreased to about 3.6. Eventually, the ability to tolerate 20% salt was observed, and the activity of amino acid decarboxylase was negative. Fermented Suanyu with B7 rapidly produced acid (11.7% d-1). The non-protein nitrogen (NPN) and total free amino acid (FAA) contents of fermented Suanyu were higher and its total volatile base nitrogen (TVB-N), thiobarbituric acid (TBARS), and biogenic amines (BAs) levels were lower than those of naturally fermented Suanyu. Therefore, B7 is a potential microbial starter for Suanyu industrial production.


Asunto(s)
Bacterias/metabolismo , Alimentos Fermentados/microbiología , Productos Pesqueros/microbiología , Aminoácidos/análisis , Animales , Bacterias/genética , Aminas Biogénicas/análisis , Fermentación , Microbiología de Alimentos , Concentración de Iones de Hidrógeno , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/metabolismo , ARN Ribosómico 16S , Weissella/aislamiento & purificación
19.
Drug Des Devel Ther ; 15: 1667-1676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33911852

RESUMEN

AIM: Gastric mucosal injury is a typical characteristic of gastric diseases. The prevalence of gastric mucosal injury caused by alcohol has been on the rise, which has been considered a serious problem. The purpose of this study is to explore the protective effect on gastric injury of Lactobacillus plantarum ZS62 (LP-ZS62) isolated from naturally fermented yak yoghurt. METHODS: We established a gastric injury model through alcohol and evaluated the protective effect of LP-ZS62 on gastric injury in mice. The injury to the gastric mucosa, histopathological sections, related biochemical indicators, and related genes were examined to evaluate the protective effect of LP-ZS62. RESULTS: LP-ZS62 effectively alleviated alcohol-induced gastric injury according to visual observations of gastric tissue and pathological tissue sections. The experimental results revealed that LP-ZS62 decreased malondialdehyde (MDA) level, and elevated superoxide dismutase (SOD) and glutathione (GSH) levels in gastric tissues. Additionally, LP-ZS62 increased glutathione peroxidase (GSH-Px), prostaglandin E2 (PGE2), and somatostatin (SS) levels. LP-ZS62 also decreased inflammatory cytokines interleukin (IL)-1ß, tumor necrosis factor-α (TNF-α) and IL-6 levels, and increased the anti-inflammatory cytokine IL-10 level. The quantitative polymerase chain reaction results showed that LP-ZS62 upregulated mRNA expression of nuclear factor E2-related factor 2 (Nrf2), copper/zinc superoxide dismutase (SOD1), manganese superoxide dismutase (SOD2), catalase (CAT), gamma-glutamylcysteine synthetase (GSH1), and glutathione peroxidase (GSH-Px). CONCLUSION: This study confirmed that LP-ZS62 alleviated alcohol-induced gastric injury by regulating antioxidant capacity. Therefore, LP-ZS62 could be developed as a probiotic product to treat alcoholic gastric injury.


Asunto(s)
Antioxidantes/metabolismo , Etanol/antagonistas & inhibidores , Etanol/metabolismo , Jugo Gástrico/metabolismo , Mucosa Gástrica/metabolismo , Lactobacillus plantarum/metabolismo , Animales , Antioxidantes/química , Mucosa Gástrica/patología , Lactobacillus plantarum/aislamiento & purificación , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Toxins (Basel) ; 13(4)2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921591

RESUMEN

Zearalenone (ZEA) is a harmful secondary fungal metabolite, produced primarily by plant pathogenic fungi mostly belonging to the genus Fusarium. It is involved in reproductive disorders in animals since its structure is similar to the estrogen hormone. This induces precocious pubertal changes, fertility problems, and hyper estrogenic disorders. The main objectives of this study were to evaluate the ZEA removal capacity of plant-derived lactic acid bacteria (LAB) and to investigate the possible components and mechanisms involved in the removal of ZEA by physically and chemically treated plant-derived LAB. The bacterial cells were characterized using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), and the analysis of zeta potential, and hydrophobic index. Results revealed that 17 out of 33 plant-derived LAB exhibited ZEA removal from liquid medium. The percentage of removal ranged from 0.5-23% and Lactobacillus plantarum BCC 47723, isolated from wild spider flower pickle (Pag-sian-dorng), exhibited the highest removal. The alteration of proteins on L. plantarum BCC 47723 structure by Sodium dodecyl sulphate (SDS) treatment was positively affected on ZEA removal, whereas that of lipids on ZEA removal was negatively observed. Heat treatment influenced the higher ZEA adsorption. SEM images showed that the morphologies of modified bacterial cells were distinctly deformed and damaged when compared with untreated control. FTIR analysis indicated that the original functional groups, which included amide (C=O, C-N), carboxyl (C=O, C-O, O-H), methylene (C=C), and alcohol (O-H) groups, were not changed after ZEA adsorption. The zeta potential indicated that electrostatic interaction was not involved in the ZEA removal, while hydrophobicity was the main force to interact with ZEA. These findings can conclude that adsorption by hydrophobicity is the main mechanism for ZEA removal of plant-derived L. plantarum BCC 47723. The alteration of bacterial cell structure by heat treatment enhanced the efficiency of L. plantarum BCC 47723 for ZEA reduction. Its activity can be protected by the freeze-drying technique. Hence, plant-derived L. plantarum BCC 47723 can be considered as an organic adsorbent for ZEA reduction in food and feedstuff.


Asunto(s)
Agentes de Control Biológico/metabolismo , Hongos/metabolismo , Lactobacillus plantarum/metabolismo , Plantas/microbiología , Zearalenona/metabolismo , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Lactobacillus plantarum/aislamiento & purificación , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA