Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 682
Filtrar
1.
ACS Infect Dis ; 10(8): 2913-2928, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39023360

RESUMEN

The lack of effective vaccines and the development of resistance to the current treatments highlight the urgent need for new anti-leishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in the Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major and a potent anti-leishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. While the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances beyond sphingolipid metabolism were identified. Furthermore, while deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrate that clemastine does inhibit LmxIPCS and cause associated metabolic disturbances, but its primary target may lie elsewhere.


Asunto(s)
Antiprotozoarios , Antiprotozoarios/farmacología , Antiprotozoarios/química , Esfingolípidos/metabolismo , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Hexosiltransferasas/antagonistas & inhibidores , Leishmania/efectos de los fármacos , Leishmania/genética , Leishmania/enzimología , Animales , Leishmania mexicana/efectos de los fármacos , Leishmania mexicana/genética , Leishmania mexicana/enzimología , Glicoesfingolípidos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
2.
Bioorg Med Chem Lett ; 110: 129883, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013490

RESUMEN

The protozoan parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for continued propagation of neglected tropical diseases such as African sleeping sickness, Chagas disease and leishmaniasis respectively. Following a report that captopril targets Leishmania donovani dipeptidyl carboxypeptidase, a series of simple proline amides and captopril analogues were synthesized and found to exhibit 1-2 µM in vitro inhibition and selectivity against Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. The results were corroborated with computational docking studies. Arguably, the synthetic proline amides represent the structurally simplest examples of in vitro pan antiprotozoal compounds.


Asunto(s)
Captopril , Trypanosoma brucei brucei , Trypanosoma cruzi , Captopril/farmacología , Captopril/química , Captopril/síntesis química , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/síntesis química , Estructura Molecular , Leishmania/efectos de los fármacos , Leishmania/enzimología , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/síntesis química , Humanos
3.
Life Sci ; 351: 122844, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897344

RESUMEN

AIMS: Leishmaniasis, caused by the protozoan parasite poses a significant health burden globally. With a very few specific drugs, increased drug resistance it is important to look for drug repurposing along with the identification of pre-clinical candidates against visceral leishmaniasis. This study aims to identify potential drug candidates against visceral leishmaniasis by targeting leishmanial MAP kinases and screening FDA approved protein kinase inhibitors. MATERIALS AND METHODS: MAP kinases were identified from the Leishmania genome. 12 FDA approved protein kinase inhibitors were screened against Leishmania MAP kinases. Binding affinity, ADME and toxicity of identified drug candidates were profiled. The anti-proliferative effects and mechanism of action were assessed in Leishmania, including changes in cell morphology, flagellar length, cell cycle progression, reactive oxygen species (ROS) generation, and intra-macrophage parasitic burden. KEY FINDINGS: 23 MAP kinases were identified from the Leishmania genome. Sorafenib and imatinib emerged as repurposable drug candidates and demonstrated excellent anti-proliferative effects in Leishmania. Treatment with these inhibitors resulted in significant changes in cell morphology, flagellar length, and cell cycle arrest. Furthermore, sorafenib and imatinib promoted ROS generation and reduced intra-macrophage parasitic burden, and elicited anti-leishmanial activity in in vivo experimental VL models. SIGNIFICANCE: Collectively, these results imply involvement of MAP kinases in infectivity and survival of the parasite and can pave the avenue for repurposing sorafenib and imatinib as anti-leishmanial agents. These findings contribute to the exploration of new treatment options for visceral leishmaniasis, particularly in the context of emerging drug resistance.


Asunto(s)
Antiprotozoarios , Reposicionamiento de Medicamentos , Leishmania , Inhibidores de Proteínas Quinasas , Inhibidores de Proteínas Quinasas/farmacología , Animales , Ratones , Leishmania/efectos de los fármacos , Leishmania/enzimología , Antiprotozoarios/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Ratones Endogámicos BALB C , Humanos , Macrófagos/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Femenino , Sorafenib/farmacología , Mesilato de Imatinib/farmacología
4.
Sci Rep ; 14(1): 11575, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773273

RESUMEN

Leishmaniasis is a disease caused by a protozoan of the genus Leishmania, affecting millions of people, mainly in tropical countries, due to poor social conditions and low economic development. First-line chemotherapeutic agents involve highly toxic pentavalent antimonials, while treatment failure is mainly due to the emergence of drug-resistant strains. Leishmania arginase (ARG) enzyme is vital in pathogenicity and contributes to a higher infection rate, thus representing a potential drug target. This study helps in designing ARG inhibitors for the treatment of leishmaniasis. Py-CoMFA (3D-QSAR) models were constructed using 34 inhibitors from different chemical classes against ARG from L. (L.) amazonensis (LaARG). The 3D-QSAR predictions showed an excellent correlation between experimental and calculated pIC50 values. The molecular docking study identified the favorable hydrophobicity contribution of phenyl and cyclohexyl groups as substituents in the enzyme allosteric site. Molecular dynamics simulations of selected protein-ligand complexes were conducted to understand derivatives' interaction modes and affinity in both active and allosteric sites. Two cinnamide compounds, 7g and 7k, were identified, with similar structures to the reference 4h allosteric site inhibitor. These compounds can guide the development of more effective arginase inhibitors as potential antileishmanial drugs.


Asunto(s)
Arginasa , Inhibidores Enzimáticos , Leishmania , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Arginasa/antagonistas & inhibidores , Arginasa/química , Arginasa/metabolismo , Leishmania/enzimología , Leishmania/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Relación Estructura-Actividad Cuantitativa , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Sitio Alostérico , Antiprotozoarios/farmacología , Antiprotozoarios/química , Dominio Catalítico
5.
Mem Inst Oswaldo Cruz ; 119: e230243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775551

RESUMEN

BACKGROUND: Leishmania tarentolae is a non-pathogenic species found in lizards representing an important model for Leishmania biology. However, several aspects of this Sauroleishmania remain unknown to explain its low level of virulence. OBJECTIVES: We reported several aspects of L. tarentolae biology including glycoconjugates, proteolytic activities and metabolome composition in comparison to pathogenic species (Leishmania amazonensis, Leishmania braziliensis, Leishmania infantum and Leishmania major). METHODS: Parasites were cultured for extraction and purification of lipophosphoglycan (LPG), immunofluorescence probing with anti-gp63 and resistance against complement. Parasite extracts were also tested for proteases activity and metabolome composition. FINDINGS: Leishmania tarentolae does not express LPG on its surface. It expresses gp63 at lower levels compared to pathogenic species and, is highly sensitive to complement-mediated lysis. This species also lacks intracellular/extracellular activities of proteolytic enzymes. It has metabolic differences with pathogenic species, exhibiting a lower abundance of metabolites including ABC transporters, biosynthesis of unsaturated fatty acids and steroids, TCA cycle, glycine/serine/threonine metabolism, glyoxylate/dicarboxylate metabolism and pentose-phosphate pathways. MAIN CONCLUSIONS: The non-pathogenic phenotype of L. tarentolae is associated with alterations in several biochemical and molecular features. This reinforces the need of comparative studies between pathogenic and non-pathogenic species to elucidate the molecular mechanisms of virulence during host-parasite interactions.


Asunto(s)
Glicoconjugados , Leishmania , Metaboloma , Péptido Hidrolasas , Leishmania/enzimología , Péptido Hidrolasas/metabolismo , Animales , Glicoesfingolípidos/metabolismo , Proteínas del Sistema Complemento
6.
Molecules ; 29(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675696

RESUMEN

The present study aimed to evaluate the leishmanicidal potential of the essential oil (EO) of Micromeria (M.) nervosa and to investigate its molecular mechanism of action by qPCR. Furthermore, in silicointeraction study of the major M. nervosa EO compounds with the enzyme cytochrome P450 sterol 14α-demethylase (CYP51) was also performed. M. nervosa EO was analyzed by gas chromatography-mass spectrometry (GC-MS). Results showed that α-pinene (26.44%), t-cadinol (26.27%), caryophyllene Oxide (7.73 ± 1.04%), and α-Cadinene (3.79 ± 0.12%) are the major compounds of M. nervosa EO. However, limited antioxidant activity was observed, as this EO was ineffective in neutralizing DPPH free radicals and in inhibiting ß-carotene bleaching. Interestingly, it displayed effective leishmanicidal potential against promastigote (IC50 of 6.79 and 5.25 µg/mL) and amastigote (IC50 of 8.04 and 7.32 µg/mL) forms of leishmania (L.) infantum and L. major, respectively. Molecular mechanism investigation showed that M. nervosa EO displayed potent inhibition on the thiol regulatory pathway. Furthermore, a docking study of the main components of the EO with cytochrome P450 sterol 14α-demethylase (CYP51) enzyme revealed that t-cadinol exhibited the best binding energy values (-7.5 kcal/mol), followed by α-cadinene (-7.3 kcal/mol) and caryophyllene oxide (-7 kcal/mol). These values were notably higher than that of the conventional drug fluconazole showing weaker binding energy (-6.9 kcal/mol). These results suggest that M. nervosa EO could serve as a potent and promising candidate for the development of alternative antileishmanial agent in the treatment of leishmaniasis.


Asunto(s)
Antiprotozoarios , Simulación del Acoplamiento Molecular , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antioxidantes/farmacología , Antioxidantes/química , Cromatografía de Gases y Espectrometría de Masas , Esterol 14-Desmetilasa/metabolismo , Esterol 14-Desmetilasa/química , Simulación por Computador , Leishmania/efectos de los fármacos , Leishmania/enzimología , Monoterpenos Bicíclicos/farmacología , Monoterpenos Bicíclicos/química
7.
ACS Infect Dis ; 10(5): 1520-1535, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38669567

RESUMEN

The term "zoonosis" denotes diseases transmissible among vertebrate animals and humans. These diseases constitute a significant public health challenge, comprising 61% of human pathogens and causing an estimated 2.7 million deaths annually. Zoonoses not only affect human health but also impact animal welfare and economic stability, particularly in low- and middle-income nations. Leishmaniasis and schistosomiasis are two important neglected tropical diseases with a high prevalence in tropical and subtropical areas, imposing significant burdens on affected regions. Schistosomiasis, particularly rampant in sub-Saharan Africa, lacks alternative treatments to praziquantel, prompting concerns regarding parasite resistance. Similarly, leishmaniasis poses challenges with unsatisfactory treatments, urging the development of novel therapeutic strategies. Effective prevention demands a One Health approach, integrating diverse disciplines to enhance diagnostics and develop safer drugs. Metalloenzymes, involved in parasite biology and critical in different biological pathways, emerged in the last few years as useful drug targets for the treatment of human diseases. Herein we have reviewed recent reports on the discovery of inhibitors of metalloenzymes associated with zoonotic diseases like histone deacetylases (HDACs), carbonic anhydrase (CA), arginase, and heme-dependent enzymes.


Asunto(s)
Leishmania , Leishmaniasis , Schistosoma , Esquistosomiasis , Zoonosis , Animales , Humanos , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Schistosoma/efectos de los fármacos , Schistosoma/enzimología , Zoonosis/tratamiento farmacológico , Esquistosomiasis/tratamiento farmacológico , Leishmania/efectos de los fármacos , Leishmania/enzimología , Anhidrasas Carbónicas/metabolismo , Histona Desacetilasas/metabolismo , Inhibidores Enzimáticos/farmacología
8.
J Biol Chem ; 300(4): 107162, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484800

RESUMEN

Kinetoplastid parasites are "living bridges" in the evolution from prokaryotes to higher eukaryotes. The near-intronless genome of the kinetoplastid Leishmania exhibits polycistronic transcription which can facilitate R-loop formation. Therefore, to prevent such DNA-RNA hybrids, Leishmania has retained prokaryotic-like DNA Topoisomerase IA (LdTOPIA) in the course of evolution. LdTOPIA is an essential enzyme that is expressed ubiquitously and is adapted for the compartmentalized eukaryotic form in harboring functional bipartite nuclear localization signals. Although exhibiting greater homology to mycobacterial TOPIA, LdTOPIA could functionally complement the growth lethality of Escherichia coli TOPIA null GyrB ts strain at non-permissive temperatures. Purified LdTOPIA exhibits Mg2+-dependent relaxation of only negatively supercoiled DNA and preference towards single-stranded DNA substrates. LdTOPIA prevents nuclear R-loops as conditional LdTOPIA downregulated parasites exhibit R-loop formation and thereby parasite killing. The clinically used tricyclic antidepressant, norclomipramine could specifically inhibit LdTOPIA and lead to R-loop formation and parasite elimination. This comprehensive study therefore paves an avenue for drug repurposing against Leishmania.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Leishmania , Proteínas Protozoarias , Estructuras R-Loop , Animales , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo I/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Leishmania/enzimología , Leishmania/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Tripanocidas/química , Tripanocidas/farmacología
9.
ChemMedChem ; 19(11): e202300545, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445815

RESUMEN

Among the many neglected tropical diseases, leishmaniasis ranks second in mortality rate and prevalence. In a previous study, acridine derivatives were synthesized and tested for their antileishmanial activity against L. chagasi. The most active compound identified in that study (1) showed a single digit IC50 value against the parasite (1.10 µg/mL), but its macromolecular target remained unknown. Aiming to overcome this limitation, this work exploited inverse virtual screening to identify compound 1's putative molecular mechanism of action. In vitro assays confirmed that compound 1 binds to Leishmania chagasi pteridine reductase 1 (LcPTR1), with moderate affinity (Kd=33,1 µM), according to differential scanning fluorimetry assay. Molecular dynamics simulations confirm the stability of LcPTR1-compound 1 complex, supporting a competitive mechanism of action. Therefore, the workflow presented in this work successfully identified PTR1 as a macromolecular target for compound 1, allowing the designing of novel potent antileishmanial compounds.


Asunto(s)
Acridinas , Inhibidores Enzimáticos , Oxidorreductasas , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Acridinas/química , Acridinas/farmacología , Acridinas/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/síntesis química , Simulación de Dinámica Molecular , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Compuestos de Espiro/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Dosis-Respuesta a Droga , Leishmania/efectos de los fármacos , Leishmania/enzimología , Simulación del Acoplamiento Molecular
10.
Biochimie ; 193: 78-89, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34706251

RESUMEN

Protozoan parasites with complex life cycles have high mortality rates affecting billions of human lives. Available anti-parasitic drugs are inadequate due to variable efficacy, toxicity, poor patient compliance and drug-resistance. Hence, there is an urgent need for the development of safer and better chemotherapeutics. Mitogen Activated Protein Kinases (MAPKs) have drawn much attention as potential drug targets. This review summarizes unique structural and functional features of MAP kinases and their possible role in pathogenesis of obligate intracellular protozoan parasites namely, Leishmania, Trypanosoma, Plasmodium and Toxoplasma. It also provides an overview of available knowledge concerning the target proteins of parasite MAPKs and the need to understand and unravel unknown interaction network(s) of MAPK(s).


Asunto(s)
Leishmania , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Plasmodium , Proteínas Protozoarias/metabolismo , Toxoplasma , Trypanosoma , Animales , Antiparasitarios/uso terapéutico , Resistencia a Medicamentos , Humanos , Leishmania/enzimología , Leishmania/patogenicidad , Enfermedades Parasitarias/tratamiento farmacológico , Enfermedades Parasitarias/enzimología , Enfermedades Parasitarias/parasitología , Plasmodium/enzimología , Plasmodium/patogenicidad , Toxoplasma/enzimología , Toxoplasma/patogenicidad , Trypanosoma/enzimología , Trypanosoma/patogenicidad
11.
Chem Biol Interact ; 351: 109690, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34637778

RESUMEN

The currently available treatment options for leishmaniasis are associated with high costs, severe side effects, and high toxicity. In previous studies, thiohydantoins demonstrated some pharmacological activities and were shown to be potential hit compounds with antileishmanial properties. The present study further explored the antileishmanial effect of acetyl-thiohydantoins against Leishmania amazonensis and determined the main processes involved in parasite death. We observed that compared to thiohydantoin nuclei, acetyl-thiohydantoin treatment inhibited the proliferation of promastigotes. This treatment caused alterations in cell cycle progression and parasite size and caused morphological and ultrastructural changes. We then investigated the mechanisms involved in the death of the protozoan; there was an increase in ROS production, phosphatidylserine exposure, and plasma membrane permeabilization and a loss of mitochondrial membrane potential, resulting in an accumulation of lipid bodies and the formation of autophagic vacuoles on these parasites and confirming an apoptosis-like process. In intracellular amastigotes, selected acetyl-thiohydantoins reduced the percentage of infected macrophages and the number of amastigotes/macrophages by increasing ROS production and reducing TNF-α levels. Moreover, thiohydantoins did not induce cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), or sheep erythrocytes. In silico and in vitro analyses showed that acetyl-thiohydantoins exerted in vitro antileishmanial effects on L. amazonensis promastigotes in apoptosis-like and amastigote forms by inducing ROS production and reducing TNF-α levels, indicating that they are good candidates for drug discovery studies in leishmaniasis treatment. Additionally, we carried out molecular docking analyses of acetyl-thiohydantoins on two important targets of Leishmania amazonensis: arginase and TNF-alpha converting enzyme. The results suggested that the acetyl groups in the N1-position of the thiohydantoin ring and the ring itself could be pharmacophoric groups due to their affinity for binding amino acid residues at the active site of both enzymes via hydrogen bond interactions. These results demonstrate that thiohydantoins are promising hit compounds that could be used as antileishmanial agents.


Asunto(s)
Tiohidantoínas/farmacología , Tripanocidas/farmacología , Proteína ADAM17/metabolismo , Animales , Arginasa/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Leishmania/efectos de los fármacos , Leishmania/enzimología , Ratones , Mitocondrias/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proteínas Protozoarias/metabolismo , Ovinos , Tiohidantoínas/síntesis química , Tiohidantoínas/metabolismo , Tiohidantoínas/toxicidad , Tripanocidas/síntesis química , Tripanocidas/metabolismo , Tripanocidas/toxicidad , Factor de Necrosis Tumoral alfa/metabolismo
12.
Cells ; 10(11)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34831418

RESUMEN

Leishmaniases belong to the inglorious group of neglected tropical diseases, presenting different degrees of manifestations severity. It is caused by the transmission of more than 20 species of parasites of the Leishmania genus. Nevertheless, the disease remains on the priority list for developing new treatments, since it affects millions in a vast geographical area, especially low-income people. Molecular biology studies are pioneers in parasitic research with the aim of discovering potential targets for drug development. Among them are the telomeres, DNA-protein structures that play an important role in the long term in cell cycle/survival. Telomeres are the physical ends of eukaryotic chromosomes. Due to their multiple interactions with different proteins that confer a likewise complex dynamic, they have emerged as objects of interest in many medical studies, including studies on leishmaniases. This review aims to gather information and elucidate what we know about the phenomena behind Leishmania spp. telomere maintenance and how it impacts the parasite's cell cycle.


Asunto(s)
Ciclo Celular , Leishmania/citología , Leishmania/enzimología , Telomerasa/metabolismo , Telómero/metabolismo , Humanos , Modelos Biológicos , Filogenia
13.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34654744

RESUMEN

Type II NADH dehydrogenases (NDH2) are monotopic enzymes present in the external or internal face of the mitochondrial inner membrane that contribute to NADH/NAD+ balance by conveying electrons from NADH to ubiquinone without coupled proton translocation. Herein, we characterize the product of a gene present in all species of the human protozoan parasite Leishmania as a bona fide, matrix-oriented, type II NADH dehydrogenase. Within mitochondria, this respiratory activity concurs with that of type I NADH dehydrogenase (complex I) in some Leishmania species but not others. To query the significance of NDH2 in parasite physiology, we attempted its genetic disruption in two parasite species, exhibiting a silent (Leishmania infantum, Li) and a fully operational (Leishmania major, Lm) complex I. Strikingly, this analysis revealed that NDH2 abrogation is not tolerated by Leishmania, not even by complex I-expressing Lm species. Conversely, complex I is dispensable in both species, provided that NDH2 is sufficiently expressed. That a type II dehydrogenase is essential even in the presence of an active complex I places Leishmania NADH metabolism into an entirely unique perspective and suggests unexplored functions for NDH2 that span beyond its complex I-overlapping activities. Notably, by showing that the essential character of NDH2 extends to the disease-causing stage of Leishmania, we genetically validate NDH2-an enzyme without a counterpart in mammals-as a candidate target for leishmanicidal drugs.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Leishmania/enzimología , NADH Deshidrogenasa/metabolismo , Animales , Transporte de Electrón , Leishmania/fisiología , Leishmaniasis/enzimología , Mutación , NADH Deshidrogenasa/genética , Oxidación-Reducción
14.
Bioorg Med Chem ; 46: 116365, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34419821

RESUMEN

Leishmaniasis and trypanosomiasis are endemic neglected disease in South America and Africa and considered a significant public health problem, mainly in poor communities. The limitations of the current available therapeutic options, including the lack of specificity, relatively high toxicity, and the drug resistance acquiring, drive the constant search for new targets and therapeutic options. Advances in knowledge of parasite biology have revealed essential enzymes involved in the replication, survival, and pathogenicity of Leishmania and Trypanosoma species. In this scenario, cysteine proteases have drawn the attention of researchers and they are being proposed as promising targets for drug discovery of antiprotozoal drugs. In this systematic review, we will provide an update on drug discovery strategies targeting the cysteine proteases as potential targets for chemotherapy against protozoal neglected diseases.


Asunto(s)
Proteasas de Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Descubrimiento de Drogas , Leishmania/efectos de los fármacos , Tripanocidas/farmacología , Trypanosoma/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Humanos , Leishmania/enzimología , Leishmaniasis/tratamiento farmacológico , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Tripanocidas/síntesis química , Tripanocidas/química , Trypanosoma/enzimología , Tripanosomiasis/tratamiento farmacológico
15.
PLoS Negl Trop Dis ; 15(7): e0009530, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34310607

RESUMEN

BACKGROUND: Dipeptidyl peptidase III (DPPIII) member of M49 peptidase family is a zinc-dependent metallopeptidase that cleaves dipeptides sequentially from the N-terminus of its substrates. In Leishmania, DPPIII, was reported with other peptidases to play a significant role in parasites' growth and survival. In a previous study, we used a coding sequence annotated as DPPIII to develop and evaluate a PCR assay that is specific to dermotropic Old World (OW) Leishmania species. Thus, our objective was to further assess use of this gene for Leishmania species identification and for phylogeny, and thus for diagnostic and molecular epidemiology studies of Old World Leishmania species. METHODOLOGY: Orthologous DDPIII genes were searched in all Leishmania genomes and aligned to design PCR primers and identify relevant restriction enzymes. A PCR assays was developed and seventy-two Leishmania fragment sequences were analyzed using MEGA X genetics software to infer evolution and phylogenetic relationships of studied species and strains. A PCR-RFLP scheme was also designed and tested on 58 OW Leishmania strains belonging to 8 Leishmania species and evaluated on 75 human clinical skin samples. FINDINGS: Sequence analysis showed 478 variable sites (302 being parsimony informative). Test of natural selection (dN-dS) (-0.164, SE = 0.013) inferred a negative selection, characteristic of essential genes, corroborating the DPPIII importance for parasite survival. Inter- and intra-specific genetic diversity was used to develop universal amplification of a 662bp fragment. Sequence analyses and phylogenies confirmed occurrence of 6 clusters congruent to L. major, L. tropica, L. aethiopica, L. arabica, L. turanica, L. tarentolae species, and one to the L. infantum and L. donovani species complex. A PCR-RFLP algorithm for Leishmania species identification was designed using double digestions with HaeIII and KpnI and with SacI and PvuII endonucleases. Overall, this PCR-RFLP yielded distinct profiles for each of the species L. major, L. tropica, L. aethiopica, L. arabica and L. turanica and the L. (Sauroleishmania) L. tarentolae. The species L. donovani, and L. infantum shared the same profile except for strains of Indian origin. When tested on clinical samples, the DPPIII PCR showed sensitivities of 82.22% when compared to direct examination and was able to identify 84.78% of the positive samples. CONCLUSION: The study demonstrates that DPPIII gene is suitable to detect and identify Leishmania species and to complement other molecular methods for leishmaniases diagnosis and epidemiology. Thus, it can contribute to evidence-based disease control and surveillance.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Leishmania/enzimología , Leishmaniasis Cutánea/parasitología , Proteínas Protozoarias/genética , Cartilla de ADN/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Marcadores Genéticos , Humanos , Leishmania/clasificación , Leishmania/genética , Leishmania/aislamiento & purificación , Leishmaniasis Cutánea/epidemiología , Filogenia , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/metabolismo
16.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206906

RESUMEN

Leishmania survival inside macrophages depends on factors that lead to the immune response evasion during the infection. In this context, the metabolic scenario of the host cell-parasite relationship can be crucial to understanding how this parasite can survive inside host cells due to the host's metabolic pathways reprogramming. In this work, we aimed to analyze metabolic networks of bone marrow-derived macrophages from C57BL/6 mice infected with Leishmania amazonensis wild type (La-WT) or arginase knocked out (La-arg-), using the untargeted Capillary Electrophoresis-Mass Spectrometry (CE-MS) approach to assess metabolomic profile. Macrophages showed specific changes in metabolite abundance upon Leishmania infection, as well as in the absence of parasite-arginase. The absence of L. amazonensis-arginase promoted the regulation of both host and parasite urea cycle, glycine and serine metabolism, ammonia recycling, metabolism of arginine, proline, aspartate, glutamate, spermidine, spermine, methylhistidine, and glutathione metabolism. The increased L-arginine, L-citrulline, L-glutamine, oxidized glutathione, S-adenosylmethionine, N-acetylspermidine, trypanothione disulfide, and trypanothione levels were observed in La-WT-infected C57BL/6-macrophage compared to uninfected. The absence of parasite arginase increased L-arginine, argininic acid, and citrulline levels and reduced ornithine, putrescine, S-adenosylmethionine, glutamic acid, proline, N-glutamyl-alanine, glutamyl-arginine, trypanothione disulfide, and trypanothione when compared to La-WT infected macrophage. Moreover, the absence of parasite arginase leads to an increase in NO production levels and a higher infectivity rate at 4 h of infection. The data presented here show a host-dependent regulation of metabolomic profiles of C57BL/6 macrophages compared to the previously observed BALB/c macrophages infected with L. amazonensis, an important fact due to the dual and contrasting macrophage phenotypes of those mice. In addition, the Leishmania-arginase showed interference with the urea cycle, glycine, and glutathione metabolism during host-pathogen interactions.


Asunto(s)
Aminoácidos/metabolismo , Interacciones Huésped-Parásitos , Leishmaniasis/metabolismo , Macrófagos/metabolismo , Metaboloma , Poliaminas/metabolismo , Animales , Arginasa/metabolismo , Células Cultivadas , Leishmania/enzimología , Leishmania/patogenicidad , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Protozoarias/metabolismo
17.
Molecules ; 26(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063939

RESUMEN

The current treatments against Leishmania parasites present high toxicity and multiple side effects, which makes the control and elimination of leishmaniasis challenging. Natural products constitute an interesting and diverse chemical space for the identification of new antileishmanial drugs. To identify new drug options, an in-house database of 360 kauranes (tetracyclic diterpenes) was generated, and a combined ligand- and structure-based virtual screening (VS) approach was performed to select potential inhibitors of Leishmania major (Lm) pteridine reductase I (PTR1). The best-ranked kauranes were employed to verify the validity of the VS approach through LmPTR1 enzyme inhibition assay. The half-maximal inhibitory concentration (IC50) values of selected bioactive compounds were examined using the random forest (RF) model (i.e., 2ß-hydroxy-menth-6-en-5ß-yl ent-kaurenoate (135) and 3α-cinnamoyloxy-ent-kaur-16-en-19-oic acid (302)) were below 10 µM. A compound similar to 302, 3α-p-coumaroyloxy-ent-kaur-16-en-19-oic acid (302a), was also synthesized and showed the highest activity against LmPTR1. Finally, molecular docking calculations and molecular dynamics simulations were performed for the VS-selected, most-active kauranes within the active sites of PTR1 hybrid models, generated from three Leishmania species that are known to cause cutaneous leishmaniasis in the new world (i.e., L. braziliensis, L. panamensis, and L. amazonensis) to explore the targeting potential of these kauranes to other species-dependent variants of this enzyme.


Asunto(s)
Diterpenos de Tipo Kaurano/farmacología , Inhibidores Enzimáticos/farmacología , Leishmania/enzimología , Oxidorreductasas/antagonistas & inhibidores , Antiprotozoarios/farmacología , Espectroscopía de Resonancia Magnética con Carbono-13 , Diterpenos de Tipo Kaurano/química , Concentración 50 Inhibidora , Leishmania/efectos de los fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
18.
J Biol Chem ; 297(2): 100913, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34175310

RESUMEN

Trypanosomatid parasites are responsible for various human diseases, such as sleeping sickness, animal trypanosomiasis, or cutaneous and visceral leishmaniases. The few available drugs to fight related parasitic infections are often toxic and present poor efficiency and specificity, and thus, finding new molecular targets is imperative. Aminoacyl-tRNA synthetases (aaRSs) are essential components of the translational machinery as they catalyze the specific attachment of an amino acid onto cognate tRNA(s). In trypanosomatids, one gene encodes both cytosolic- and mitochondrial-targeted aaRSs, with only three exceptions. We identify here a unique specific feature of aaRSs from trypanosomatids, which is that most of them harbor distinct insertion and/or extension sequences. Among the 26 identified aaRSs in the trypanosome Leishmania tarentolae, 14 contain an additional domain or a terminal extension, confirmed in mature mRNAs by direct cDNA nanopore sequencing. Moreover, these RNA-Seq data led us to address the question of aaRS dual localization and to determine splice-site locations and the 5'-UTR lengths for each mature aaRS-encoding mRNA. Altogether, our results provided evidence for at least one specific mechanism responsible for mitochondrial addressing of some L. tarentolae aaRSs. We propose that these newly identified features of trypanosomatid aaRSs could be developed as relevant drug targets to combat the diseases caused by these parasites.


Asunto(s)
Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Leishmania/enzimología , Leishmaniasis/patología , ARN de Transferencia/genética , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Animales , Citosol/metabolismo , Humanos , Leishmania/aislamiento & purificación , Leishmaniasis/enzimología , Leishmaniasis/parasitología , Mitocondrias/metabolismo , Filogenia , ARN de Transferencia/metabolismo , Homología de Secuencia de Aminoácido
19.
Microbiol Res ; 249: 126784, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33989978

RESUMEN

Millions of people worldwide lie at the risk of parasitic protozoic infections that kill over a million people each year. The rising inefficacy of conventional therapeutics to combat these diseases, mainly due to the development of drug resistance to a handful of available licensed options contributes substantially to the rising burden of these ailments. Cysteine proteases are omnipresent enzymes that are critically implicated in the pathogenesis of protozoic infections. Despite their significance and druggability, cysteine proteases as therapeutic targets have not yet been translated into the clinic. The review presents the significance of cysteine proteases of members of the genera Plasmodium, Entamoeba, and Leishmania, known to cause Malaria, Amoebiasis, and Leishmaniasis, respectively, the protozoic diseases with the highest morbidity and mortality. Further, projecting them as targets for molecular tools like the CRISPR-Cas technology for favorable manipulation, exploration of obscure genomes, and achieving a better insight into protozoic functioning. Overcoming the hurdles that prevent us from gaining a better insight into the functioning of these enzymes in protozoic systems is a necessity. Managing the burden of parasitic protozoic infections pivotally depends upon the betterment of molecular tools and therapeutic concepts that will pave the path to an array of diagnostic and therapeutic applications.


Asunto(s)
Antiprotozoarios/farmacología , Proteasas de Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Entamoeba histolytica/enzimología , Leishmania/enzimología , Plasmodium/enzimología , Animales , Sistemas CRISPR-Cas , Cisteína Endopeptidasas/metabolismo , Entamoeba histolytica/efectos de los fármacos , Entamoeba histolytica/genética , Entamebiasis/tratamiento farmacológico , Entamebiasis/parasitología , Humanos , Leishmania/efectos de los fármacos , Leishmania/genética , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Malaria/tratamiento farmacológico , Malaria/parasitología , Plasmodium/efectos de los fármacos , Plasmodium/genética
20.
Anal Bioanal Chem ; 413(17): 4545-4555, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34037808

RESUMEN

Cutaneous leishmaniasis (CL) is one of the illnesses caused by Leishmania parasite infection, which can be asymptomatic or severe according to the infecting Leishmania strain. CL is commonly diagnosed by directly detecting the parasites or their DNA in tissue samples. New diagnostic methodologies target specific proteins (biomarkers) secreted by the parasite during the infection process. However, specific bioreceptors for the in vivo or in vitro detection of these novel biomarkers are rather limited in terms of sensitivity and specificity. For this reason, we here introduce three novel peptides as bioreceptors for the highly sensitive and selective identification of acid phosphatase (sAP) and proteophosphoglycan (PPG), which have a crucial role in leishmaniasis infection. These high-affinity peptides have been designed from the conservative domains of the lectin family, holding the ability to interact with the biological target and produce the same effect than the original protein. The synthetic peptides have been characterized and the affinity and kinetic constants for their interaction with the targets (sAP and PPG) have been determined by a surface plasmon resonance biosensor. Values obtained for KD are in the nanomolar range, which is comparable to high-affinity antibodies, with the additional advantage of a high biochemical stability and simpler production. Pep2854 exhibited a high affinity for sAP (KD = 1.48 nM) while Pep2856 had a good affinity for PPG (KD 1.76 nM). This study evidences that these peptidomimetics represent a novel alternative tool to the use of high molecular weight proteins for biorecognition in the diagnostic test and biosensor devices for CL.


Asunto(s)
Fosfatasa Ácida/análisis , Leishmania/aislamiento & purificación , Leishmaniasis Cutánea/parasitología , Proteínas de la Membrana/análisis , Péptidos/química , Proteoglicanos/análisis , Proteínas Protozoarias/análisis , Resonancia por Plasmón de Superficie/métodos , Sitios de Unión , Humanos , Leishmania/enzimología , Leishmaniasis Cutánea/diagnóstico , Modelos Moleculares , Péptidos/síntesis química , Peptidomiméticos/síntesis química , Peptidomiméticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA