Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 581
Filtrar
1.
Sci Total Environ ; 939: 173651, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38821274

RESUMEN

Secondary disinfection aims to prevent microbial regrowth during distribution by maintaining disinfectant residuals in water systems. However, multi-factorial interactions contribute to free chlorine decay in distribution systems, and even more so in building plumbing. Assembling 1737 samples from nine large institutional buildings, a meta-analysis was conducted to determine whether building managers can actively rely on incoming free chlorine residuals to prevent in-building microbial amplification. Findings showed that free chlorine concentrations in first draws met the 0.2 mg/L common guide level in respectively 26 %, 6 % and 2 % of cold, tepid and hot water samples, whereas flushing for 2-60 min only significantly increased this ratio in cold water (83 %), without reaching background levels found in service lines. Free chlorine was significantly but weakly (R≤ 0.2) correlated to adenosine triphosphate, heterotrophic plate count and total and intact cell counts, thus evidencing that residuals contributed to decreased culturable and viable biomass. Detection of culturable Legionella pneumophila spanning over a 4-log distribution solely occurred when free chlorine levels were below 0.2 mg/L, but no such trend could be distinguished clearly for culturable Pseudomonas aeruginosa. Water temperatures below 20 °C and >60 °C also completely prevented L. pneumophila detection. Overall, the majority of elevated microbial counts were measured in distal sites and in tepid and hot water, where free chlorine is less likely to be present due to stagnation and increased temperature. Therefore, building managers cannot solely rely on this chemical barrier to mitigate bacterial growth in bulk water.


Asunto(s)
Cloro , Desinfectantes , Desinfección , Microbiología del Agua , Cloro/análisis , Desinfectantes/análisis , Desinfección/métodos , Legionella pneumophila/crecimiento & desarrollo , Ingeniería Sanitaria
2.
Sci Total Environ ; 927: 172410, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608884

RESUMEN

There is little evidence of the long-term consequences of maintaining sanitary hot water at high temperatures on the persistence of Legionella in the plumbing system. The aims of this study were to describe the persistence and genotypic variability of L. pneumophila in a hospital building with two entirely independent hot water distribution systems, and to estimate the thermotolerance of the genotypic variants by studying the quantity of VBNC L. pneumophila. Eighty isolates from 55 water samples obtained between the years 2012-2017 were analyzed. All isolates correspond to L. pneumophila serogroup 6. The isolates were discriminated in four restriction patterns by pulsed-field gel electrophoresis. In one installation, pattern A + Aa predominated, accounting for 75.8 % of samples, while the other installation exhibited pattern B as the most frequent (81.8 % of samples; p < 0.001). The mean temperature of the isolates was: 52.6 °C (pattern A + Aa) and 55.0 °C (pattern B), being significantly different. Nine strains were selected as representative among patterns to study their thermotolerance by flow-cytometry after 24 h of thermic treatment. VBNC bacteria were detected in all samples. After thermic treatment at 50 °C, 52.0 % of bacteria had an intact membrane, and after 55 °C this percentage decreased to 23.1 %. Each pattern exhibited varying levels of thermotolerance. These findings indicate that the same hospital building can be colonized with different predominant types of Legionella if it has independent hot water installations. Maintaining a minimum temperature of 50 °C at distal points of the system would allow the survival of replicative L. pneumophila. However, the presence of Legionella in hospital water networks is underestimated if culture is considered as the standard method for Legionella detection, because VBNC do not grow on culture plates. This phenomenon can carry implications for the Legionella risk management plans in hospitals that adjust their control measures based on the microbiological surveillance of water.


Asunto(s)
Infección Hospitalaria , Hospitales , Legionella pneumophila , Enfermedad de los Legionarios , Viabilidad Microbiana , Abastecimiento de Agua , Infección Hospitalaria/microbiología , Calor , Legionella pneumophila/clasificación , Legionella pneumophila/citología , Legionella pneumophila/genética , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/aislamiento & purificación , Termotolerancia , Factores de Tiempo , Enfermedad de los Legionarios/microbiología , Enfermedad de los Legionarios/transmisión , Recuento de Colonia Microbiana , Humanos
3.
Biomolecules ; 11(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34944446

RESUMEN

Legionella pneumophila is a Gram-negative intracellular pathogen that causes Legionnaires' disease in elderly or immunocompromised individuals. This bacterium relies on the Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) Type IV Secretion System (T4SS) and a large (>330) set of effector proteins to colonize the host cell. The structural variability of these effectors allows them to disrupt many host processes. Herein, we report the crystal structure of MavL to 2.65 Å resolution. MavL adopts an ADP-ribosyltransferase (ART) fold and contains the distinctive ligand-binding cleft of ART proteins. Indeed, MavL binds ADP-ribose with Kd of 13 µM. Structural overlay of MavL with poly-(ADP-ribose) glycohydrolases (PARGs) revealed a pair of aspartate residues in MavL that align with the catalytic glutamates in PARGs. MavL also aligns with ADP-ribose "reader" proteins (proteins that recognize ADP-ribose). Since no glycohydrolase activity was observed when incubated in the presence of ADP-ribosylated PARP1, MavL may play a role as a signaling protein that binds ADP-ribose. An interaction between MavL and the mammalian ubiquitin-conjugating enzyme UBE2Q1 was revealed by yeast two-hybrid and co-immunoprecipitation experiments. This work provides structural and molecular insights to guide biochemical studies aimed at elucidating the function of MavL. Our findings support the notion that ubiquitination and ADP-ribosylation are global modifications exploited by L. pneumophila.


Asunto(s)
Legionella pneumophila/crecimiento & desarrollo , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/enzimología , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Células THP-1 , Ubiquitinación
4.
Cell Rep ; 37(5): 109894, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731604

RESUMEN

Legionella pneumophila grows intracellularly within a replication vacuole via action of Icm/Dot-secreted proteins. One such protein, SdhA, maintains the integrity of the vacuolar membrane, thereby preventing cytoplasmic degradation of bacteria. We show here that SdhA binds and blocks the action of OCRL (OculoCerebroRenal syndrome of Lowe), an inositol 5-phosphatase pivotal for controlling endosomal dynamics. OCRL depletion results in enhanced vacuole integrity and intracellular growth of a sdhA mutant, consistent with OCRL participating in vacuole disruption. Overexpressed SdhA alters OCRL function, enlarging endosomes, driving endosomal accumulation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and interfering with endosomal trafficking. SdhA interrupts Rab guanosine triphosphatase (GTPase)-OCRL interactions by binding to the OCRL ASPM-SPD2-Hydin (ASH) domain, without directly altering OCRL 5-phosphatase activity. The Legionella vacuole encompassing the sdhA mutant accumulates OCRL and endosomal antigen EEA1 (Early Endosome Antigen 1), consistent with SdhA blocking accumulation of OCRL-containing endosomal vesicles. Therefore, SdhA hijacking of OCRL is associated with blocking trafficking events that disrupt the pathogen vacuole.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endosomas/enzimología , Flavoproteínas/metabolismo , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/enzimología , Macrófagos/enzimología , Monoéster Fosfórico Hidrolasas/metabolismo , Vacuolas/enzimología , Animales , Proteínas Bacterianas/genética , Células COS , Chlorocebus aethiops , Endocitosis , Endosomas/genética , Endosomas/microbiología , Evolución Molecular , Femenino , Flavoproteínas/genética , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Legionella pneumophila/genética , Legionella pneumophila/crecimiento & desarrollo , Enfermedad de los Legionarios/microbiología , Macrófagos/microbiología , Ratones , Mutación , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Células U937 , Vacuolas/genética , Vacuolas/microbiología , Proteínas de Unión al GTP rab/metabolismo
5.
Microbiol Spectr ; 9(1): e0040421, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34378969

RESUMEN

Legionella pneumophila, the causative agent of Legionnaires' disease, is mostly found in man-made water systems and is one of the most closely monitored waterborne pathogens. With the aim of finding natural ways to control waterborne pathogens and thus further reduce the impact of disinfection by-products on human health, some studies have demonstrated the ability of bacteria to kill Legionella through the production of secondary metabolites or antimicrobial compounds. Here, we describe an unexpected growth inhibition of L. pneumophila when exposed to a physically separated strain of Pseudomonas fluorescens, designated as MFE01. Most of the members of the Legionellaceae family are sensitive to the volatile substances emitted by MFE01, unlike other bacteria tested. Using headspace solid-phase microextraction GC-MS strategy, a volatilome comparison revealed that emission of 1-undecene, 2-undecanone, and 2-tridecanone were mainly reduced in a Tn5-transposon mutant unable to inhibit at distance the growth of L. pneumophila strain Lens. We showed that 1-undecene was mainly responsible for the inhibition at distance in vitro, and led to cell lysis in small amounts, as determined by gas chromatography-mass spectrometry (GC-MS). Collectively, our results provide new insights into the mode of action of bacterial volatiles and highlight them as potent anti-Legionella agents to focus research on novel strategies to fight legionellosis. IMPORTANCE Microbial volatile compounds are molecules whose activities are increasingly attracting the attention of researchers. Indeed, they can act as key compounds in long-distance intrakingdom and interkingdom communication, but also as antimicrobials in competition and predation. In fact, most studies to date have focused on their antifungal activities and only a few have reported on their antibacterial properties. Here, we describe that 1-undecene, naturally produced by P. fluorescens, is a volatile with potent activity against bacteria of the genus Legionella. In small amounts, it is capable of inducing cell lysis even when the producing strain is physically separated from the target. This is the first time that such activity is described. This molecule could therefore constitute an efficient compound to counter bacterial pathogens whose treatment may fail, particularly in pulmonary diseases. Indeed, inhalation of these volatiles should be considered as a possible route of therapy in addition to antibiotic treatment.


Asunto(s)
Antibacterianos/farmacología , Legionella pneumophila/efectos de los fármacos , Pseudomonas fluorescens/metabolismo , Humanos , Legionella pneumophila/crecimiento & desarrollo , Enfermedad de los Legionarios/terapia , Pseudomonas fluorescens/genética , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/farmacología
6.
Mol Microbiol ; 116(2): 624-647, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34018265

RESUMEN

Legionella pneumophila possesses a unique intracellular lifecycle featuring distinct morphological stages that include replicative forms and transmissive cyst forms. Expression of genes associated with virulence traits and cyst morphogenesis is concomitant, and governed by a complex stringent response based-regulatory network and the stationary phase sigma factor RpoS. In Pseudomonas spp., rpoS expression is controlled by the autorepressor PsrA, and orthologs of PsrA and RpoS are required for cyst formation in Azotobacter. Here we report that the L. pneumophila psrA ortholog, expressed as a leaderless monocistronic transcript, is also an autorepressor, but is not a regulator of rpoS expression. Further, the binding site sequence recognized by L. pneumophila PsrA is different from that of Pseudomonas PsrA, suggesting a repertoire of target genes unique to L. pneumophila. While PsrA was dispensable for growth in human U937-derived macrophages, lack of PsrA affected bacterial intracellular growth in Acanthamoeba castellanii protozoa, but also increased the quantity of poly-3-hydroxybutyrate (PHB) inclusions in matured transmissive cysts. Interestingly, overexpression of PsrA increased the size and bacterial load of the replicative vacuole in both host cell types. Taken together, we report that PsrA is a host-specific requirement for optimal temporal progression of L. pneumophila intracellular lifecycle in A. castellanii.


Asunto(s)
Acanthamoeba castellanii/microbiología , Regulación Bacteriana de la Expresión Génica/genética , Legionella pneumophila/crecimiento & desarrollo , Proteínas Represoras/genética , Factores de Transcripción/genética , Proteínas Bacterianas/genética , Humanos , Hidroxibutiratos/metabolismo , Legionella pneumophila/genética , Macrófagos/microbiología , Poliésteres/metabolismo , Regiones Promotoras Genéticas/genética , Factor sigma/genética , Transcripción Genética/genética
7.
Science ; 372(6545): 935-941, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33927055

RESUMEN

During infection, intracellular bacterial pathogens translocate a variety of effectors into host cells that modify host membrane trafficking for their benefit. We found a self-organizing system consisting of a bacterial phosphoinositide kinase and its opposing phosphatase that formed spatiotemporal patterns, including traveling waves, to remodel host cellular membranes. The Legionella effector MavQ, a phosphatidylinositol (PI) 3-kinase, was targeted to the endoplasmic reticulum (ER). MavQ and the Legionella PI 3-phosphatase SidP, even in the absence of other bacterial components, drove rapid PI 3-phosphate turnover on the ER and spontaneously formed traveling waves that spread along ER subdomains inducing vesicle and tubule budding. Thus, bacteria can exploit a self-organizing membrane-targeting mechanism to hijack host cellular structures for survival.


Asunto(s)
Proteínas Bacterianas/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Legionella pneumophila/fisiología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Proteínas Bacterianas/química , Células COS , Chlorocebus aethiops , Retículo Endoplásmico/ultraestructura , Retroalimentación Fisiológica , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Membranas Intracelulares/ultraestructura , Legionella pneumophila/enzimología , Legionella pneumophila/genética , Legionella pneumophila/crecimiento & desarrollo , Ratones , Mutación , Fosfatidilinositol 3-Quinasa/química , Fosfatos de Fosfatidilinositol/química , Monoéster Fosfórico Hidrolasas/metabolismo , Dominios Proteicos , Células RAW 264.7
8.
Pathog Dis ; 79(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33734371

RESUMEN

The human pulmonary environment is complex, containing a matrix of cells, including fibroblasts, epithelial cells, interstitial macrophages, alveolar macrophages and neutrophils. When confronted with foreign material or invading pathogens, these cells mount a robust response. Nevertheless, many bacterial pathogens with an intracellular lifecycle stage exploit this environment for replication and survival. These include, but are not limited to, Coxiella burnetii, Legionella pneumophila, Yersinia pestis, Mycobacterium tuberculosis and Staphylococcus aureus. Currently, few human disease-relevant model systems exist for studying host-pathogen interactions during these bacterial infections in the lung. Here, we present two novel infection platforms, human alveolar macrophages (hAMs) and human precision-cut lung slices (hPCLS), along with an up-to-date synopsis of research using said models. Additionally, alternative uses for these systems in the absence of pathogen involvement are presented, such as tissue banking and further characterization of the human lung environment. Overall, hAMs and hPCLS allow novel human disease-relevant investigations that other models, such as cell lines and animal models, cannot completely provide.


Asunto(s)
Infecciones Bacterianas/microbiología , Interacciones Huésped-Patógeno/inmunología , Enfermedades Pulmonares/microbiología , Pulmón/microbiología , Macrófagos Alveolares/microbiología , Modelos Biológicos , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/patología , Coxiella burnetii/crecimiento & desarrollo , Coxiella burnetii/inmunología , Coxiella burnetii/patogenicidad , Humanos , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/inmunología , Legionella pneumophila/patogenicidad , Pulmón/inmunología , Pulmón/patología , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/patología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/patología , Microtomía , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Cultivo Primario de Células , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/inmunología , Staphylococcus aureus/patogenicidad , Bancos de Tejidos , Técnicas de Cultivo de Tejidos , Yersinia pestis/crecimiento & desarrollo , Yersinia pestis/inmunología , Yersinia pestis/patogenicidad
9.
Cell Microbiol ; 23(5): e13318, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33583106

RESUMEN

Dictyostelium discoideum Sey1 is the single ortholog of mammalian atlastin 1-3 (ATL1-3), which are large homodimeric GTPases mediating homotypic fusion of endoplasmic reticulum (ER) tubules. In this study, we generated a D. discoideum mutant strain lacking the sey1 gene and found that amoebae deleted for sey1 are enlarged, but grow and develop similarly to the parental strain. The ∆sey1 mutant amoebae showed an altered ER architecture, and the tubular ER network was partially disrupted without any major consequences for other organelles or the architecture of the secretory and endocytic pathways. Macropinocytic and phagocytic functions were preserved; however, the mutant amoebae exhibited cumulative defects in lysosomal enzymes exocytosis, intracellular proteolysis, and cell motility, resulting in impaired growth on bacterial lawns. Moreover, ∆sey1 mutant cells showed a constitutive activation of the unfolded protein response pathway (UPR), but they still readily adapted to moderate levels of ER stress, while unable to cope with prolonged stress. In D. discoideum ∆sey1 the formation of the ER-associated compartment harbouring the bacterial pathogen Legionella pneumophila was also impaired. In the mutant amoebae, the ER was less efficiently recruited to the "Legionella-containing vacuole" (LCV), the expansion of the pathogen vacuole was inhibited at early stages of infection and intracellular bacterial growth was reduced. In summary, our study establishes a role of D. discoideum Sey1 in ER architecture, proteolysis, cell motility and intracellular replication of L. pneumophila.


Asunto(s)
Dictyostelium/fisiología , Retículo Endoplásmico/ultraestructura , GTP Fosfohidrolasas/metabolismo , Legionella pneumophila/fisiología , Proteínas Protozoarias/metabolismo , Vacuolas/microbiología , Dictyostelium/crecimiento & desarrollo , Dictyostelium/microbiología , Dictyostelium/ultraestructura , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico Rugoso/microbiología , Retículo Endoplásmico Rugoso/fisiología , GTP Fosfohidrolasas/genética , Homeostasis , Interacciones Huésped-Patógeno , Legionella pneumophila/crecimiento & desarrollo , Movimiento , Muramidasa/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Protozoarias/genética , Vacuolas/fisiología
10.
Commun Biol ; 4(1): 157, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542442

RESUMEN

Catalytically inactive dCas9 imposes transcriptional gene repression by sterically precluding RNA polymerase activity at a given gene to which it was directed by CRISPR (cr)RNAs. This gene silencing technology, known as CRISPR interference (CRISPRi), has been employed in various bacterial species to interrogate genes, mostly individually or in pairs. Here, we developed a multiplex CRISPRi platform in the pathogen Legionella pneumophila capable of silencing up to ten genes simultaneously. Constraints on precursor-crRNA expression were overcome by combining a strong promoter with a boxA element upstream of a CRISPR array. Using crRNAs directed against virulence protein-encoding genes, we demonstrated that CRISPRi is fully functional not only during growth in axenic media, but also during macrophage infection, and that gene depletion by CRISPRi recapitulated the growth defect of deletion strains. By altering the position of crRNA-encoding spacers within the CRISPR array, our platform achieved the gradual depletion of targets that was mirrored by the severity in phenotypes. Multiplex CRISPRi thus holds great promise for probing large sets of genes in bulk in order to decipher virulence strategies of L. pneumophila and other bacterial pathogens.


Asunto(s)
Proteínas Bacterianas/genética , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Silenciador del Gen , Legionella pneumophila/genética , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Prueba de Estudio Conceptual , Células U937 , Virulencia/genética , Factores de Virulencia/metabolismo
11.
Cell Microbiol ; 23(5): e13313, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33491325

RESUMEN

ProA is a secreted zinc metalloprotease of Legionella pneumophila causing lung damage in animal models of Legionnaires' disease. Here we demonstrate that ProA promotes infection of human lung tissue explants (HLTEs) and dissect the contribution to cell type specific replication and extracellular virulence mechanisms. For the first time, we reveal that co-incubation of HLTEs with purified ProA causes a significant increase of the alveolar septal thickness. This destruction of connective tissue fibres was further substantiated by collagen IV degradation assays. The moderate attenuation of a proA-negative mutant in A549 epithelial cells and THP-1 macrophages suggests that effects of ProA in tissue mainly result from extracellular activity. Correspondingly, ProA contributes to dissemination and serum resistance of the pathogen, which further expands the versatile substrate spectrum of this thermolysin-like protease. The crystal structure of ProA at 1.48 Å resolution showed high congruence to pseudolysin of Pseudomonas aeruginosa, but revealed deviations in flexible loops, the substrate binding pocket S1 ' and the repertoire of cofactors, by which ProA can be distinguished from respective homologues. In sum, this work specified virulence features of ProA at different organisational levels by zooming in from histopathological effects in human lung tissue to atomic details of the protease substrate determination.


Asunto(s)
Proteínas Bacterianas/metabolismo , Colágeno Tipo IV/metabolismo , Legionella pneumophila/enzimología , Legionella pneumophila/patogenicidad , Pulmón/microbiología , Metaloendopeptidasas/metabolismo , Alveolos Pulmonares/patología , Factores de Virulencia/metabolismo , Células A549 , Proteínas Bacterianas/química , Actividad Bactericida de la Sangre , Humanos , Legionella pneumophila/crecimiento & desarrollo , Pulmón/patología , Metaloendopeptidasas/química , Proteolisis , Alveolos Pulmonares/metabolismo , Células THP-1 , Virulencia , Factores de Virulencia/química
12.
Chemistry ; 27(7): 2506-2512, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075184

RESUMEN

Legionnaires' disease is caused by infection with the intracellularly replicating Gram-negative bacterium Legionella pneumophila. This pathogen uses an unconventional way of ubiquitinating host proteins by generating a phosphoribosyl linkage between substrate proteins and ubiquitin by making use of an ADPribosylated ubiquitin (UbADPr ) intermediate. The family of SidE effector enzymes that catalyze this reaction is counteracted by Legionella hydrolases, which are called Dups. This unusual ubiquitination process is important for Legionella proliferation and understanding these processes on a molecular level might prove invaluable in finding new treatments. Herein, a modular approach is used for the synthesis of triazole-linked UbADPr , and analogues thereof, and their affinity towards the hydrolase DupA is determined and hydrolysis rates are compared to natively linked UbADPr . The inhibitory effects of modified Ub on the canonical eukaryotic E1-enzyme Uba1 are investigated and rationalized in the context of a high-resolution crystal structure reported herein. Finally, it is shown that synthetic UbADPr analogues can be used to effectively pull-down overexpressed DupA from cell lysate.


Asunto(s)
ADP-Ribosilación , Legionella pneumophila/enzimología , Enfermedad de los Legionarios/microbiología , Ubiquitina/química , Ubiquitina/metabolismo , Proteínas Bacterianas/metabolismo , Células HEK293 , Humanos , Hidrolasas/metabolismo , Legionella pneumophila/crecimiento & desarrollo , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitinación
13.
Biocontrol Sci ; 25(3): 179-182, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32938848

RESUMEN

Testing for Legionella spp. in public bath water samples is regulated in Japan. In this study, we used a total of 132 public bath water samples to compare the performance of Legiolert® and the conventional plate culture method for the enumeration of Legionella pneumophila. When Legiolert and plate culturing were performed at the same detection limit, L. pneumophila was detected in 26.5% of 132 samples by Legiolert, while 12.9% contained Legionella spp. (11.4% contained L. pneumophila) based on the plate culture method. Moreover, results of 83.3% of the total samples were consistent between the two methods, meaning that they were both positive or both negative. In this study, we demonstrated that Legiolert is a simpler and more effective method of monitoring for L. pneumophila in bath water samples.


Asunto(s)
Técnicas Bacteriológicas , Legionella pneumophila/crecimiento & desarrollo , Microbiología del Agua , Carga Bacteriana/métodos , Legionella pneumophila/aislamiento & purificación
14.
FEMS Microbiol Lett ; 367(18)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32860684

RESUMEN

Free-living amoebae are known to act as replication niches for the pathogenic bacterium Legionella pneumophila in freshwater environments. However, we previously reported that some strains of the Willaertia magna species are more resistant to L. pneumophila infection and differ in their ability to support its growth. From this observation, we hypothesize that L. pneumophila growth in environment could be partly dependent on the composition of amoebic populations and on the possible interactions between different amoebic species. We tested this hypothesis by studying the growth of L. pneumophila and of a permissive free-living amoeba, Vermamoeba vermiformis (formerly named Hartmannella vermiformis), in co-culture with or without other free-living amoebae (Acanthamoeba castellanii and W. magna). We demonstrate the occurrence of inter-amoebic phagocytosis with A. castellanii and W. magna being able to ingest V. vermiformis infected or not infected with L. pneumophila. We also found that L. pneumophila growth is strongly impacted by the permissiveness of each interactive amoeba demonstrating that L. pneumophila proliferation and spread are controlled, at least in part, by inter-amoebic interactions.


Asunto(s)
Amébidos/microbiología , Legionella pneumophila/crecimiento & desarrollo , Fagocitosis , Amébidos/clasificación , Amébidos/crecimiento & desarrollo , Técnicas de Cocultivo , Interacciones Microbiota-Huesped , Enfermedad de los Legionarios/transmisión , Microbiología del Agua
15.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731616

RESUMEN

Legionella pneumophila is an environmental bacterium, an opportunistic premise plumbing pathogen that causes the Legionnaires' disease. L. pneumophila presents a serious health hazard in building water systems, due to its high resistance to standard water disinfection methods. Our aim was to study the use of photodynamic inactivation (PDI) against Legionella. We investigated and compared the photobactericidal potential of five cationic dyes. We tested toluidine blue (TBO) and methylene blue (MB), and three 3-N-methylpyridylporphyrins, one tetra-cationic and two tri-cationic, one with a short (CH3) and the other with a long (C17H35) alkyl chain, against L. pneumophila in tap water and after irradiation with violet light. All tested dyes demonstrated a certain dark toxicity against L. pneumophila; porphyrins with lower minimal effective concentration (MEC) values than TBO and MB. Nanomolar MEC values, significantly lower than with TBO and MB, were obtained with all three porphyrins in PDI experiments, with amphiphilic porphyrin demonstrating the highest PDI activity. All tested dyes showed increasing PDI with longer irradiation (0-108 J/cm2), especially the two hydrophilic porphyrins. All three porphyrins caused significant changes in cell membrane permeability after irradiation and L. pneumophila, co-cultivated with Acanthamoeba castellanii after treatment with all three porphyrins and irradiation, did not recover in amoeba. We believe our results indicate the considerable potential of cationic porphyrins as effective anti-Legionella agents.


Asunto(s)
Antibacterianos , Legionella pneumophila/crecimiento & desarrollo , Enfermedad de los Legionarios/tratamiento farmacológico , Fotoquimioterapia , Porfirinas , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Enfermedad de los Legionarios/metabolismo , Porfirinas/síntesis química , Porfirinas/química , Porfirinas/farmacología
16.
Int J Infect Dis ; 97: 374-379, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32534142

RESUMEN

OBJECTIVES: To report atypical pathogens from clinical trial data comparing delafloxacin to moxifloxacin in the treatment of adults with community-acquired bacterial pneumonia (CABP). METHODS: Multiple diagnostic methods were employed to diagnose atypical infections including culture, serology, and urinary antigen. RESULTS: The microbiological intent-to-treat (MITT) population included 520 patients; 30% had an atypical bacterial pathogen identified (156/520). Overall, 13.1% (68/520) had a monomicrobial atypical infection and 2.3% (12/520) had polymicrobial all-atypical infections. Among patients with polymicrobial infections, Streptococcus pneumoniae was the most frequently occurring co-infecting organism and Chlamydia pneumoniae was the most frequently occurring co-infecting atypical organism. For Mycoplasma pneumoniae and Legionella pneumophila, serology yielded the highest number of diagnoses. Delafloxacin and moxifloxacin had similar in vitro activity against M. pneumoniae and delafloxacin had greater activity against L. pneumophila. Two macrolide-resistant M. pneumoniae isolates were recovered. No fluoroquinolone-resistant M. pneumoniae were isolated. The rates of microbiological success (documented or presumed eradication) at test-of-cure were similar between the delafloxacin and moxifloxacin groups. There was no evidence of a correlation between minimum inhibitory concentration (MIC) and outcome; a high proportion of favorable outcomes was observed across all delafloxacin baseline MICs. CONCLUSIONS: Delafloxacin may be considered a treatment option as monotherapy for CABP in adults, where broad-spectrum coverage including atypical activity is desirable.


Asunto(s)
Antibacterianos/administración & dosificación , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Fluoroquinolonas/administración & dosificación , Moxifloxacino/administración & dosificación , Neumonía Bacteriana/tratamiento farmacológico , Adulto , Infecciones Comunitarias Adquiridas/microbiología , Femenino , Humanos , Legionella pneumophila/efectos de los fármacos , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/aislamiento & purificación , Macrólidos/administración & dosificación , Masculino , Pruebas de Sensibilidad Microbiana , Mycoplasma pneumoniae/efectos de los fármacos , Mycoplasma pneumoniae/crecimiento & desarrollo , Mycoplasma pneumoniae/aislamiento & purificación , Neumonía Bacteriana/microbiología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/aislamiento & purificación , Adulto Joven
17.
FEMS Microbiol Lett ; 367(7)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32188994

RESUMEN

Polyphenols derived from a variety of plants have demonstrated antimicrobial activity against diverse microbial pathogens. Legionella pneumophila is an intracellular bacterial pathogen that opportunistically causes a severe inflammatory pneumonia in humans, called Legionnaires' Disease, via replication within macrophages. Previous studies demonstrated that tea polyphenols attenuate L. pneumophila intracellular replication within mouse macrophages via increased tumor necrosis factor (TNF) production. Sorghum bicolor is a sustainable cereal crop that thrives in arid environments and is well-suited to continued production in warming climates. Sorghum polyphenols have anticancer and antioxidant properties, but their antimicrobial activity has not been evaluated. Here, we investigated the impact of sorghum polyphenols on L. pneumophila intracellular replication within RAW 264.7 mouse macrophages. Sorghum high-polyphenol extract (HPE) attenuated L. pneumophila intracellular replication in a dose-dependent manner but did not impair either bacterial replication in rich media or macrophage viability. Moreover, HPE treatment enhanced both TNF and IL-6 secretion from L. pneumophila infected macrophages. Thus, polyphenols derived from sorghum enhance macrophage restriction of L. pneumophila, likely via increased pro-inflammatory cytokine production. This work reveals commonalities between plant polyphenol-mediated antimicrobial activity and provides a foundation for future evaluation of sorghum as an antimicrobial agent.


Asunto(s)
Legionella pneumophila/efectos de los fármacos , Macrófagos/microbiología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Sorghum/química , Animales , Legionella pneumophila/crecimiento & desarrollo , Ratones , Células RAW 264.7
18.
Cell Microbiol ; 22(4): e13151, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32096265

RESUMEN

Legionella pneumophila requires the Dot/Icm translocation system to replicate in a vacuolar compartment within host cells. Strains lacking the translocated substrate SdhA form a permeable vacuole during residence in the host cell, exposing bacteria to the host cytoplasm. In primary macrophages, mutants are defective for intracellular growth, with a pyroptotic cell death response mounted due to bacterial exposure to the cytosol. To understand how SdhA maintains vacuole integrity during intracellular growth, we performed high-throughput RNAi screens against host membrane trafficking genes to identify factors that antagonise vacuole integrity in the absence of SdhA. Depletion of host proteins involved in endocytic uptake and recycling resulted in enhanced intracellular growth and lower levels of permeable vacuoles surrounding the ΔsdhA mutant. Of interest were three different Rab GTPases involved in these processes: Rab11b, Rab8b and Rab5 isoforms, that when depleted resulted in enhanced vacuole integrity surrounding the sdhA mutant. Proteins regulated by these Rabs are responsible for interfering with proper vacuole membrane maintenance, as depletion of the downstream effectors EEA1, Rab11FIP1, or VAMP3 rescued vacuole integrity and intracellular growth of the sdhA mutant. To test the model that specific vesicular components associated with these effectors could act to destabilise the replication vacuole, EEA1 and Rab11FIP1 showed increased density about the sdhA mutant vacuole compared with the wild type (WT) vacuole. Depletion of Rab5 isoforms or Rab11b reduced this aberrant redistribution. These findings are consistent with SdhA interfering with both endocytic and recycling membrane trafficking events that act to destabilise vacuole integrity during infection.


Asunto(s)
Citosol/microbiología , Endocitosis , Interacciones Huésped-Patógeno , Legionella pneumophila/crecimiento & desarrollo , Vacuolas/microbiología , Vacuolas/patología , Animales , Proteínas Bacterianas/genética , Transporte Biológico , Femenino , Flavoproteínas/genética , Macrófagos/microbiología , Ratones , Transporte de Proteínas , Células RAW 264.7 , Interferencia de ARN
19.
PLoS One ; 15(1): e0227574, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31940328

RESUMEN

Legionella pneumophila can cause a potentially fatal form of humane pneumonia (Legionnaires' disease), which is most problematic in immunocompromised and in elderly people. Legionella species is present at low concentrations in soil, natural and artificial aquatic systems and is therefore constantly entering man-made water systems. The environment temperature for it's ideal growth range is between 32 and 42°C, thus hot water pipes represent ideal environment for spread of Legionella. The bacteria are dormant below 20°C and do not survive above 60°C. The primary method used to control the risk from Legionella is therefore water temperature control. There are several other effective treatments to prevent growth of Legionella in water systems, however current disinfection methods can be applied only intermittently thus allowing Legionella to grow in between treatments. Here we present an alternative disinfection method based on antibacterial coatings with Cu-TiO2 nanotubes deposited on preformed surfaces. In the experiment the microbiocidal efficiency of submicron coatings on polystyrene to the bacterium of the genus Legionella pneumophila with a potential use in a water supply system was tested. The treatment thus constantly prevents growth of Legionella pneumophila in presence of water at room temperature. Here we show that 24-hour illumination with low power UVA light source (15 W/m2 UVA illumination) of copper doped TiO2 nanotube coated surfaces is effective in preventing growth of Legionella pneumophila. Microbiocidal effects of Cu-TiO2 nanotube coatings were dependent on the flow of the medium and the intensity of UV-A light. It was determined that tested submicron coatings have microbiocidal effects specially in a non-flow or low-flow conditions, as in higher flow rates, probably to a greater possibility of Legionella pneumophila sedimentation on the coated polystyrene surfaces, meanwhile no significant differences among bacteria reduction was noted regarding to non or low flow of medium.


Asunto(s)
Cobre/química , Cobre/farmacología , Legionella pneumophila/efectos de los fármacos , Legionella pneumophila/efectos de la radiación , Nanotubos/química , Titanio/química , Rayos Ultravioleta , Antibacterianos/química , Antibacterianos/farmacología , Catálisis , Legionella pneumophila/crecimiento & desarrollo , Procesos Fotoquímicos , Propiedades de Superficie
20.
Nat Microbiol ; 5(4): 599-609, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31988381

RESUMEN

Virulence mechanisms typically evolve through the continual interaction of a pathogen with its host. In contrast, it is poorly understood how environmentally acquired pathogens are able to cause disease without prior interaction with humans. Here, we provide experimental evidence for the model that Legionella pathogenesis in humans results from the cumulative selective pressures of multiple amoebal hosts in the environment. Using transposon sequencing, we identify Legionella pneumophila genes required for growth in four diverse amoebae, defining universal virulence factors commonly required in all host cell types and amoeba-specific auxiliary genes that determine host range. By comparing genes that promote growth in amoebae and macrophages, we show that adaptation of L. pneumophila to each amoeba causes the accumulation of distinct virulence genes that collectively allow replication in macrophages and, in some cases, leads to redundancy in this host cell type. In contrast, some bacterial proteins that promote replication in amoebae restrict growth in macrophages. Thus, amoebae-imposed selection is a double-edged sword, having both positive and negative impacts on disease. Comparing the genome composition and host range of multiple Legionella species, we demonstrate that their distinct evolutionary trajectories in the environment have led to the convergent evolution of compensatory virulence mechanisms.


Asunto(s)
Amoeba/microbiología , Coevolución Biológica , Interacciones Huésped-Patógeno/genética , Legionella pneumophila/genética , Legionella pneumophila/patogenicidad , Macrófagos/microbiología , Factores de Virulencia/genética , Adaptación Fisiológica , Amoeba/clasificación , Animales , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Femenino , Especificidad del Huésped , Humanos , Legionella pneumophila/clasificación , Legionella pneumophila/crecimiento & desarrollo , Ratones , Filogenia , Cultivo Primario de Células , Selección Genética , Virulencia , Factores de Virulencia/clasificación , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA