Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.664
Filtrar
1.
Fish Shellfish Immunol ; 150: 109622, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740227

RESUMEN

The voltage-dependent anion channel 2 (VDAC2) is the abundant protein in the outer mitochondrial membrane. Opening VDAC2 pores leads to the induction of mitochondrial energy and material transport, facilitating interaction with various mitochondrial proteins implicated in essential processes such as cell apoptosis and proliferation. To investigate the VDAC2 in lower vertebrates, we identified Lr-VDAC2, a homologue of VDAC2 found in lamprey (Lethenteron reissneri), sharing a sequence identity of greater than 50 % with its counterparts. Phylogenetic analysis revealed that the position of Lr-VDAC2 aligns with the lamprey phylogeny, indicating its evolutionary relationship within the species. The Lr-VDAC2 protein was primarily located in the mitochondria of lamprey cells. The expression of the Lr-VDAC2 protein was elevated in high energy-demanding tissues, such as the gills, muscles, and myocardial tissue in normal lampreys. Lr-VDAC2 suppressed H2O2 (hydrogen peroxide)-induced 293 T cell apoptosis by reducing the expression levels of Caspase 3, Caspase 9, and Cyt C (cytochrome c). Further research into the mechanism indicated that the Lr-VDAC2 protein inhibited the pro-apoptotic activity of BAK (Bcl-2 antagonist/killer) protein by downregulating its expression at the protein translational level, thus exerting an anti-apoptotic function similar to the role of VDAC2 in humans.


Asunto(s)
Apoptosis , Proteínas de Peces , Lampreas , Canal Aniónico 2 Dependiente del Voltaje , Animales , Humanos , Secuencia de Aminoácidos , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Regulación de la Expresión Génica , Células HEK293 , Peróxido de Hidrógeno , Lampreas/genética , Lampreas/inmunología , Filogenia , Alineación de Secuencia/veterinaria , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
2.
Yi Chuan ; 46(5): 387-397, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763773

RESUMEN

After 500 million years of evolution, lamprey is in a natural environment characterized by low temperature and high iron content, and its unique adaptive evolution mode has developed its organizational structure and life mechanism in the process of metamorphosis, which provides a new direction for people to further study the origin and evolution of life. Iron is one of the essential nutrients for the human body and plays an important role in metabolic processes, but when exceeded, it can lead to iron toxicity. For example, the serum iron concentration of pre-metamorphosis larvae is 149 times that of normal males, and the iron content in the liver of juveniles is about 2-3 times that of normal humans. Lamprey has a complete biochemical system to tolerate high concentrations of free iron in the body, and high expression of important genes for iron homeostasis, such as transferrin, ferritin heavy chain, superoxide dismutase, etc., improves iron transport, iron storage and antioxidant capacity. Lamprey has an IRE/IRP regulatory system, which is an important protection mechanism for lamprey to adapt to the high iron content environment in the organization. In addition, lampreys gradually form oral glands during metamorphosis and development, which become the unique iron metabolism organs of lampreys. In this review, we mainly summarize the distribution of iron in various tissues of lamprey and the potential mechanism of adapting to the content of iron in the body, so as to provide a theoretical basis for the subsequent search for the molecular mechanism of iron metabolism.


Asunto(s)
Hierro , Lampreas , Animales , Hierro/metabolismo , Lampreas/metabolismo , Homeostasis , Humanos
3.
Dev Genes Evol ; 234(1): 45-53, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733410

RESUMEN

AF4/FMR2 family member (AFF) proteins are a group of transcriptional regulators that can regulate gene transcription and play an important role in cellular physiological processes such as proliferation and differentiation. The transcriptome data of the lamprey spinal cord injury were analyzed in previous research. We then identified a hub gene, Lr-AFF3, from this dataset. Phylogenetic tree analysis determined the evolutionary relationships of the AFF gene family across different species. In addition, analysis of motifs, domains, and 3D structures further confirmed the conservatism of the AFF gene family. In particular, the gene structure of the AFF3 gene was not conserved, possibly because of intron insertion. It was also found that the neighboring genes of the Lr-AFF3 gene had a higher diversity than that in jawed vertebrates through synteny analysis. The results of the MTT and EdU experiments showed that the C-terminal homology domain (CHD) and N-terminal homology domain (NHD) of Lr-AFF3 promoted cell proliferation. In summary, our research will not only provide new insights into the origin and evolution of the AFF gene family in different species, but also provide new clues for the functions of Lr_AFF3.


Asunto(s)
Proliferación Celular , Evolución Molecular , Lampreas , Filogenia , Animales , Lampreas/genética , Lampreas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/química , Familia de Multigenes
4.
J Fish Biol ; 104(6): 1990-2007, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561641

RESUMEN

The lamprey genus Geotria Gray, 1851 currently includes only two species: G. australis and G. macrostoma. However, taxonomic relationships within the genus have traditionally been ambiguous and difficult to establish due to the extreme changes in morphology, dentition, and coloration that lampreys undergo during their life cycles, particularly during upstream migration and sexual maturation. Consequently, several lamprey specimens held in museum collections have remained unidentified, especially those from Argentina. In this study, a series of morphometric characters were subjected to discriminant function analysis (DFA) to identify the lamprey species collected during 1867-2004 from the de la Plata River and Patagonia. These specimens are housed at the Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" in Buenos Aires, the Museo de Historia Natural de Montevideo, and the Naturhistoriska riksmuseet in Stockholm. Based on the proportions of the length of the oral disc, prebranchial, and pre-caudal body regions, and the depth of the trunk, DFA provided conclusive evidence that the specimens corresponded to the recently revalidated G. macrostoma (Burmeister, 1868), which was originally incorrectly named as Petromyzon macrostomus Burmeister, 1868, Exomegas macrostomus (Berg, 1899), Geotria chilensis (Berg, 1895), and Geotria macrostoma f. gallegensis Smitt, 1901, as well as other nontype museum individuals of uncertain taxonomic status. The identifications of these long-preserved museum specimens provided key information on the historical geographic range of Argentinian lampreys and suggest that the disappearance of the species reported from northern localities (the Pampean Region) can be attributed to the degradation of their critical habitats, primarily caused by anthropogenic impact and climate change.


Asunto(s)
Lampreas , Animales , Lampreas/anatomía & histología , Argentina , Análisis Discriminante , Museos , Distribución Animal
5.
Zootaxa ; 5402(1): 1-99, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38480458

RESUMEN

This checklist aims to update the list of the inland fish fauna of Iran including newly described species and also clarify the status of some taxa including some gobies and catfishes which were ignored in the checklist provided by Eagderi et al. (2022). The checklist is arranged by classes, orders, families, and species. In total, 300 species, belonging to 110 genera, 38 families, 23 orders, and three classes were recognized from Iranian basins, with the presence of 11 reported species that need confirmation by specimens. Additional notes about the taxonomy of several taxa are provided in the discussion section.


Asunto(s)
Bagres , Lampreas , Humanos , Animales , Irán , Peces , Agua Dulce
6.
Fish Physiol Biochem ; 50(3): 1109-1122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38429619

RESUMEN

The Na ( +)-taurocholate cotransporting polypeptide (NTCP) is a member of the solute carrier family 10 (SLC10), which consists of 7 members (SLC10a1-SLC10a7). NTCP is a transporter localized to the basolateral membrane of hepatocytes and is primarily responsible for the absorption of bile acids. Although mammalian NTCP has been extensively studied, little is known about the lamprey NTCP (L-NTCP). Here we show that L-NTCP follows the biological evolutionary history of vertebrates, with conserved domain, motif, and similar tertiary structure to higher vertebrates. L-NTCP is localized to the cell surface of lamprey primary hepatocytes by immunofluorescence analysis. HepG2 cells overexpressing L-NTCP also showed the distribution of L-NTCP on the cell surface. The expression profile of L-NTCP showed that the expression of NTCP is highest in lamprey liver tissue. L-NTCP also has the ability to transport bile acids, consistent with its higher vertebrate orthologs. Finally, using a farnesoid X receptor (FXR) antagonist, RT-qPCR and flow cytometry results showed that L-NTCP is negatively regulated by the nuclear receptor FXR. This study is important for understanding the adaptive mechanisms of bile acid metabolism after lamprey biliary atresia based on understanding the origin, evolution, expression profile, biological function, and expression regulation of L-NTCP.


Asunto(s)
Lampreas , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Animales , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/genética , Simportadores/metabolismo , Lampreas/genética , Lampreas/metabolismo , Humanos , Regulación de la Expresión Génica , Células Hep G2 , Filogenia , Hepatocitos/metabolismo , Ácidos y Sales Biliares/metabolismo , Evolución Molecular , Secuencia de Aminoácidos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
8.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397089

RESUMEN

Lamprey homologues of the classic embryonic inducer Noggin are similar in expression pattern and functional properties to Noggin homologues of jawed vertebrates. All noggin genes of vertebrates apparently originated from a single ancestral gene as a result of genome duplications. nogginA, nogginB and nogginC of lampreys, like noggin1 and noggin2 of gnathostomes, demonstrate the ability to induce complete secondary axes with forebrain and eye structures when overexpressed in Xenopus laevis embryos. According to current views, this finding indicates the ability of lamprey Noggin proteins to suppress the activity of the BMP, Nodal/Activin and Wnt/beta-catenin signaling pathways, as shown for Noggin proteins of gnathostomes. In this work, by analogy with experiments in Xenopus embryos, we attempted to induce secondary axes in the European river lamprey Lampetra fluviatilis by injecting noggin mRNAs into lamprey eggs in vivo. Surprisingly, unlike what occurs in amphibians, secondary axis induction in the lampreys either by noggin mRNAs or by chordin and cerberus mRNAs, the inductive properties of which have been described, was not observed. Only wnt8a mRNA demonstrated the ability to induce secondary axes in the lampreys. Such results may indicate that the mechanism of axial specification in lampreys, which represent jawless vertebrates, may differ in detail from that in the jawed clade.


Asunto(s)
Lampreas , Prosencéfalo , Animales , Lampreas/genética , Xenopus laevis/genética , Vía de Señalización Wnt , Genoma , Filogenia
9.
Fish Shellfish Immunol ; 146: 109413, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311092

RESUMEN

Liver-expressed antimicrobial peptide 2 (LEAP2) is a member of the antimicrobial peptides family and plays a key role in the innate immune system of organisms. LEAP2 orthologs have been identified from a variety of fish species, however, its function in primitive vertebrates has not been clarified. In this study, we cloned and identified Lc-LEAP2 from the primitive jawless vertebrate lamprey (Lethenteron camtschaticum) which includes a 25 amino acids signal peptide and a mature peptide of 47 amino acids. Although sequence similarity was low compared to other species, the mature Lc-LEAP2 possesses four conserved cysteine residues, forming a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 58 and Cys 69) and 2-4 (Cys 64 and Cys 74) positions. Lc-LEAP2 was most abundantly expressed in the muscle, supraneural body and buccal gland of lamprey, and was significantly upregulated during LPS and Poly I:C stimulations. The mature peptide was synthesized and characterized for its antibacterial activity against different bacteria. Lc-LEAP2 possessed inhibition of a wide range of bacteria with a dose-dependence, disrupting the integrity of bacterial cell membranes and binding to bacterial genomic DNA, although its inhibitory function is weak compared to that of higher vertebrates. These data suggest that Lc-LEAP2 plays an important role in the innate immunity of lamprey and is of great value in improving resistance to pathogens. In addition, the antimicrobial mechanism of LEAP2 has been highly conserved since its emergence in primitive vertebrates.


Asunto(s)
Hepcidinas , Lampreas , Animales , Lampreas/genética , Lampreas/metabolismo , Hepcidinas/genética , Secuencia de Aminoácidos , Cisteína , Proteínas de Peces/química , Vertebrados/metabolismo , Péptidos/genética , Antibacterianos/farmacología , Filogenia
10.
Nat Ecol Evol ; 8(3): 519-535, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216617

RESUMEN

Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.


Asunto(s)
Anguila Babosa , Animales , Filogenia , Anguila Babosa/genética , Duplicación de Gen , Vertebrados/genética , Genoma , Lampreas/genética
11.
Nature ; 627(8005): 811-820, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262590

RESUMEN

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.


Asunto(s)
Evolución Molecular , Anguila Babosa , Vertebrados , Animales , Anguila Babosa/anatomía & histología , Anguila Babosa/citología , Anguila Babosa/embriología , Anguila Babosa/genética , Lampreas/genética , Filogenia , Vertebrados/genética , Sintenía , Poliploidía , Linaje de la Célula
12.
PLoS One ; 19(1): e0286535, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38206962

RESUMEN

Stable isotope ratios in organisms can be used to estimate dietary source contributions, but lipids must first be accounted for to interpret values meaningfully. Lipids are depleted in heavy isotopes because during lipid synthesis light isotopes of carbon (12C) and hydrogen (1H) are preferentially incorporated. Prior work in larval lampreys has noted unusual lipid effects, which suggest lipids are enriched in the heavy isotope of carbon (13C), but still depleted in the heavy isotope of hydrogen (deuterium; 2H); nitrogen, a relatively rare element in lipids, has not been identified as being as sensitive to lipid content. Our objective was to determine if stable isotope ratios of hydrogen, carbon, and nitrogen behaved as expected in larval lampreys, or if their lipids presented different isotopic behavior. The δ2H, δ13C, and δ15N were measured from the muscle of four lamprey species before and after lipid extraction. In addition, muscle of least brook lamprey (Lampetra aepyptera) was collected every three months for a year from two streams in Maryland. Isotopic ratios were measured in bulk and lipid-extracted muscles, as well as in extracted lipids. The difference between muscle samples before and after lipid extraction (Δδ2H, Δδ13C, Δδ15N) was positively related to lipid proxy (%H or C:N ratio) and were fit best by linear models for Δδ2H and Δδ15N, and by a non-linear model for Δδ13C. The difference between lipid-extracted muscle and lipid δ13C (ΔMLδ13C) was negative and varied between months (ANOVA, F3,53 = 5.05, p < 0.005). Our work suggests that while lipids are often depleted in 13C, this is not a universal rule; however, the depletion of 2H in lipid synthesis appears broadly true.


Asunto(s)
Carbono , Lampreas , Animales , Isótopos de Nitrógeno , Isótopos de Carbono , Larva , Hidrógeno , Lípidos , Nitrógeno , Músculos
13.
Immunol Invest ; 53(2): 241-260, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38078455

RESUMEN

The mammalian testis and ovary possess special immunocompetence, which is central to provide protection against pathogens. However, the innate immune responses to immune challenges in lamprey gonads are poorly understood. In this study, we extracted RNA from testis and ovary tissues of lampreys at 0 hour, 8 hours and 17 days after lipopolysaccharides (LPS) stimulation and performed transcriptome sequencing. While the transcriptome profiles of the two tissues were different for the most part, genes LIP, LECT2, LAL2, GRN, ITLN, and C1q were found to be the most significantly up-regulated genes in both. Quantitative Real-time PCR (qRT-PCR) analysis confirmed that these genes were upregulated after stimulation. Furthermore, immunohistochemical staining showed that these genes in lamprey gonads are expressed in high quantities and have a specific distribution. Taken together, our results suggest that these genes could play an essential role in response of the gonads to LPS induction. This research establishes a basis for investigating the immune mechanism of vertebrate gonads and presents a fresh concept for gaining insight into the evolutionary development of jawless vertebrates.


Asunto(s)
Lampreas , Transcriptoma , Animales , Femenino , Masculino , Lampreas/genética , Lipopolisacáridos , Perfilación de la Expresión Génica , Gónadas , Inmunidad Innata/genética , Mamíferos/genética
14.
Dev Dyn ; 253(3): 283-295, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37732630

RESUMEN

BACKGROUND: Although vertebrae are the defining character of vertebrates, they are found only in rudimentary form in extant agnathans. In addition, the vertebrae of agnathans possess several unique features, such as elastin-like molecules as the main matrix component and late (post-metamorphosis) differentiation of lamprey vertebrae. In this study, by tracing the developmental process of vertebrae in lamprey, we examined the homology of vertebrae between lampreys and gnathostomes. RESULTS: We found that the lamprey somite is first subdivided mediolaterally, with myotome cells differentiating medially and non-myotome cells emerging laterally. Subsequently, collagen-positive non-myotome cells surround the myotome. This pattern of somitogenesis is rather similar to that in amphioxi and sheds doubt on the presence of a sclerotome, in terms of mesenchyme cells induced by a signal from the notochord, in lamprey. Further tracing of non-myotome cell development revealed that fin cartilage develops in ammocoete larvae approximately 35 mm in body length. The development of the fin cartilage occurs much earlier than that of the vertebra whose development proceeds during metamorphosis. CONCLUSION: We propose that the homology of vertebrae between agnathans and gnathostomes should be discussed carefully, because the developmental process of the lamprey vertebra is different from that of gnathostomes.


Asunto(s)
Sistema Musculoesquelético , Animales , Columna Vertebral , Esqueleto , Lampreas , Vertebrados
15.
Fish Shellfish Immunol ; 145: 109323, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147915

RESUMEN

Heat shock proteins (HSPs) are molecular chaperones that ubiquitously exist in various organisms and play essential roles in protein folding, transport, and expression. While most HSPs are highly conserved across species, a few HSPs are evolutionarily distinct in some species and may have unique functions. To explore the evolutionary history of the vertebrate HSP family, we identify members of the HSP family at the genome-wide level in lampreys (Lethenteron reissneri), a living representative of jawless vertebrates diverged from jawed vertebrates over 500 million years ago. The phylogenetic analysis reveals that the lamprey HSP family contains HSP90a1, HSP90a2, HSC70, HSP60, HSP30, HSP27, HSP17, and HSP10, which have a primitive status in the molecular evolution of vertebrate HSPs. Transcriptome analysis reveals the expression distribution of members of the HSP family in various tissues of lampreys. It is shown that HSP30, normally found in birds, amphibians, and fish, is also present in lampreys, with remarkable expansion of HSP30 gene copies in the lamprey genome. The transcription of HSP30 is significantly induced in leukocytes and heart of lampreys during various pathogens or poly(I:C) stimulation, indicating that HSP30 may be involved in the immune defense of lampreys in response to bacterial or viral infection. Immunohistochemistry demonstrates significantly increased HSP30 expression in subcutaneous muscle tissue after skin injury in lamprey models of wound repair. Furthermore, transcriptome analysis shows that ectopic expression of HSP30 in 3T3-L1 fibroblasts affect the expression of genes related to the PI3K-AKT signaling pathway, suggesting that HSP30 could serves as a negative regulator of fibrosis. These results indicate that HSP30 may play a critical role in facilitating the process of lamprey skin repair following injury. This study provides new insights into the origin and evolution of the HSP gene family in vertebrates and offers valuable clues to reveal the important role of HSP30 in immune defense and wound healing of lampreys.


Asunto(s)
Lampreas , Fosfatidilinositol 3-Quinasas , Animales , Lampreas/genética , Filogenia , Fosfatidilinositol 3-Quinasas/genética , Proteínas de Choque Térmico/genética , Evolución Molecular , Inmunidad , Cicatrización de Heridas
16.
Mol Biol Cell ; 35(1): ar10, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991902

RESUMEN

α-Synuclein is a presynaptic protein that regulates synaptic vesicle (SV) trafficking. In Parkinson's disease (PD) and dementia with Lewy bodies (DLB), α-synuclein aberrantly accumulates throughout neurons, including at synapses. During neuronal activity, α-synuclein is reversibly phosphorylated at serine 129 (pS129). While pS129 comprises ∼4% of total α-synuclein under physiological conditions, it dramatically increases in PD and DLB brains. The impacts of excess pS129 on synaptic function are currently unknown. We show here that compared with wild-type (WT) α-synuclein, pS129 exhibits increased binding and oligomerization on synaptic membranes and enhanced vesicle "microclustering" in vitro. Moreover, when acutely injected into lamprey reticulospinal axons, excess pS129 α-synuclein robustly localized to synapses and disrupted SV trafficking in an activity-dependent manner, as assessed by ultrastructural analysis. Specifically, pS129 caused a declustering and dispersion of SVs away from the synaptic vicinity, leading to a significant loss of total synaptic membrane. Live imaging further revealed altered SV cycling, as well as microclusters of recently endocytosed SVs moving away from synapses. Thus, excess pS129 caused an activity-dependent inhibition of SV trafficking via altered vesicle clustering/reclustering. This work suggests that accumulation of pS129 at synapses in diseases like PD and DLB could have profound effects on SV dynamics.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Fosfoserina/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Lampreas
17.
Nat Commun ; 14(1): 6652, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907522

RESUMEN

Lampreys, one of two living lineages of jawless vertebrates, are always intriguing for their feeding behavior via the toothed suctorial disc and life cycle comprising the ammocoete, metamorphic, and adult stages. However, they left a meager fossil record, and their evolutionary history remains elusive. Here we report two superbly preserved large lampreys from the Middle-Late Jurassic Yanliao Biota of North China and update the interpretations of the evolution of the feeding apparatus, the life cycle, and the historic biogeography of the group. These fossil lampreys' extensively toothed feeding apparatus differs radically from that of their Paleozoic kin but surprisingly resembles the Southern Hemisphere pouched lamprey, which foreshadows an ancestral flesh-eating habit for modern lampreys. Based on the revised petromyzontiform timetree, we argued that modern lampreys' three-staged life cycle might not be established until the Jurassic when they evolved enhanced feeding structures, increased body size and encountered more penetrable host groups. Our study also places modern lampreys' origin in the Southern Hemisphere of the Late Cretaceous, followed by an early Cenozoic anti-tropical disjunction in distribution, hence challenging the conventional wisdom of their biogeographical pattern arising from a post-Cretaceous origin in the Northern Hemisphere or the Pangean fragmentation in the Early Mesozoic.


Asunto(s)
Lampreas , Conducta Predatoria , Animales , Estadios del Ciclo de Vida , Vertebrados , Fósiles , Filogenia
18.
Cell Tissue Res ; 394(3): 431-439, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37851111

RESUMEN

A subset of gustatory cells are serotonin immunoreactive (ir) in the mammalian taste bud. In the taste bud of lamprey, elongated gustatory-like cells are also serotonin-ir. In contrast, flattened serotonin-ir cells are located only in the basal region of the taste buds in the teleosts and amphibians. These serotonin-ir cells are termed as basal cells. To evaluate the evolution and diversity of serotonergic cells in the taste bud of amniote animals, we explored the distribution and morphology of serotonin-ir cells in the taste buds of ancestral actinopterygian fish (spotted gar, sturgeon, Polypterus senegalus) and elasmobranch (stingray). In all examined animals, the taste buds contained serotonin-ir cells in their basal part. The number of serotonin-ir basal cells in each taste bud was different between these fish species. They were highest in the stingray and decreased in the order of the Polypterus, sturgeon, and gar. While serotonin immunoreactivity was observed only in the basal cells in the taste buds of the ancestral actinopterygian fish, some elongated cells were also serotonin-ir in addition to the basal cells in the stingray taste buds. mRNA of tryptophan hydroxylase 1 (tph1), a rate-limiting enzyme of the serotonin synthesis, is expressed in both the elongated and basal cells of stingray taste buds, indicating that these cells synthesize the serotonin by themselves. These results suggest that the serotonin-ir basal cells arose from the ancestor of the cartilaginous fish, and serotonin-ir cells in the elasmobranch taste bud exhibit an intermediate aspect between the lamprey and actinopterygian fish.


Asunto(s)
Elasmobranquios , Papilas Gustativas , Animales , Serotonina , Inmunohistoquímica , Peces , Lampreas , Mamíferos
19.
J Neurophysiol ; 130(5): 1265-1281, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820016

RESUMEN

After rostral spinal cord injury (SCI) of lampreys, the descending axons of injured (axotomized) reticulospinal (RS) neurons regenerate and locomotor function gradually recovers. Our previous studies indicated that relative to uninjured lamprey RS neurons, injured RS neurons display several dramatic changes in their biophysical properties, called the "injury phenotype." In the present study, at the onset of applied depolarizing current pulses for membrane potentials below as well as above threshold for action potentials (APs), injured RS neurons displayed a transient depolarization consisting of an initial depolarizing component followed by a delayed repolarizing component. In contrast, for uninjured neurons the transient depolarization was mostly only evident at suprathreshold voltages when APs were blocked. For injured RS neurons, the delayed repolarizing component resisted depolarization to threshold and made these neurons less excitable than uninjured RS neurons. After block of voltage-gated sodium and calcium channels for injured RS neurons, the transient depolarization was still present. After a further block of voltage-gated potassium channels, the delayed repolarizing component was abolished or significantly reduced, with little or no effect on the initial depolarizing component. Voltage-clamp experiments indicated that the delayed repolarizing component was due to a noninactivating outward-rectifying potassium channel whose conductance (gK) was significantly larger for injured RS neurons compared to that for uninjured neurons. Thus, SCI results in an increase in gK and other changes in the biophysical properties of injured lamprey RS neurons that lead to a reduction in excitability, which is proposed to create an intracellular environment that supports axonal regeneration.NEW & NOTEWORTHY After spinal cord injury (SCI), lamprey reticulospinal (RS) neurons responded to subthreshold depolarizing current pulses with a transient depolarization, which included an initial depolarization that was due to passive channels followed by a delayed repolarization that was mediated by voltage-gated potassium channels. The conductance of these channels (gK) was significantly increased for RS neurons after SCI and contributed to a reduction in excitability, which is expected to provide supportive conditions for subsequent axonal regeneration.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Traumatismos de la Médula Espinal , Animales , Canales de Potasio/fisiología , Neuronas/fisiología , Potenciales de la Membrana/fisiología , Lampreas , Médula Espinal
20.
Mol Phylogenet Evol ; 189: 107942, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37804959

RESUMEN

The history of lamprey evolution has been contentious due to limited morphological differentiation and limited genetic data. Available data has produced inconsistent results, including in the relationship among northern and southern species and the monophyly of putative clades. Here we use whole genome sequence data sourced from a public database to identify orthologs for 11 lamprey species from across the globe and build phylogenies. The phylogeny showed a clear separation between northern and southern lamprey species, which contrasts with some prior work. We also find that the phylogenetic relationships of our samples of two genera, Lethenteron and Eudontomyzon, deviate from the taxonomic classification of these species, suggesting that they require reclassification.


Asunto(s)
Genoma , Lampreas , Animales , Filogenia , Lampreas/genética , Genoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA