Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.913
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39273189

RESUMEN

Glycan profile comparisons are one of the most tedious analytical exercises for establishing compliance with recombinant therapeutic protein batches. Based on its intensive research, the FDA has confirmed that lectin array binding with fluorescent monitoring is the fastest and most reliable method for profile comparisons. Using a database of over 150 biological products expressed in nine diverse mammalian cell systems, the FDA immobilized 74 lectins to study their binding using fluorescently labeled glycoproteins. The FDA identified nine distinct lectins from a custom-designed lectin microarray: rPhoSL, rOTH3, RCA120, rMan2, MAL_I, rPSL1a, PHAE, rMOA, and PHALs, which detect core fucose, terminal GlcNAc, terminal ß-galactose, high mannose, α-2,3-linked sialic acids, α-2,6-linked sialic acids, bisecting GlcNAc, terminal α-galactose, and triantennary structures, respectively. This method can be used for screening and routine testing and to monitor batch-to-batch variability of therapeutic proteins, including establishing analytical similarity as a crucial part of biosimilar development.


Asunto(s)
Biosimilares Farmacéuticos , Lectinas , Polisacáridos , Lectinas/metabolismo , Lectinas/química , Polisacáridos/química , Polisacáridos/análisis , Biosimilares Farmacéuticos/análisis , Biosimilares Farmacéuticos/química , Humanos , Estados Unidos , United States Food and Drug Administration , Glicoproteínas/química , Glicoproteínas/análisis , Aprobación de Drogas , Fluorescencia , Animales
2.
Acta Biochim Biophys Sin (Shanghai) ; 56(8): 1145-1155, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39099413

RESUMEN

Glycosylation, a crucial posttranslational modification, plays a significant role in numerous physiological and pathological processes. Lectin microarrays, which leverage the high specificity of lectins for sugar binding, are ideally suited for profiling the glycan spectra of diverse and complex biological samples. In this review, we explore the evolution of lectin detection technologies, as well as the applications and challenges of lectin microarrays in analyzing the glycome profiles of various clinical samples, including serum, saliva, tissues, sperm, and urine. This review not only emphasizes significant advancements in the high-throughput analysis of polysaccharides but also provides insight into the potential of lectin microarrays for diagnosing and managing diseases such as tumors, autoimmune diseases, and chronic inflammation. We aim to provide a clear, concise, and comprehensive overview of the use of lectin microarrays in clinical settings, thereby assisting researchers in conducting clinical studies in glycobiology.


Asunto(s)
Glicómica , Lectinas , Polisacáridos , Humanos , Lectinas/metabolismo , Lectinas/química , Polisacáridos/metabolismo , Polisacáridos/análisis , Glicómica/métodos , Análisis por Micromatrices/métodos , Glicosilación , Neoplasias/metabolismo , Neoplasias/diagnóstico , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/diagnóstico
3.
ACS Appl Bio Mater ; 7(8): 5689-5701, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39116418

RESUMEN

Weak binding of carbohydrates with protein receptors possesses serious drawbacks in the advancement of therapeutics; however, the development of strategies for multipoint interactions between carbohydrates and protein can overcome these challenges. One such method is developed in this work where glycopolymer-grafted silica nanoparticles with a large number of carbohydrate units are prepared for the interactions with multiple binding sites of the protein. First, a glycomonomer, ß-d-galactose-hydroxyethyl methacrylate (ß-GEMA), was synthesized in a two-step process by coupling ß-d-galactose pentaacetate and hydroxyethyl methacrylate (HEMA), followed by deacetylation for the preparation of poly(ß-GEMA) glycopolymers (GPs). Further, the poly(ß-GEMA) chains were grafted onto the silica nanoparticle (SiNP) surface by utilizing the "grafting-from" strategy of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare p(ß-GEMA)-grafted SiNPs (GNPs). Five different chain lengths ranging from 10 to 40 kDa of the GPs and the GNPs were prepared, and various characterization techniques confirmed the formation of GPs and grafting of the GPs on the SiNP surface. The particle size of GNPs and the number of GPs grafted on the SiNP surface showed a strong dependence on the chain length of the GPs. Further, the GNPs were subjected to a binding study with ß-galactose-specific protein peanut agglutinin (PNA). A much stronger binding in the case of GNPs was observed with an association constant ∼320 times and ∼53 times than that of the monomeric methyl-ß-d-galactopyranoside and the GPs, respectively. Additionally, the binding of the PNA with GNPs and GPs was also studied with varying chain lengths to understand the effects of the chain length on the binding affinity. A clear increase in binding constants was observed in the case of GNPs with increasing chain length of grafted GPs, attributed to the enhanced enthalpic and entropic contributions. This work holds its uniqueness in these improved interactions between carbohydrates and proteins, which can be used for carbohydrate-based targeted therapeutics.


Asunto(s)
Galactosa , Nanopartículas , Dióxido de Silicio , Nanopartículas/química , Galactosa/química , Dióxido de Silicio/química , Tamaño de la Partícula , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Lectinas/química , Lectinas/metabolismo , Polímeros/química , Polímeros/síntesis química , Unión Proteica , Propiedades de Superficie
4.
Glycobiology ; 34(10)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39173029

RESUMEN

Human sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed on subsets of immune cells. Siglec-8 is an immune inhibitory Siglec on eosinophils and mast cells, which are effectors in allergic disorders including eosinophilic esophagitis. Inhibition occurs when Siglec-8 is crosslinked by multivalent Siglec ligands in target tissues. Previously we discovered a high-affinity Siglec-8 sialoglycan ligand on human airways composed of terminally sialylated keratan sulfate chains carried on a single protein, DMBT1. Here we extend that approach to another allergic inflammatory target tissue, human esophagus. Lectin overlay histochemistry revealed that Siglec-8 ligands are expressed predominantly by esophageal submucosal glands, and are densely packed in submucosal ducts leading to the lumen. Expression is tissue-specific; esophageal glands express Siglec-8 ligand whereas nearby gastric glands do not. Extraction and resolution by gel electrophoresis revealed a single predominant human esophageal Siglec-8 ligand migrating at >2 MDa. Purification by size exclusion and affinity chromatography, followed by proteomic mass spectrometry, revealed the protein carrier to be MUC5B. Whereas all human esophageal submucosal cells express MUC5B, only a portion convert it to Siglec-8 ligand by adding terminally sialylated keratan sulfate chains. We refer to this as MUC5B S8L. Material from the esophageal lumen of live subjects revealed MUC5B S8L species ranging from ~1-4 MDa. We conclude that MUC5B in the human esophagus is a protein canvas on which Siglec-8 binding sialylated keratan sulfate chains are post-translationally added. These data expand understanding of Siglec-8 ligands and may help us understand their roles in allergic immune regulation.


Asunto(s)
Esófago , Sulfato de Queratano , Lectinas , Mucina 5B , Humanos , Ligandos , Mucina 5B/metabolismo , Mucina 5B/genética , Lectinas/metabolismo , Lectinas/química , Sulfato de Queratano/metabolismo , Sulfato de Queratano/química , Esófago/metabolismo , Antígenos CD/metabolismo , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciación de Linfocitos B
5.
Anal Chim Acta ; 1316: 342819, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969421

RESUMEN

BACKGROUND: Exosomes, as emerging biomarkers in liquid biopsies in recent years, offer profound insights into cancer diagnostics due to their unique molecular signatures. The glycosylation profiles of exosomes have emerged as potential biomarkers, offering a novel and less invasive method for cancer diagnosis and monitoring. Colorectal cancer (CRC) represents a substantial global health challenge and burden. Thus there is a great need for the aberrant glycosylation patterns on the surface of CRC cell-derived exosomes, proposing them as potential biomarkers for tumor characterization. RESULTS: The interactions of 27 lectins with exosomes from three CRC cell lines (SW480, SW620, HCT116) and one normal colon epithelial cell line (NCM460) have been analyzed by the lectin microarray. The result indicates that Ulex Europaeus Agglutinin I (UEA-I) exhibits high affinity and specificity towards exosomes derived from SW480 cells. The expression of glycosylation related genes within cells has been analyzed by high-throughput quantitative polymerase chain reaction (HT-qPCR). The experimental result of HT-qPCR is consistent with that of lectin microarray. Moreover, the limit of detection (LOD) of UEA-I microarray is calculated to be as low as 2.7 × 105 extracellular vehicles (EVs) mL-1 (three times standard deviation (3σ) of blank sample). The UEA-I microarray has been successfully utilized to dynamically monitor the progression of tumors in mice-bearing SW480 CRC subtype, applicable in tumor sizes ranging from 2 mm to 20 mm in diameter. SIGNIFICANCE: The results reveal that glycan expression pattern of exosome is linked to specific CRC subtypes, and regulated by glycosyltransferase and glycosidase genes of mother cells. Our findings illuminate the potential of glycosylation molecules on the surface of exosomes as reliable biomarkers for diagnosis of tumor at early stage and monitoring of cancer progression.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Lectinas , Polisacáridos , Exosomas/metabolismo , Exosomas/química , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/diagnóstico , Humanos , Polisacáridos/metabolismo , Polisacáridos/química , Animales , Lectinas/metabolismo , Lectinas/química , Ratones , Progresión de la Enfermedad , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo
6.
J Vis Exp ; (208)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39007607

RESUMEN

Protein glycosylation, a critical post-translational modification, influences the stability, efficacy, and immunogenicity of recombinant proteins, including biopharmaceuticals. Glycan structures exhibit significant heterogeneity, varying with production cell types, culture conditions, and purification methods. Consequently, monitoring and evaluating the glycan structures of recombinant proteins is vital, particularly in biopharmaceutical production. The lectin microarray, a technique complementary to mass spectrometry, boasts high sensitivity and ease of use. However, it typically requires more than a day to yield results. To adapt it to non-glycoscience research or drug product process development, an automated, high-throughput alternative is needed. Therefore, the world's first fully automated lectin-based glycan profiling system was developed, utilizing the "bead array in a single tip (BIST)" technology concept. This system allows for the preparation and storage of lectin-immobilized beads in units of 1,000, with customizable parallel insertion orders for various purposes. This article presents a practical protocol for research involving "glyco-qualified" recombinant proteins. After testing their reactivity against 12 polyacrylamide-glycan conjugates, 15 lectins were selected to increase the system's versatility. In addition, the sample labeling process was optimized by switching from Cy3 to biotin, reducing the overall processing time by 30 min. For immediate data qualification, lectin-binding signals are displayed as a dotcode on the top monitor. The system's reliability was confirmed through day-to-day reproducibility tests, repeatability tests, and long-term storage tests, with a coefficient of variation of <10%. This user-friendly and rapid glyco-analyzer has potential applications in the quality monitoring of endogenous glycoproteins for biomarker evaluation and validation. This method facilitates analysis for those new to glycoscience, thereby broadening its practical utility.


Asunto(s)
Lectinas , Polisacáridos , Proteínas Recombinantes , Proteínas Recombinantes/química , Polisacáridos/química , Polisacáridos/análisis , Lectinas/química , Glicosilación , Automatización de Laboratorios/métodos
7.
Int J Biol Macromol ; 275(Pt 2): 133664, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969035

RESUMEN

Lectins are proteins or glycoproteins of non-immune origin with carbohydrate-binding properties. They are found both prokaryotic and eukaryotic organisms. The most abundant source of the lectins are plants. Many lectins have anticancer effects by directly exerting cytotoxic effects on malignant cells or indirectly activating the immune system. Lectins also have antiviral activities. These proteins can recognise glycoproteins on the surface of enveloped viruses and bind to them. This creates a physical barrier between them and the corresponding receptors on the surface of the host cell, which prevents the virus from entering the cell and can thus effectively inhibit the replication of the virus. In this review, we focus on the anticancer activities of selected lectins and the underlying mechanisms. We also discuss different types of lectins with antiviral activity. We have paid special attention to lectins with inhibitory activity against SARS-CoV-2. Finally, we outline the challenges of using lectins in therapy and suggest future research directions.


Asunto(s)
Antineoplásicos , Antivirales , Tratamiento Farmacológico de COVID-19 , Lectinas , SARS-CoV-2 , Humanos , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Antivirales/uso terapéutico , Lectinas/farmacología , Lectinas/química , Lectinas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , COVID-19/virología , Animales
8.
Bioconjug Chem ; 35(8): 1200-1206, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38982902

RESUMEN

Glycoamphiphiles have attracted considerable interest in a broad range of application fields owing to their solution and bulk-state self-assembly abilities. Despite their importance, the straightforward synthesis of glycoamphiphiles consisting of a hydrophilic carbohydrate linked to a hydrophobic aglycone remains one of the major challenges in glycosciences. Here, a rapid, simple, and efficient synthetic access to chemically stable glycoamphiphiles at physiological pH, namely, N-(ß-d-glycosyl)-2-alkylbenzamide, is reported. It leverages the nonreductive amination of unprotected carbohydrates with ortho-substituted aniline derivatives which could be readily obtained by reacting commercially available primary alkylamines with isatoic anhydride. This strategy avoids protection and deprotection of sugar hydroxyl groups and the use of reductive agents, which makes it advantageous in terms of atom and step economy. Moreover, in order to circumvent the cons of classical N-aryl glycosylation, we investigate the use of microwave as a heat source that provides fast, clean, and high-yield ß-N-arylation of unprotected carbohydrates. Their self-assembly into water led to multiple morphologies of dynamic supramolecular glycoamphiphiles that were characterized to assess their ability to bind to lectins from pathogenic bacteria. Biophysical interactions probed by isothermal titration microcalorimetry revealed micromolar affinities for most of the synthesized glycoamphiphiles.


Asunto(s)
Lectinas , Microondas , Lectinas/química , Glicosilación , Carbohidratos/química
9.
Chem Biol Interact ; 399: 111156, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39029856

RESUMEN

Leishmaniases, caused by Leishmania parasites, are widespread and pose significant health risks globally. Visceral leishmaniasis (VL) is particularly prevalent in Brazil, with high morbidity and mortality rates. Traditional treatments, such as pentavalent antimonials, have limitations due to toxicity and resistance. Therefore, exploring new compounds like lectins is crucial. Concanavalin A (ConA) has shown promise in inhibiting Leishmania growth. This study aimed to evaluate its leishmanicidal effect on L. infantum promastigotes and understand its mechanism of action. In vitro tests demonstrated inhibition of promastigote growth when treated with ConA, with IC50 values ranging from 3 to 5 µM over 24-72 h. This study suggests that ConA interacts with L. infantum glycans. Additionally, ConA caused damage to the membrane integrity of parasites and induced ROS production, contributing to parasite death. Scanning electron microscopy confirmed morphological alterations in treated promastigotes. ConA combined with the amphotericin B (AmB) showed synergistic effects, reducing the required dose of AmB, and potentially mitigating its toxicity. ConA demonstrated no cytotoxic effects on macrophages, instead stimulating their proliferation. These findings reinforce that lectin exhibits promising leishmanicidal activity against L. infantum promastigotes, making ConA a potential candidate for leishmaniasis treatment.


Asunto(s)
Antiprotozoarios , Canavalia , Concanavalina A , Leishmania infantum , Leishmania infantum/efectos de los fármacos , Concanavalina A/farmacología , Animales , Antiprotozoarios/farmacología , Antiprotozoarios/química , Semillas/química , Especies Reactivas de Oxígeno/metabolismo , Ratones , Anfotericina B/farmacología , Lectinas/farmacología , Lectinas/química , Lectinas/metabolismo , Lectinas de Plantas/farmacología , Lectinas de Plantas/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/parasitología
10.
Nanoscale ; 16(29): 13962-13978, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38984502

RESUMEN

Multivalent lectin-glycan interactions (MLGIs) are pivotal for viral infections and immune regulation. Their structural and biophysical data are thus highly valuable, not only for understanding their basic mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information for some important MGLIs remains poorly understood, greatly limiting research progress. We have recently developed densely glycosylated nanoparticles, e.g., ∼4 nm quantum dots (QDs) or ∼5 nm gold nanoparticles (GNPs), as mechanistic probes for MLGIs. Using two important model lectin viral receptors, DC-SIGN and DC-SIGNR, we have shown that these probes can not only offer sensitive fluorescence assays for quantifying MLGI affinities, but also reveal key structural information (e.g., binding site orientation and binding mode) useful for MLGI targeting. However, the small sizes of the previous scaffolds may not be optimal for maximising MLGI affinity and targeting specificity. Herein, using α-manno-α-1,2-biose (DiMan) functionalised GNP (GNP-DiMan) probes, we have systematically studied how GNP scaffold size (e.g., 5, 13, and 27 nm) and glycan density (e.g., 100, 75, 50 and 25%) determine their MLGI affinities, thermodynamics, and antiviral properties. We have developed a new GNP fluorescence quenching assay format to minimise the possible interference of GNP's strong inner filter effect in MLGI affinity quantification, revealing that increasing the GNP size is highly beneficial for enhancing MLGI affinity. We have further determined the MLGI thermodynamics by combining temperature-dependent affinity and Van't Hoff analyses, revealing that GNP-DiMan-DC-SIGN/R binding is enthalpy driven with favourable binding Gibbs free energy changes (ΔG°) being enhanced with increasing GNP size. Finally, we show that increasing the GNP size significantly enhances their antiviral potency. Notably, the DiMan coated 27 nm GNP potently and robustly blocks both DC-SIGN and DC-SIGNR mediated pseudo-Ebola virus cellular entry with an EC50 of ∼23 and ∼49 pM, respectively, making it the most potent glycoconjugate inhibitor against DC-SIGN/R-mediated Ebola cellular infections. Our results have established GNP-glycans as a new tool for quantifying MLGI biophysical parameters and revealed that increasing the GNP scaffold size significantly enhances their MLGI affinities and antiviral potencies.


Asunto(s)
Antivirales , Oro , Nanopartículas del Metal , Polisacáridos , Termodinámica , Oro/química , Nanopartículas del Metal/química , Humanos , Antivirales/química , Antivirales/farmacología , Polisacáridos/química , Lectinas Tipo C/metabolismo , Lectinas Tipo C/química , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/química , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/química , Lectinas/química , Lectinas/metabolismo
11.
Angew Chem Int Ed Engl ; 63(40): e202408751, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38829965

RESUMEN

Multivalency is a fundamental principle in nature that leads to high-affinity intermolecular recognition through multiple cooperative interactions that overcome the weak binding of individual constituents. For example, multivalency plays a critical role in lectin-carbohydrate interactions that participate in many essential biological processes. Designing high-affinity multivalent glycoconjugates that engage lectins results in systems with the potential to disrupt these biological processes, offering promising applications in therapeutic design and bioengineering. Here, a versatile and tunable synthetic platform for the synthesis of metallosupramolecular glycoassemblies is presented that leverages subcomponent self-assembly, which employs metal ion templates to generate complex supramolecular architectures from simple precursors in one pot. Through ligand design, this approach provides precise control over molecular parameters such as size, shape, flexibility, valency, and charge, which afforded a diverse family of well-defined hybrid glyconanoassemblies. Evaluation of these complexes as multivalent binders to Concanavalin A (Con A) by isothermal titration calorimetry (ITC) demonstrates the optimal saccharide tether length and the effect of electrostatics on protein affinity, revealing insights into the impact of synthetic design on molecular recognition. The presented studies offer an enhanced understanding of structure-function relationships governing lectin-saccharide interactions at the molecular level and guide a systematic approach towards optimizing glyconanoassembly binding parameters.


Asunto(s)
Concanavalina A , Concanavalina A/química , Lectinas/química , Lectinas/metabolismo , Glicoconjugados/química , Glicoconjugados/síntesis química , Ligandos , Complejos de Coordinación/química
12.
BMC Genomics ; 25(1): 643, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937673

RESUMEN

BACKGROUND: The CBM13 family comprises carbohydrate-binding modules that occur mainly in enzymes and in several ricin-B lectins. The ricin-B lectin domain resembles the CBM13 module to a large extent. Historically, ricin-B lectins and CBM13 proteins were considered completely distinct, despite their structural and functional similarities. RESULTS: In this data mining study, we investigate structural and functional similarities of these intertwined protein groups. Because of the high structural and functional similarities, and differences in nomenclature usage in several databases, confusion can arise. First, we demonstrate how public protein databases use different nomenclature systems to describe CBM13 modules and putative ricin-B lectin domains. We suggest the introduction of a novel CBM13 domain identifier, as well as the extension of CAZy cross-references in UniProt to guard the distinction between CAZy and non-CAZy entries in public databases. Since similar problems may occur with other lectin families and CBM families, we suggest the introduction of novel CBM InterPro domain identifiers to all existing CBM families. Second, we investigated phylogenetic, nomenclatural and structural similarities between putative ricin-B lectin domains and CBM13 modules, making use of sequence similarity networks. We concluded that the ricin-B/CBM13 superfamily may be larger than initially thought and that several putative ricin-B lectin domains may display CAZyme functionalities, although biochemical proof remains to be delivered. CONCLUSIONS: Ricin-B lectin domains and CBM13 modules are associated groups of proteins whose database semantics are currently biased towards ricin-B lectins. Revision of the CAZy cross-reference in UniProt and introduction of a dedicated CBM13 domain identifier in InterPro may resolve this issue. In addition, our analyses show that several proteins with putative ricin-B lectin domains show very strong structural similarity to CBM13 modules. Therefore ricin-B lectin domains and CBM13 modules could be considered distant members of a larger ricin-B/CBM13 superfamily.


Asunto(s)
Lectinas , Filogenia , Dominios Proteicos , Ricina , Ricina/química , Ricina/genética , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Bases de Datos de Proteínas , Secuencia de Aminoácidos , Homología de Secuencia de Aminoácido
13.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928400

RESUMEN

The emergence of coronavirus disease 2019 (COVID-19) posed a major challenge to healthcare systems worldwide, especially as mutations in the culprit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) complicated the development of vaccines and antiviral drugs. Therefore, the search for natural products with broad anti-SARS-CoV-2 capabilities is an important option for the prevention and treatment of similar infectious diseases. Lectins, which are widely recognized as antiviral agents, could contribute to the development of anti-SARS-CoV-2 drugs. This study evaluated the binding affinity of six lectins (including the cyanobacterial lectin from Microcystis viridis NIES-102 (MVL), and Jacalin, a lectin from the breadfruit, Artocarpus altilis) to the receptor binding domain (RBD) of the spike protein on the original (wild) SARS-CoV-2 and three of its mutants: Alpha, Delta, and Omicron. MVL and Jacalin showed distinct binding affinity to the RBDs of the four SARS-CoV-2 strains. The remaining four lectins (DB1, ConA, PHA-M and CSL3) showed no such binding affinity. Although the glycan specificities of MVL and Jacalin were different, they showed the same affinity for the spike protein RBDs of the four SARS-CoV-2 strains, in the order of effectiveness Alpha > Delta > original > Omicron. The verification of glycan-specific inhibition revealed that both lectins bind to RBDs by glycan-specific recognition, but, in addition, MVL binds to RBDs through protein-protein interactions.


Asunto(s)
Lectinas , Microcystis , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Lectinas/metabolismo , Lectinas/química , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Microcystis/metabolismo , Humanos , COVID-19/virología , COVID-19/metabolismo , Antivirales/farmacología , Antivirales/metabolismo , Dominios y Motivos de Interacción de Proteínas , Cianobacterias/metabolismo , Lectinas de Plantas/metabolismo , Lectinas de Plantas/química , Sitios de Unión , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mutación
14.
Protein Expr Purif ; 222: 106536, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38908458

RESUMEN

Lectins are versatile proteins that specifically recognize and interact with sugar moieties expressed on the cell surface. The potential of lectin in drug targeting and delivery has instigated interest to identify natural lectins. Crabs have been identified as a rich source of lectin because the innate immune system is activated on encounter of pathogens and helps in the production of lectin. Although the presence of lectins in crab's hemolymph is well documented, little information about lectin in hepatopancreas, a vital organ for immunity and digestion in crustaceans, is currently available. A calcium dependent lectin (75 kDa) was purified from the hepatopancreas of the freshwater crab Oziotelphusa naga by bioadsorption and fetuin linked Sepharose 4B affinity chromatography technique. The isolated hepatopancreas lectin is calcium dependent and maximum agglutination was observed with rabbit erythrocytes. The hemagglutinating activity of the hepatopancreas lectin was effectively inhibited by sugars, such as α-lactose, GlcNAc, trehalose and NeuAc. Compared to sialylated N-glycosylated proteins including transferrin and apo transferrin, sialylated O-glycosylated proteins like fetuin exhibited stronger inhibitory effect. The ability of erythrocytes to bind hepatopancreas lectin has been diminished by desialylation of the potent inhibitor, indicating the significance of sialic acid in lectin-ligand interactions. The purified hepatopancreas lectin showed a broad spectrum of antimicrobial activity against bacteria Staphylococcus aureus, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, E. coli and fungi Candida albicans and Aspergillus niger. The findings of this study demonstrate the significance of hepatopancreas lectin as a multifunctional defense protein that inhibits the growth of bacteria and fungi.


Asunto(s)
Braquiuros , Hepatopáncreas , Lectinas , Animales , Hepatopáncreas/química , Lectinas/farmacología , Lectinas/química , Lectinas/aislamiento & purificación , Braquiuros/química , Proteínas de Artrópodos/farmacología , Proteínas de Artrópodos/química , Proteínas de Artrópodos/aislamiento & purificación , Proteínas de Artrópodos/genética , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Conejos , Eritrocitos/efectos de los fármacos , Candida albicans/efectos de los fármacos
15.
J Biol Chem ; 300(7): 107482, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897567

RESUMEN

Siglecs are cell surface receptors whose functions are tied to the binding of their sialoglycan ligands. Recently, we developed an optimized liposome formulation and used it to investigate the binding of human Siglecs (hSiglec) against a panel of gangliosides. Animal models, more specifically murine models, are used to understand human biology; however, species-specific differences can complicate the interpretation of the results. Herein, we used our optimized liposome formulation to dissect the interactions between murine Siglecs (mSiglecs) and gangliosides to assess the appropriateness of mSiglecs as a proxy to better understand the biological roles of hSiglec-ganglioside interactions. Using our optimized liposome formulation, we found that ganglioside binding is generally conserved between mice and humans with mSiglec-1, -E, -F, and -15 binding multiple gangliosides like their human counterparts. However, in contrast to the hSiglecs, we observed little to no binding between the mSiglecs and ganglioside GM1a. Detailed analysis of mSiglec-1 interacting with GM1a and its structural isomer, GM1b, suggests that mSiglec-1 preferentially binds α2-3-linked sialic acids presented from the terminal galactose residue. The ability of mSiglecs to interact or not interact with gangliosides, particularly GM1a, has implications for using mice to study neurodegenerative diseases, infections, and cancer, where interactions between Siglecs and glycolipids have been proposed to modulate these human diseases.


Asunto(s)
Gangliósidos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Animales , Gangliósidos/metabolismo , Ratones , Humanos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Liposomas/metabolismo , Lectinas/metabolismo , Lectinas/química , Unión Proteica , Antígenos CD/metabolismo , Antígenos CD/genética
16.
Glycobiology ; 34(7)2024 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-38857376

RESUMEN

Multivalency in lectins plays a pivotal role in influencing glycan cross-linking, thereby affecting lectin functionality. This multivalency can be achieved through oligomerization, the presence of tandemly repeated carbohydrate recognition domains, or a combination of both. Unlike lectins that rely on multiple factors for the oligomerization of identical monomers, tandem-repeat lectins inherently possess multivalency, independent of this complex process. The repeat domains, although not identical, display slightly distinct specificities within a predetermined geometry, enhancing specificity, affinity, avidity and even oligomerization. Despite the recognition of this structural characteristic in recently discovered lectins by numerous studies, a unified criterion to define tandem-repeat lectins is still necessary. We suggest defining them multivalent lectins with intrachain tandem repeats corresponding to carbohydrate recognition domains, independent of oligomerization. This systematic review examines the folding and phyletic diversity of tandem-repeat lectins and refers to relevant literature. Our study categorizes all lectins with tandemly repeated carbohydrate recognition domains into nine distinct folding classes associated with specific biological functions. Our findings provide a comprehensive description and analysis of tandem-repeat lectins in terms of their functions and structural features. Our exploration of phyletic and functional diversity has revealed previously undocumented tandem-repeat lectins. We propose research directions aimed at enhancing our understanding of the origins of tandem-repeat lectin and fostering the development of medical and biotechnological applications, notably in the design of artificial sugars and neolectins.


Asunto(s)
Lectinas , Secuencias Repetidas en Tándem , Animales , Humanos , Lectinas/química , Lectinas/metabolismo
17.
Open Biol ; 14(6): 230451, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862023

RESUMEN

Plasmodium species encode a unique set of six modular proteins named LCCL lectin domain adhesive-like proteins (LAPs) that operate as a complex and that are essential for malaria parasite transmission from mosquito to vertebrate. LAPs possess complex architectures obtained through unique assemblies of conserved domains associated with lipid, protein and carbohydrate interactions, including the name-defining LCCL domain. Here, we assessed the prevalence of Plasmodium LAP orthologues across eukaryotic life. Our findings show orthologous conservation in all apicomplexans, with lineage-specific repertoires acquired through differential lap gene loss and duplication. Besides Apicomplexa, LAPs are found in their closest relatives: the photosynthetic chromerids, which encode the broadest repertoire including a novel membrane-bound LCCL protein. LAPs are notably absent from other alveolate lineages (dinoflagellates, perkinsids and ciliates), but are encoded by predatory colponemids, a sister group to the alveolates. These results reveal that the LAPs are much older than previously thought and pre-date not only the Apicomplexa but the Alveolata altogether.


Asunto(s)
Evolución Molecular , Filogenia , Plasmodium , Proteínas Protozoarias , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Plasmodium/genética , Plasmodium/metabolismo , Alveolados/genética , Alveolados/metabolismo , Dominios Proteicos , Apicomplexa/genética , Apicomplexa/metabolismo , Lectinas/genética , Lectinas/metabolismo , Lectinas/química
18.
Int J Biol Macromol ; 275(Pt 1): 133311, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909728

RESUMEN

Lectins are proteins that bind specifically and reversibly to carbohydrates, and some of them have significant anti-tumor activities. Compared to those of lectins from land plants, there are far fewer studies on algal lectins, despite of the high biodiversity of algae. However, canonical strategies based on chromatographic feature-oriented screening cannot satisfy the requirement for algal lectin discovery. In this study, prospecting for novel OAAH family lectins throughout 358 genomes of red algae and cyanobacteria was conducted. Then 35 candidate lectins and 1843 of their simulated mutated forms were virtually screened based on predicted binding specificities to characteristic carbohydrates on cancer cells inferred by a deep learning model. A new lectin, named Siye, was discovered in Kappaphycus alvarezii genome and further verified on different cancer cells. Without causing agglutination of erythrocytes, Siye showed significant cytotoxicity to four human cancer cell lines (IC50 values ranging from 0.11 to 3.95 µg/mL), including breast adenocarcinoma HCC1937, lung carcinoma A549, liver cancer HepG2 and romyelocytic leukemia HL60. And the cytotoxicity was induced through promoting apoptosis by regulating the caspase and the p53 pathway within 24 h. This study testifies the feasibility and efficiency of the genome mining guided by evolutionary theory and artificial intelligence in the discovery of algal lectins.


Asunto(s)
Antineoplásicos , Simulación por Computador , Rhodophyta , Humanos , Rhodophyta/química , Rhodophyta/genética , Antineoplásicos/farmacología , Antineoplásicos/química , Lectinas/farmacología , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Genoma , Algas Comestibles
19.
J Am Soc Mass Spectrom ; 35(6): 1208-1216, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38713472

RESUMEN

Glycosylation is a common modification across living organisms and plays a central role in understanding biological systems and disease. Our ability to probe the gylcome has grown exponentially in the past several decades. However, further improvements to the analytical toolbox available to researchers would allow for increased capabilities to probe structure and function of biological systems and to improve disease treatment. This article applies the developing technique of two-dimensional Fourier transform ion cyclotron resonance mass spectrometry to a glycoproteomic workflow for the standard glycoproteins coral tree lectin (CTL) and bovine ribonuclease B (BRB) to demonstrate its feasibility as a tool for glycoproteomic workflows. 2D infrared multiphoton dissociation and electron capture dissociation spectra of CTL reveal comparable structural information to their 1D counterparts, confirming the site of glycosylation and monosaccharide composition of the glycan. Spectra collected in 2D of BRB reveal correlation lines of fragment ion scans and vertical precursor ion scans for data collected using infrared multiphoton dissociation and diagonal cleavage lines for data collected by electron capture dissociation. The use of similar techniques for glycoproteomic analysis may prove valuable in instances where chromatographic separation is undesirable or quadrupole isolation is insufficient.


Asunto(s)
Ciclotrones , Análisis de Fourier , Glicopéptidos , Espectrometría de Masas , Glicopéptidos/análisis , Glicopéptidos/química , Animales , Espectrometría de Masas/métodos , Bovinos , Glicosilación , Ribonucleasas/química , Ribonucleasas/análisis , Lectinas/química , Lectinas/análisis , Secuencia de Aminoácidos , Proteómica/métodos
20.
J Proteome Res ; 23(6): 2137-2147, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38787631

RESUMEN

N-glycosylation is one of the most universal and complex protein post-translational modifications (PTMs), and it is involved in many physiological and pathological activities. Owing to the low abundance of N-glycoproteins, enrichment of N-glycopeptides for mass spectrometry analysis usually requires a large amount of peptides. Additionally, oocyte protein N-glycosylation has not been systemically characterized due to the limited sample amount. Here, we developed a glycosylation enrichment method based on lectin and a single-pot, solid-phase-enhanced sample preparation (SP3) technology, termed lectin-based SP3 technology (LectinSP3). LectinSP3 immobilized lectin on the SP3 beads for N-glycopeptide enrichment. It could identify over 1100 N-glycosylation sites and 600 N-glycoproteins from 10 µg of mouse testis peptides. Furthermore, using the LectinSP3 method, we characterized the N-glycoproteome of 1000 mouse oocytes in three replicates and identified a total of 363 N-glycosylation sites from 215 N-glycoproteins. Bioinformatics analysis revealed that these oocyte N-glycoproteins were mainly enriched in cell adhesion, fertilization, and sperm-egg recognition. Overall, the LectinSP3 method has all procedures performed in one tube, using magnetic beads. It is suitable for analysis of a low amount of samples and is expected to be easily adaptable for automation. In addition, our mouse oocyte protein N-glycosylation profiling could help further characterize the regulation of oocyte functions.


Asunto(s)
Glicopéptidos , Glicoproteínas , Lectinas , Oocitos , Proteómica , Animales , Oocitos/metabolismo , Ratones , Glicosilación , Glicoproteínas/metabolismo , Glicoproteínas/química , Glicoproteínas/análisis , Lectinas/química , Lectinas/metabolismo , Proteómica/métodos , Femenino , Glicopéptidos/análisis , Glicopéptidos/química , Procesamiento Proteico-Postraduccional , Masculino , Testículo/metabolismo , Testículo/química , Proteoma/análisis , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA