RESUMEN
Tumors in patients non-responsive to immunotherapy harbor a series of barriers that impede the efficacy of effector T-cells. Consequently, therapeutically modulating the chemotaxis machinery to enable effector T cell infiltration and function in the tumor could result in more successful therapeutic outcomes. Complexin-vitromodels allow re-creation ofin-vivotumor complexities in anin-vitrosetting, allowing improved translatability to patient biology at the laboratory scale. We identified a gap in available industrial scale microphysiological (MPS) assays for faster validation of targets and strategies that enable T-cell chemotaxis and effector function within tumor microenvironments. Using a commercially available, 96-chip 2-lane microfluidic assay system, we present a novel, scalable, complexin vitroMPS assay to study 3D T-cell chemotaxis and function within native, extracellular matrix (ECM)-rich multicellular tumor environments. Activated or naïve CD3+ T-cells stained with far-red nuclear stain responded to the chemokine gradients generated within the matrigel-collagen ECM by migrating into the microfluidic channel (â¼5 mm horizontal window), in a concentration- and cell type-dependent manner. Furthermore, we observed and tracked chemotaxis and cancer cell killing function of antigen-specific CD4.CD8. chimeric antigen receptor (CAR)-T cells that responded to CXCR3 agonist gradient built through the expansive 5 mm of cancer cell colony containing stroma. The 2-lane assay system yielded useful information regarding donor and dose-dependent differences in CAR-T cell chemotaxis and tumor killing. The scalable assay system allows a granular window into immune cell migration and function in tissue spaces beyond endothelium, addressing a missing gap in studying tissue-specific immune cell chemotaxis and function to bring forward advancements in cancer immunotherapy.
Asunto(s)
Quimiotaxis , Linfocitos T , Humanos , Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/citología , Neoplasias/inmunología , Microambiente Tumoral , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Laminina/química , Laminina/farmacología , Técnicas Analíticas Microfluídicas/instrumentación , Colágeno/química , Combinación de Medicamentos , ProteoglicanosRESUMEN
Currently, the cells, which are urgently required for large-scale application in biomedical-related fields, harvested by traditional trypsin digestion are usually subject to repeated digestion, leading to a reduction of cell activity. In this study, poly (N-isopropylacrylamide) (PNIPAAm) was grafted onto the lignocellulose hollow fiber membranes (HFMs) with cerium ammonium nitrate (CAN) as the initiator to prepare thermosensitive HFMs, which was combined with a rotation system of culture (RSOC) to achieve dynamic culture and non-destructive harvesting of cells from the HFMs. The results of ATR-FTIR, elemental analysis, and SEM confirmed the successful preparation of PNIPAAm-grafted-HFMs, which also showed good biocompatibility to apply for cell culture carriers. In cooling detachment, the HFMs-0.01 group could completely detach the cells within 1 h with a cell separation efficiency of more than 90%. The laminin (LN) and fibronectin (FN) harvested by cooling detachment of P8 generation PC12 cells reached 0.0531 ± 0.0032 and 2.5045 ± 0.0001 pg/cell, respectively, which were significantly higher than that by trypsin digestion. In addition, the cells on the thermosensitive HFMs proliferated fastest in RSOC at 30 rpm with higher glucose consumption and lactate metabolism than in static conditions. Moreover, the cells that had dynamic detachment at 20 rpm had the highest cell density and activity. Therefore, the thermosensitive HFMs could be applied as cell culture carriers in RSOC for cell culturing at 30 rpm and harvesting at 20 rpm, which would provide considerable potential for large-scale cell culture in vitro.
Asunto(s)
Resinas Acrílicas , Técnicas de Cultivo de Célula , Lignina , Resinas Acrílicas/química , Ratas , Animales , Lignina/metabolismo , Lignina/química , Técnicas de Cultivo de Célula/métodos , Células PC12 , Membranas Artificiales , Temperatura , Proliferación Celular/efectos de los fármacos , Fibronectinas/metabolismo , Laminina/químicaRESUMEN
We computationally predicted all phosphorylation sites in the sequence of the human laminin γ1-chain (LAMC1), and computationally identified, for the first time, all kinases for experimentally observed phosphorylated residues of the LAMC1 and all missense deleterious LAMC1 mutations found in different cancer types that interfere with LAMC1 phosphorylation. Also, we mapped the above data to all the biologically functional interaction sequences of the LAMC1. Five kinases (CKII, GPCRK1, PKA, PKC, and CKI) are most enriched for LAMC1 phosphorylation, and the significance of ecto-kinases in this process was emphasized. PKA and PKC targeted more residues inside and close to functional interaction sequences compared with other kinases and in the functional interaction sequence RPESFAIYKRTR. Most phosphorylation-interfering mutations were found in cutaneous melanoma and uterine endometrioid carcinoma. The mutation R255H interfered with the experimentally observed phosphorylation of LAMC1 inside the functional interaction sequence TDIRVTLNRLNTF, while the mutations S181Y and S213Y interfered with the experimentally observed phosphorylation of LAMC1 outside the functional interaction sequences. Mutations R359C,H, R589H, R657C,H, R663I,G, and T1207 interfered with the predicted phosphorylation inside or close to the functional interaction sequences, whereas other mutations interfered outside. PKA- and PKC-predicted phosphorylation was mostly interfered with by mutations inside functional interaction sequences. Phosphorylation- interfering mutations and functional interaction sequences were suggested to promote specific cancer types or cancer progression in general.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Laminina , Humanos , Fosforilación , Laminina/genética , Laminina/metabolismo , Laminina/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/química , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Mutación , Secuencia de Aminoácidos , Mutación Missense , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteína Quinasa C/química , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , FemeninoRESUMEN
The blood-brain barrier (BBB) poses a significant challenge for drug delivery and is linked to various neurovascular disorders. In vitro BBB models provide a tool to investigate drug permeation across the BBB and the barrier's response to external injury events. Yet, existing models lack fidelity in replicating the BBB's complexity, hindering a comprehensive understanding of its functions. This study introduces a three-dimensional (3D) model using polyethylene glycol (PEG) hydrogels modified with biomimetic peptides that represent recognition sequences of key proteins in the brain. Hydrogels were functionalized with recognition sequences for laminin (IKVAV) and fibronectin peptides (RGD) and chemically cross-linked with matrix metalloprotease-sensitive peptides (MMPs) to mimic the extracellular matrix of the BBB. Astrocytes and endothelial cells were seeded within and on the surface of the hydrogels, respectively. The barrier integrity was assessed through different tests including transendothelial electrical resistance (TEER), the permeability of sodium fluorescence (Na-F), the permeability of Evan's blue bound to albumin (EBA), and the expression of zonula occluden-1 (ZO-1) in seeded endothelial cells. Hydrogels with a combination of RGD and IKVAV peptides displayed superior performance, exhibiting significantly higher TEER values (55.33 ± 1.47 Ω·cm2) at day 5 compared to other 2D controls including HAECs-monoculture and HAECs-cocultured with NHAs seeded on well inserts and 3D controls including RGD hydrogel and RGD-IKVAV monoculture with HAECs and RGD hydrogel cocultured with HAECs and NHAs. The designed 3D system resulted in the lowest Evan's blue permeability at 120 min (0.215 ± 0.055 µg/mL) compared to controls. ZO-1 expression was significantly higher and formed a relatively larger network in the functionalized hydrogel cocultured with astrocytes and endothelial cells compared to the controls. Thus, the designed 3D model effectively recapitulates the main BBB structure and function in vitro and is expected to contribute to a deeper understanding of pathological CNS angiogenesis and the development of effective CNS medications.
Asunto(s)
Astrocitos , Barrera Hematoencefálica , Técnicas de Cocultivo , Células Endoteliales , Hidrogeles , Péptidos , Polietilenglicoles , Barrera Hematoencefálica/metabolismo , Astrocitos/metabolismo , Polietilenglicoles/química , Células Endoteliales/metabolismo , Técnicas de Cocultivo/métodos , Hidrogeles/química , Péptidos/química , Humanos , Oligopéptidos/química , Fibronectinas/química , Fibronectinas/metabolismo , Laminina/química , Animales , Biomimética/métodos , Materiales Biomiméticos/química , Células CultivadasRESUMEN
Engineered vascularized tissues in vitro exhibit the potential for transplantation therapy and disease modeling. Despite efforts to design hydrogels as cell culture platforms for in vitro vascularization, development of vascularized tissues recapitulating the natural structures and functions remains difficult due to a poor understanding of the relationships between the matrix microstructures and tube formation of endothelial cells. Herein, we developed microfiber network hydrogels with microporous structures by controlling the liquid-liquid phase separation (LLPS) of proteins and matrix structures in hydrogels. Extracellular matrix protein gelatin was modified with hydrogen-bonding moieties and mixed with hyaluronic acid sodium salt to form microfiber network structures. Gelatin gelation and hyaluronic acid sodium salt dissolution led to the formation of a microporous microfiber network hydrogel formation. Matrix structures of hydrogels were modified by controlling LLPS that affects endothelial cell tube formation. Vascularization was improved using laminin peptides and coculturing with mesenchymal stem cells. Overall, our approach exhibits the potential to induce in vitro vascularization for regenerative medicine and disease modeling applications.
Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Ácido Hialurónico , Hidrogeles , Células Madre Mesenquimatosas , Neovascularización Fisiológica , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Gelatina/química , Ingeniería de Tejidos/métodos , Laminina/química , Laminina/farmacologíaRESUMEN
BACKGROUND: Xerostomia is a pathological condition characterized by decreased salivation due to salivary gland dysfunction and is frequently attributed to irreversible damage as a side effect of radiation therapy. Stem cell-derived organoid therapy has garnered attention as a promising avenue for resolving this issue. However, Matrigel, a hydrogel commonly used in organoid culture, is considered inappropriate for clinical use due to its undefined composition and immunogenicity. In this study, we aimed to develop a method for culturing collagen-based human salivary gland organoids (hSGOs) suitable for clinical applications and evaluated their therapeutic effectiveness. METHODS: Human salivary gland stem cells were isolated from the salivary gland tissues and cultured in both Matrigel and collagen. We compared the gene and protein expression patterns of salivary gland-specific markers and measured amylase activity in the two types of hSGOs. To evaluate the therapeutic effects, we performed xenogeneic and allogeneic transplantation using human and mouse salivary gland organoids (hSGOs and mSGOs), respectively, in a mouse model of radiation-induced xerostomia. RESULTS: hSGOs cultured in Matrigel exhibited self-renewal capacity and differentiated into acinar and ductal cell lineages. In collagen, they maintained a comparable self-renewal ability and more closely replicated the characteristics of salivary gland tissue following differentiation. Upon xenotransplantation of collagen-based hSGOs, we observed engraftment, which was verified by detecting human-specific nucleoli and E-cadherin expression. The expression of mucins, especially MUC5B, within the transplanted hSGOs suggested a potential improvement in the salivary composition. Moreover, the allograft procedure using mSGOs led to increased salivation, validating the efficacy of our approach. CONCLUSIONS: This study showed that collagen-based hSGOs can be used appropriately in clinical settings and demonstrated the effectiveness of an allograft procedure. Our research has laid the groundwork for the future application of collagen-based hSGOs in allogeneic clinical trials.
Asunto(s)
Organoides , Glándulas Salivales , Xerostomía , Xerostomía/terapia , Xerostomía/etiología , Humanos , Glándulas Salivales/efectos de la radiación , Animales , Ratones , Colágeno/metabolismo , Diferenciación Celular , Laminina/química , Proteoglicanos/metabolismo , Combinación de MedicamentosRESUMEN
Human pluripotent stem cells (hPSCs), encompassing human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold immense potential in regenerative medicine, offering new opportunities for personalized cell therapies. However, their clinical translation is hindered by the inevitable reliance on xenogeneic components in culture environments. This study addresses this challenge by engineering a fully synthetic, xeno-free culture substrate, whose surface composition is tailored systematically for xeno-free culture of hPSCs. A functional polymer surface, pGC2 (poly(glycidyl methacrylate-grafting-guanidine-co-carboxylic acrylate)), offers excellent cell-adhesive properties as well as non-cytotoxicity, enabling robust hESCs and hiPSCs growth while presenting cost-competitiveness and scalability over Matrigel. This investigation includes comprehensive evaluations of pGC2 across diverse experimental conditions, demonstrating its wide adaptability with various pluripotent stem cell lines, culture media, and substrates. Crucially, pGC2 supports long-term hESCs and hiPSCs expansion, up to ten passages without compromising their stemness and pluripotency. Notably, this study is the first to confirm an identical proteomic profile after ten passages of xeno-free cultivation of hiPSCs on a polymeric substrate compared to Matrigel. The innovative substrate bridges the gap between laboratory research and clinical translation, offering a new promising avenue for advancing stem cell-based therapies.
Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Polímeros , Humanos , Técnicas de Cultivo de Célula/métodos , Polímeros/química , Células Madre Pluripotentes/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Laminina/química , Laminina/farmacología , Proliferación Celular/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Proteoglicanos/química , Proteoglicanos/farmacología , Línea Celular , Colágeno/química , Diferenciación Celular/efectos de los fármacos , Combinación de MedicamentosRESUMEN
The extracellular matrix (ECM) provides dynamic structural and molecular signals that affect the form and function of developing tissues. In order to parse how the individual features of the ECM impact cell- and tissue-level behavior during development, engineered culture models should reproduce key structural and molecular features of native ECM. Here, we describe a protocol for bioprinting epithelial cell aggregates embedded within a collagen-Matrigel ink in order to study the dynamic interplay between epithelial tissues and aligned networks of type I collagen fibers. Collagen fiber alignment and geometry can be spatially controlled by modulating the printing speed, nozzle geometry, surface chemistry, and degree of molecular crowding in the printing ink. We provide detailed procedures for generating epithelial cell aggregates, microextrusion printing collagen-Matrigel bioinks, culturing the three-dimensional (3D)-printed tissues, and imaging 3D-printed collagen-Matrigel constructs.
Asunto(s)
Bioimpresión , Colágeno , Células Epiteliales , Matriz Extracelular , Hidrogeles , Impresión Tridimensional , Ingeniería de Tejidos , Bioimpresión/métodos , Hidrogeles/química , Colágeno/química , Colágeno/metabolismo , Ingeniería de Tejidos/métodos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Animales , Morfogénesis , Humanos , Proteoglicanos/química , Proteoglicanos/metabolismo , Andamios del Tejido/química , Laminina/química , Combinación de Medicamentos , Perros , Epitelio/metabolismo , Epitelio/crecimiento & desarrolloRESUMEN
This study proposed an optimized histogel construction method for histological analysis by applying lung cancer patient-derived organoids (PDOs) to the developed histo-pillar strip. Previously, there is the cultured PDOs damage problem during the histogel construction due to forced detachment of the Matrigel spots from the 96-well plate bottom. To address this issue, we cultured PDO on the proposed Histo-pillar strips and then immersed them in 4% paraformaldehyde fixation solution to self-isolate PDO without damage. The 4µl patient-derived cell (PDC)/Matrigel mixtures were dispensed on the surface of a U-shaped histo-pillar strip, and the PDCs were aggregated by gravity and cultured into PDOs. Cultured PDOs were self-detached by simply immersing them in a paraformaldehyde fixing solution without physical processing, showing about two times higher cell recovery rate than conventional method. In addition, we proposed a method for embedding PDOs under conditions where the histogel temperature was maintained such that the histogel did not harden, thereby improving the problem of damaging the histogel block in the conventional sandwich histogel construction method. We performed histological and genotyping analyses using tumor tissues and PDOs from two patients with lung adenocarcinoma. Therefore, the PDO culture and improved histogel block construction method using the histo-pillar strip proposed in this study can be employed as useful tools for the histological analysis of a limited number of PDCs.
Asunto(s)
Neoplasias Pulmonares , Organoides , Humanos , Organoides/metabolismo , Organoides/efectos de los fármacos , Organoides/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Biomarcadores de Tumor/metabolismo , Laminina/química , Geles/química , Colágeno/química , Colágeno/metabolismo , Combinación de Medicamentos , Proteoglicanos/químicaRESUMEN
Vasculature-on-chip (VoC) models have become a prominent tool in the study of microvasculature functions because of their cost-effective and ethical production process. These models typically use a hydrogel in which the three-dimensional (3D) microvascular structure is embedded. Thus, VoCs are directly impacted by the physical and chemical cues of the supporting hydrogel. Endothelial cell (EC) response in VoCs is critical, especially in organ-specific vasculature models, in which ECs exhibit specific traits and behaviors that vary between organs. Many studies customize the stimuli ECs perceive in different ways; however, customizing the hydrogel composition accordingly to the target organ's extracellular matrix (ECM), which we believe has great potential, has been rarely investigated. We explored this approach to organ-specific VoCs by fabricating microvessels (MVs) with either human umbilical vein ECs or human brain microvascular ECs in a 3D cylindrical VoC using a collagen hydrogel alone or one supplemented with laminin and hyaluronan, components found in the brain ECM. We characterized the physical properties of these hydrogels and analyzed the barrier properties of the MVs. Barrier function and tight junction (ZO-1) expression improved with the addition of laminin and hyaluronan in the composite hydrogel.
Asunto(s)
Colágeno , Células Endoteliales de la Vena Umbilical Humana , Ácido Hialurónico , Hidrogeles , Laminina , Microvasos , Uniones Estrechas , Humanos , Hidrogeles/química , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Laminina/química , Laminina/metabolismo , Colágeno/química , Colágeno/metabolismo , Microvasos/metabolismo , Microvasos/efectos de los fármacos , Uniones Estrechas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Dispositivos Laboratorio en un Chip , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células CultivadasRESUMEN
Hypothyroidism is caused by insufficient stimulation or disruption of the thyroid. However, the drawbacks of thyroid transplantation have led to the search for new treatments. Decellularization allows tissue transplants to maintain their biomimetic structures while preserving cell adhesion, proliferation, and differentiation. This study aimed to decellularize human thyroid tissues using a structure-preserving optimization strategy and present preliminary data on recellularization. Nine methods were used for physical and chemical decellularization. Quantitative and immunohistochemical analyses were performed to investigate the DNA and extracellular matrix components of the tissues. Biomechanical properties were determined by compression test, and cell viability was examined after seeding MDA-T32 papillary thyroid cancer (PTC) cells onto the decellularized tissues. Decellularized tissues exhibited a notable decrease (<50 ng mg-1DNA, except for Groups 2 and 7) compared to the native thyroid tissue. Nonetheless, collagen and glycosaminoglycans were shown to be conserved in all decellularized tissues. Laminin and fibronectin were preserved at comparatively higher levels, and Young's modulus was elevated when decellularization included SDS. It was observed that the strain value in Group 1 (1.63 ± 0.14 MPa) was significantly greater than that in the decellularized tissues between Groups 2-9, ranging from 0.13 ± 0.03-0.72 ± 0.29 MPa. Finally, viability assessment demonstrated that PTC cells within the recellularized tissue groups successfully attached to the 3D scaffolds and sustained metabolic activity throughout the incubation period. We successfully established a decellularization optimization for human thyroid tissues, which has potential applications in tissue engineering and transplantation research. Our next goal is to conduct recellularization using the methods utilized in Group 1 and transplant the primary thyroid follicular cell-seeded tissues into anin vivoanimal model, particularly due to their remarkable 3D structural preservation and cell adhesion-promoting properties.
Asunto(s)
Supervivencia Celular , Matriz Extracelular , Glándula Tiroides , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Humanos , Glándula Tiroides/citología , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Andamios del Tejido/química , Colágeno/química , Adhesión Celular , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Línea Celular Tumoral , ADN , Módulo de Elasticidad , Proliferación Celular , Neoplasias de la Tiroides/patología , Matriz Extracelular Descelularizada/química , Laminina/química , Fenómenos Biomecánicos , Diferenciación Celular , Cáncer Papilar Tiroideo/patología , Fibronectinas/química , Fibronectinas/metabolismoRESUMEN
In cancer metastasis, collectively migrating clusters are discriminated into leader and follower cells that move through extracellular matrices (ECMs) with different characteristics. The impact of changes in ECM protein types on leader cells and migrating clusters is unknown. To address this, we investigated the response of leader cells and migrating clusters upon moving from one ECM protein to another using a photoactivatable substrate bearing photocleavable PEG (PCP), whose surface changes from protein-repellent to protein-adhesive in response to light. We chose laminin and collagen I for our study since they are abundant in two distinct regions in living tissues, namely basement membrane and connective tissue. Using the photoactivatable substrates, the precise deposition of the first ECM protein in the irradiated areas was achieved, followed by creating well-defined cellular confinements. Secondary irradiation enabled the deposition of the second ECM protein in the new irradiated regions, resulting in region-selective heterogeneous and homogenous ECM protein-coated surfaces. Different tendencies in leader cell formation from laminin into laminin compared to those migrating from laminin into collagen were observed. The formation of focal adhesion and actin structures for cells within the same cluster in the ECM proteins responded according to the underlying ECM protein type. Finally, integrin ß1 was crucial for the appearance of leader cells for clusters migrating from laminin into collagen. However, when it came to laminin into laminin, integrin ß1 was not responsible. This highlights the correlation between leader cells in collective migration and the biochemical signals that arise from underlying extracellular matrix proteins.
Asunto(s)
Movimiento Celular , Proteínas de la Matriz Extracelular , Laminina , Laminina/química , Laminina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/química , Animales , Integrina beta1/metabolismo , Integrina beta1/química , Ratones , Polietilenglicoles/química , Humanos , Fenotipo , Matriz Extracelular/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/químicaRESUMEN
Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.
Asunto(s)
Grafito , Organoides , Organoides/efectos de los fármacos , Organoides/citología , Animales , Grafito/química , Grafito/farmacología , Humanos , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Combinación de Medicamentos , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo Tridimensional de Células/métodos , Ratones , Laminina/química , Laminina/farmacología , Colágeno , ProteoglicanosRESUMEN
Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.
Asunto(s)
Membrana Basal , Laminina , Humanos , Laminina/metabolismo , Laminina/química , Laminina/genética , Animales , Membrana Basal/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/genética , Deformidades Congénitas de las Extremidades/metabolismo , Deformidades Congénitas de las Extremidades/genética , Mutación , Síndrome Nefrótico , Trastornos de la Pupila , Síndromes Miasténicos CongénitosRESUMEN
Poly-l-lysine (PLL) and Matrigel, both classical coating materials for culture substrates in neural stem cell (NSC) research, present distinct interfaces whose effect on NSC behavior at cellular and molecular levels remains ambiguous. Our investigation reveals intriguing disparities: although both PLL and Matrigel interfaces are hydrophilic and feature amine functional groups, Matrigel stands out with lower stiffness and higher roughness. Based on this diversity, Matrigel surpasses PLL, driving NSC adhesion, migration, and proliferation. Intriguingly, PLL promotes NSC differentiation into astrocytes, whereas Matrigel favors neural differentiation and the physiological maturation of neurons. At the molecular level, Matrigel showcases a wider upregulation of genes linked to NSC behavior. Specifically, it enhances ECM-receptor interaction, activates the YAP transcription factor, and heightens glycerophospholipid metabolism, steering NSC proliferation and neural differentiation. Conversely, PLL upregulates genes associated with glial cell differentiation and amino acid metabolism and elevates various amino acid levels, potentially linked to its support for astrocyte differentiation. These distinct transcriptional and metabolic activities jointly shape the divergent NSC behavior on these substrates. This study significantly advances our understanding of substrate regulation on NSC behavior, offering novel insights into optimizing and targeting the application of these surface coating materials in NSC research.
Asunto(s)
Diferenciación Celular , Proliferación Celular , Colágeno , Combinación de Medicamentos , Laminina , Células-Madre Neurales , Polilisina , Proteoglicanos , Polilisina/química , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/efectos de los fármacos , Laminina/química , Laminina/farmacología , Colágeno/química , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteoglicanos/química , Proteoglicanos/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , RatonesRESUMEN
Ca2+ is a highly abundant ion involved in numerous biological processes, particularly in multicellular eukaryotic organisms where it exerts many of these functions through interactions with Ca2+ binding proteins. The laminin N-terminal (LN) domain is found in members of the laminin and netrin protein families where it plays a critical role in the function of these proteins. The LN domain of laminins and netrins is a Ca2+ binding domain and in many cases requires Ca2+ to perform its biological function. Here, we conduct a detailed examination of the molecular basis of the LN domain Ca2+ interaction combining structural, computational, bioinformatics, and biophysical techniques. By combining computational and bioinformatic techniques with x-ray crystallography we explore the molecular basis of the LN domain Ca2+ interaction and identify a conserved sequence present in Ca2+ binding LN domains. These findings enable a sequence-based prediction of LN domain Ca2+ binding ability. We use thermal shift assays and isothermal titration calorimetry to explore the biophysical properties of the LN domain Ca2+ interaction. We show that the netrin-1 LN domain exhibits a high affinity and specificity for Ca2+, which structurally stabilizes the LN domain. This study elucidates the molecular foundation of the LN domain Ca2+ binding interaction and provides a detailed functional characterization of this essential interaction, advancing our understanding of protein-Ca2+ dynamics within the context of the LN domain.
Asunto(s)
Calcio , Laminina , Unión Proteica , Dominios Proteicos , Calcio/metabolismo , Laminina/metabolismo , Laminina/química , Secuencia de Aminoácidos , Modelos Moleculares , Humanos , Sitios de UniónRESUMEN
Cell replacement therapy is under development for dry age-related macular degeneration (AMD). A thin membrane resembling the Bruch's membrane is required to form a cell-on-membrane construct with retinal pigment epithelial (RPE) cells. These cells have been differentiated from human embryonic stem cells (hESCs) in vitro. A carrier membrane is required for cell implantation, which is biocompatible for cell growth and has dimensions and physical properties resembling the Bruch's membrane. Here a nanofiber electrospun poly-L-lactic acid (PLLA) membrane is tested for capacity to support cell growth and maturation. The requirements for laminin coating of the membrane are identified here. A porous electrospun nanofibrous PLLA membrane of â¼50 nm fiber diameter was developed as a prototype support for functional RPE cells grown as a monolayer. The need for laminin coating applied to the membrane following treatment with poly-L-ornithine (PLO), was identified in terms of cell growth and survival. Test membranes were compared in terms of hydrophilicity after laminin coating, mechanical properties of surface roughness and Young's modulus, porosity and ability to promote the attachment and proliferation of hESC-RPE cells in culture for up to 8 weeks. Over this time, RPE cell proliferation, morphology, and marker and gene expression, were monitored. The functional capacity of cell monolayers was identified in terms of transepithelial electrical resistance (TEER), phagocytosis of cells, as well as expression of the cytokines, vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). PLLA polymer fibers are naturally hydrophobic, so their hydrophilicity was improved by pretreatment with PLO for subsequent coating with the bioactive protein laminin. They were then assessed for amount of laminin adsorbed, contact angle and uniformity of coating using scanning electron microscopy (SEM). Pretreatment with 100% PLO gave the best result over 10% PLO treatment or no treatment prior to laminin adsorption with significantly greater surface stiffness and modulus. By 6 weeks after cell plating, the coated membranes could support a mature RPE monolayer showing a dense apical microvillus structure and pigmented 3D polygonal cell morphology. After 8 weeks, PLO (100%)-Lam coated membranes exhibited the highest cell number, cell proliferation, and RPE barrier function measured as TEER. RPE cells showed the higher levels of specific surface marker and gene expression. Microphthalmia-associated transcription factor expression was highly upregulated indicating maturation of cells. Functionality of cells was indicated by expression of VEGF and PEDF genes as well as phagocytic capacity. In conclusion, electrospun PLLA membranes coated with PLO-Lam have the physical and biological properties to support the distribution and migration of hESC-RPE cells throughout the whole structure. They represent a good membrane candidate for preparation of hESC-RPE cells as a monolayer for implantation into the subretinal space of AMD patients.
Asunto(s)
Lámina Basal de la Coroides , Células Madre Embrionarias Humanas , Poliésteres , Epitelio Pigmentado de la Retina , Humanos , Poliésteres/química , Lámina Basal de la Coroides/citología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Membranas Artificiales , Regeneración/efectos de los fármacos , Laminina/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Porosidad , Polímeros/química , Polímeros/farmacología , Ácido Láctico/química , Ácido Láctico/farmacología , Nanofibras/química , Línea Celular , Diferenciación Celular/efectos de los fármacos , PéptidosRESUMEN
BACKGROUND: To establish a strategy for stem cell-related tissue regeneration therapy, human gingival mesenchymal stem cells (hGMSCs) were loaded with three-dimensional (3D) bioengineered Matrigel matrix scaffolds in high-cell density microtissues to promote local tissue restoration. METHODS: The biological performance and stemness of hGMSCs under 3D culture conditions were investigated by viability and multidirectional differentiation analyses. A SpragueâDawley (SD) rat full-thickness buccal mucosa wound model was established, and hGMSCs/Matrigel were injected into the submucosa of the wound. Autologous stem cell proliferation and wound repair in local tissue were assessed by histomorphometry and immunohistochemical staining. RESULTS: Three-dimensional suspension culture can provide a more natural environment for extensions and contacts between hGMSCs, and the viability and adipogenic differentiation capacity of hGMSCs were significantly enhanced. An animal study showed that hGMSCs/Matrigel significantly accelerated soft tissue repair by promoting autologous stem cell proliferation and enhancing the generation of collagen fibers in local tissue. CONCLUSION: Three-dimensional cell culture with hydrogel scaffolds, such as Matrigel, can effectively improve the biological function and maintain the stemness of stem cells. The therapeutic efficacy of hGMSCs/Matrigel was confirmed, as these cells could effectively stimulate soft tissue repair to promote the healing process by activating the host microenvironment and autologous stem cells.
Asunto(s)
Colágeno , Combinación de Medicamentos , Laminina , Células Madre Mesenquimatosas , Proteoglicanos , Ratas Sprague-Dawley , Andamios del Tejido , Cicatrización de Heridas , Animales , Laminina/química , Proteoglicanos/química , Colágeno/química , Humanos , Ratas , Células Madre Mesenquimatosas/citología , Andamios del Tejido/química , Diferenciación Celular , Proliferación Celular , Encía/citología , Técnicas de Cultivo Tridimensional de Células/métodos , Células Cultivadas , Ingeniería de Tejidos/métodos , Masculino , Mucosa Bucal/citologíaRESUMEN
A major component of the extracellular matrix (ECM), laminins, modulates cells via diverse receptors. Their fragments have emerging utility as components of "ECM-mimetics" optimized to promote cell-based therapies. Recently, we reported that a bioactive laminin peptide known as A99 enhanced cell binding and spreading via fusion to an elastin-like polypeptide (ELP). The ELP "handle" serves as a rapid, noncovalent strategy to concentrate bioactive peptide mixtures onto a surface. We now report that this strategy can be further generalized across an expanded panel of additional laminin-derived elastin-like polypeptides (LELPs). A99 (AGTFALRGDNPQG), A2G80 (VQLRNGFPYFSY), AG73 (RKRLQVQLSIRT), and EF1m (LQLQEGRLHFMFD) all promote cell spreading while showing morphologically distinct F-actin formation. Equimolar mixtures of A99:A2G80-LELPs have synergistic effects on adhesion and spreading. Finally, three of these ECM-mimetics promote the neurite outgrowth of PC-12 cells. The evidence presented here demonstrates the potential of ELPs to deposit ECM-mimetics with applications in regenerative medicine, cell therapy, and tissue engineering.
Asunto(s)
Adhesión Celular , Elastina , Laminina , Laminina/química , Laminina/farmacología , Elastina/química , Animales , Ratas , Células PC12 , Adhesión Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Péptidos/química , Péptidos/farmacología , Polipéptidos Similares a ElastinaRESUMEN
The evaluation of anti-tumor drugs is critical for their development and clinical guidance. Tumor organoid models are gaining increased attention due to their ability to better mimic real tumor tissues, as well as lower time and economic costs, which makes up for the shortcomings of cell lines and xenograft models. However, current tumor organoid cultures based on the Matrigel have limitations in matching with high-throughput engineering methods due to slow gelation and low mechanical strength. Here, we present a novel composite bioink for culturing colorectal cancer organoids that provides an environment close to real tissue growth conditions and exhibits excellent photocrosslinking properties for rapid gel formation. Most importantly, the tumor organoids viability in the composite bioink after printing was as high as 97%, which also kept multicellular polar structures consistent with traditional culture methods in the Matrigel. Using 3D bioprinting with this composite bioink loaded with organoids, we demonstrated the feasibility of this drug evaluation model by validating it with clinically used colorectal cancer treatment drugs. Our results suggested that the composite bioink could effectively cultivate tumor organoids using 3D bioprinting, which had the potential to replace less reliable manual operations in promoting the application of tumor organoids in drug development and clinical guidance.