RESUMEN
Background: The Galapagos sea lion, Zalophus wollebaeki, is an endemic and endangered otariid, which is considered as a sentinel species of ecosystem dynamics in the Galapagos archipelago. Mitochondrial DNA is an important tool in phylogenetic and population genetic inference. In this work we use Illumina sequencing to complement the mitogenomic resources for Zalophus genus-the other two species employed Sanger sequencing-by a complete mitochondrial genome and a molecular clock of this species, which is not present in any case. Materials and Methods: We used DNA obtained from a fresh scat sample of a Galapagos sea lion and shotgun-sequenced it on the Illumina NextSeq platform. The obtained raw reads were processed using the GetOrganelle software to filter the mitochondrial Zalophus DNA reads (â¼16% survive the filtration), assemble them, and set up a molecular clock. Results: From the obtained 3,511,116 raw reads, we were able to assemble a full mitogenome of a length of 16,676 bp, consisting of 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNA), and two ribosomal RNAs (rRNA). A time-calibrated phylogeny confirmed the phylogenetic position of Z. wollebaeki in a clade with Z. californianus, and Z. japonicus, and sister to Z. californianus; as well as establishing the divergence time for Z. wollebaeki 0.65 million years ago. Our study illustrates the possibility of seamlessly sequencing full mitochondrial genomes from fresh scat samples of marine mammals.
Asunto(s)
Genoma Mitocondrial , Leones Marinos , Animales , Leones Marinos/genética , Ecosistema , Filogenia , Genoma Mitocondrial/genética , ADN Mitocondrial/genéticaRESUMEN
A novel Neisseria strain, designated CSL10203-ORH2T, was isolated from the oropharynx of a wild California sea lion (Zalophus californianus) that was admitted to The Marine Mammal Center in California, USA. The strain was originally cultured from an oropharyngeal swab on BD Phenylethyl Alcohol (PEA) agar with 5% sheep blood under aerobic conditions. Phylogenetic analyses based on 16S rRNA, rplF, and rpoB gene sequences and the core genome sequences indicated that the strain was most closely related to only N. zalophi CSL 7565T. The average nucleotide identity and digital DNA-DNA hybridization values between strain CSL10203-ORH2T and the closely related species N. zalophi CSL 7565T were 89.84 and 39.70%, respectively, which were significantly lower than the accepted species-defined thresholds for describing novel prokaryotic species at the genomic level. Both type strains were phenotypically similar but can be easily and unambiguously distinguished between each other by the analysis of their housekeeping genes, e.g., rpoB, gyrB, or argF. The major fatty acids in both type strains were C12:0, C16:0, C16:1-c9, and C18:1-c11. Based on the genomic, phenotypic, and phylogenetic properties, the novel strain represents a novel species of the genus Neisseria, for which the name Neisseria montereyensis sp. nov. with the type strain CSL10203-ORH2T (= DSM 114706T = CCUG 76428T = NCTC 14721T) is proposed. The genome G + C content is 45.84% and the complete draft genome size is 2,310,535 bp.
Asunto(s)
Leones Marinos , Animales , Ovinos/genética , Leones Marinos/genética , Filogenia , Técnicas de Tipificación Bacteriana , Neisseria/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ácidos Grasos , Genómica , Orofaringe , ADN , ADN Bacteriano/genética , Hibridación de Ácido Nucleico , FosfolípidosRESUMEN
Age determination of wild animals, including pinnipeds, is critical for accurate population assessment and management. For most pinnipeds, current age estimation methodologies utilize tooth or bone sectioning which makes antemortem estimations problematic. We leveraged recent advances in the development of epigenetic age estimators (epigenetic clocks) to develop highly accurate pinniped epigenetic clocks. For clock development, we applied the mammalian methylation array to profile 37,492 cytosine-guanine sites (CpGs) across highly conserved stretches of DNA in blood and skin samples (n = 171) from primarily three pinniped species representing the three phylogenetic families: Otariidae, Phocidae and Odobenidae. We built an elastic net model with Leave-One-Out-Cross Validation (LOOCV) and one with a Leave-One-Species-Out-Cross-Validation (LOSOCV). After identifying the top 30 CpGs, the LOOCV produced a highly correlated (r = 0.95) and accurate (median absolute error = 1.7 years) age estimation clock. The LOSOCV elastic net results indicated that blood and skin clock (r = 0.84) and blood (r = 0.88) pinniped clocks could predict age of animals from pinniped species not used for clock development to within 3.6 and 4.4 years, respectively. These epigenetic clocks provide an improved and relatively non-invasive tool to determine age in skin or blood samples from all pinniped species.
Asunto(s)
Caniformia , Leones Marinos , Phocidae , Animales , Leones Marinos/genética , Morsas/genética , Metilación de ADN , Filogenia , Caniformia/genética , Phocidae/genética , Envejecimiento/genéticaRESUMEN
Background: The gastrointestinal (GI) bacterial communities of sea lions described to date have occasionally revealed large intraspecific variability, which may originate from several factors including different methodological approaches. Indeed, GI bacterial community surveys commonly rely on the use of a single hypervariable region (HR) of 16S rRNA, which may result in misleading structural interpretations and limit comparisons among studies. Here, we considered a multi-locus analysis by targeting six HRs of 16S rRNA with the aims of (i) comprehensively assessing the GI bacterial consortium in rectal samples from Zalophus californianus pups and (ii) elucidating structural variations among the tested HRs. In addition, we evaluated which HRs may be most suitable for identifying intrinsic, structurally related microbiome characteristics, such as geographic variations or functional capabilities. Methods: We employed a Short MUltiple Regions Framework (SMURF) approach using the Ion 16S™ Metagenomic Kit. This kit provides different proprietary primers designed to target six HRs of the 16S rRNA gene. To date, the only analytical pipeline available for this kit is the Ion Reporter™ Software of Thermo Fisher Scientific. Therefore, we propose an in-house pipeline to use with open-access tools, such as QIIME2 and PICRUSt 2, in downstream bioinformatic analyses. Results: As hypothesized, distinctive bacterial community profiles were observed for each analyzed HR. A higher number of bacterial taxa were detected with the V3 and V6-V7 regions. Conversely, the V8 and V9 regions were less informative, as we detected a lower number of taxa. The synergistic information of these HRs suggests that the GI microbiota of Zalophus californianus pups is predominated by five bacterial phyla: Proteobacteria (~50%), Bacteroidetes (~20%), Firmicutes (~18%), Fusobacteria (~7%), and Epsilonbacteraeota (~4%). Notably, our results differ at times from previously reported abundance profiles, which may promote re-evaluations of the GI bacterial compositions in sea lions and other pinniped species that have been reported to date. Moreover, consistent geographic differences were observed only with the V3, V4, and V6-V7 regions. In addition, these HRs also presented higher numbers of predicted molecular pathways, although no significant functional changes were apparent. Together, our results suggests that multi-locus analysis should be encouraged in GI microbial surveys, as single-locus approaches may result in misleading structural results that hamper the identification of structurally related microbiome features.
Asunto(s)
Leones Marinos , Animales , Leones Marinos/genética , ARN Ribosómico 16S/genética , México , Bacterias/genética , Biología ComputacionalRESUMEN
Nasopulmonary mites (NPMs) of the family Halarachnidae are obligate endoparasites that colonize the respiratory tracts of mammals. NPMs damage surface epithelium resulting in mucosal irritation, respiratory illness, and secondary infection, yet the role of NPMs in facilitating pathogen invasion or dissemination between hosts remains unclear. Using 16S rRNA massively parallel amplicon sequencing of six hypervariable regions (or "16S profiling"), we characterized the bacterial community of NPMs from 4 southern sea otters (Enhydra lutris nereis). This data was paired with detection of a priority pathogen, Streptococcus phocae, from NPMs infesting 16 southern sea otters and 9 California sea lions (Zalophus californianus) using nested conventional polymerase chain reaction (nPCR). The bacteriome of assessed NPMs was dominated by Mycoplasmataceae and Vibrionaceae, but at least 16 organisms with pathogenic potential were detected as well. Importantly, S. phocae was detected in 37% of NPM by nPCR and was also detected by 16S profiling. Detection of multiple organisms with pathogenic potential in or on NPMs suggests they may act as mechanical vectors of bacterial infection for marine mammals.
Asunto(s)
Caniformia , Ácaros , Nutrias , Leones Marinos , Animales , Caniformia/genética , Cetáceos/genética , Ácaros/genética , Nutrias/genética , ARN Ribosómico 16S/genética , Leones Marinos/genética , Streptococcus/genéticaRESUMEN
Understanding the ability of animals to cope with a changing environment is critical in a world affected by anthropogenic disturbance.1 Individual foraging strategies may influence the coping ability of entire populations, as these strategies can be adapted to contrasting conditions, allowing populations with foraging polymorphisms to be more resilient toward environmental change.2,3 However, environmentally dependent fitness consequences of individual foraging strategies and their effects on population dynamics have not been conclusively documented.4,5 Here, we use biologging data from endangered Galápagos sea lion females (Zalophus wollebaeki) to show that benthically foraging individuals dig after sand-dwelling prey species while pelagic foragers hunt in more open waters. These specialized foraging behaviors result in distinct and temporally stable patterns of vibrissae abrasion. Using vibrissae length as a visual marker for the benthic versus pelagic foraging strategies, we furthermore uncovered an environment-dependent fitness trade-off between benthic and pelagic foragers, suggesting that the foraging polymorphism could help to buffer the population against the negative effects of climate change. However, demographic projections suggest that this buffering effect is unlikely to be sufficient to reverse the ongoing population decline of the past four decades.6 Our study shows how crucial a deeper understanding of behavioral polymorphisms can be for predicting how populations cope within a rapidly changing world. VIDEO ABSTRACT.
Asunto(s)
Leones Marinos , Animales , Conducta Alimentaria , Femenino , Dinámica Poblacional , Leones Marinos/genéticaRESUMEN
With the advent of chromatin-interaction maps, chromosome-level genome assemblies have become a reality for a wide range of organisms. Scaffolding quality is, however, difficult to judge. To explore this gap, we generated multiple chromosome-scale genome assemblies of an emerging wild animal model for carcinogenesis, the California sea lion (Zalophus californianus). Short-read assemblies were scaffolded with two independent chromatin interaction mapping data sets (Hi-C and Chicago), and long-read assemblies with three data types (Hi-C, optical maps and 10X linked reads) following the "Vertebrate Genomes Project (VGP)" pipeline. In both approaches, 18 major scaffolds recovered the karyotype (2n = 36), with scaffold N50s of 138 and 147 Mb, respectively. Synteny relationships at the chromosome level with other pinniped genomes (2n = 32-36), ferret (2n = 34), red panda (2n = 36) and domestic dog (2n = 78) were consistent across approaches and recovered known fissions and fusions. Comparative chromosome painting and multicolour chromosome tiling with a panel of 264 genome-integrated single-locus canine bacterial artificial chromosome probes provided independent evaluation of genome organization. Broad-scale discrepancies between the approaches were observed within chromosomes, most commonly in translocations centred around centromeres and telomeres, which were better resolved in the VGP assembly. Genomic and cytological approaches agreed on near-perfect synteny of the X chromosome, and in combination allowed detailed investigation of autosomal rearrangements between dog and sea lion. This study presents high-quality genomes of an emerging cancer model and highlights that even highly fragmented short-read assemblies scaffolded with Hi-C can yield reliable chromosome-level scaffolds suitable for comparative genomic analyses.
Asunto(s)
Leones Marinos , Animales , Perros , Hurones , Genoma , Leones Marinos/genética , Sintenía , Cromosoma XRESUMEN
The development of protein-specific antibodies is essential for understanding a wide variety of biological phenomena. Parasitic and viral infections and cancers are known to occur within California sea lion (Zalophus californianus) populations. However, sensitive and specific monoclonal antibodies (mAbs) for the pathophysiological analysis of California sea lion tissues have not yet been developed. A type I transmembrane glycoprotein, podoplanin (PDPN), is a known diagnostic marker of lymphatic endothelial cells. We have previously developed several anti-PDPN mAbs in various mammalian species, with applications in flow cytometry, Western blotting, and immunohistochemistry. In this study, we established a novel mAb against California sea lion PDPN (seaPDPN), clone PMab-269 (mouse IgG1, kappa), using a Cell-Based Immunization and Screening method. PMab-269 is specifically detected in seaPDPN-overexpressed Chinese hamster ovary (CHO)-K1 cells using flow cytometry and Western blotting. Moreover, PMab-269 clearly identified pulmonary type I alveolar cells, renal podocytes, and colon lymphatic endothelial cells in California sea lion tissues using immunohistochemistry. These findings demonstrate the usefulness of PMab-269 for the pathophysiological analysis of lung, kidney, and lymphatic tissues of the California sea lion.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Glicoproteínas de Membrana/inmunología , Leones Marinos/inmunología , Animales , Anticuerpos Monoclonales/biosíntesis , Células CHO , Cricetinae , Cricetulus , Mapeo Epitopo , Citometría de Flujo , Humanos , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Ratones , Podocitos/inmunología , Leones Marinos/genéticaRESUMEN
High allelic polymorphism and association with disease susceptibility has made the genes encoding major histocompatibility complex (MHC) antigen presentation molecules in humans, domesticated animals, and wildlife species of wide interest to ecologists, evolutionary biologists, and health specialists. The often multifaceted polygenism and extreme polymorphism of this immunogenetic system have made it especially difficult to characterize in non-model species. Here we compare and contrast the workflows of traditional Sanger sequencing of plasmid-cloned amplicons to Pacific Biosciences SMRT circular consensus sequencing (CCS) in their ability to capture alleles of MHC class I in a wildlife species where characterization of these genes was absent. We assessed two California sea lions (Zalophus californianus), a species suffering from a high prevalence of an aggressive cancer associated with a sexually transmitted gamma herpesvirus. In this pilot study, SMRT CCS proved superior in identifying more alleles from each animal than the more laborious plasmid cloning/Sanger workflow (12:7, 10:7), and no alleles were identified with the cloning/Sanger approach that were not identified by SMRT CCS. We discuss the advantages and disadvantages of each approach including cost, allele rarefaction, and sequence fidelity.
Asunto(s)
Antígenos de Histocompatibilidad Clase I/genética , Leones Marinos/genética , Análisis de Secuencia de ADN/métodos , Alelos , Secuencia de Aminoácidos , Animales , Animales Salvajes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Proyectos Piloto , Polimorfismo Genético , Flujo de TrabajoRESUMEN
The most frequent etiologic agent of diphyllobothriosis in South America and the only one confirmed by molecular data in human cases in Peru is Adenocephalus pacificus (syn. Diphyllobothrium pacificum). This cestode is transmitted by ingestion of the plerocercoids found in marine fish, causing a parasitic zoonosis. The objective of the present study was to identify two cestodes isolated from two specimens of the South American sea lion (Otaria byronia) stranded on the beaches of Huacho and Barranca cities, located on the northern Peruvian coasts, in the department of Lima. Tapeworms were confirmed by morphological characteristics due to the presence of transverse papilla-like tegumental protuberances in proglottids and small sized eggs, as well as by sequencing of the partial cytochrome c oxidase subunit 1 (mtDNA-COI) gene that are congruent with additional available A. pacificus sequences. Even though sea lions in Peru are distributed along the coast and in areas of difficult access, generally located in protected natural areas, the fortuitous finding represented an opportunity to confirm the presence of A. pacificus in South American sea lions. This report of tapeworm A. pacificus could allow future monitoring of the occurrence and geographical distribution of this causative agent in epidemiological studies, since it is one of the main species of zoonotic importance in Peru.
Asunto(s)
Cestodos , Diphyllobothrium , Leones Marinos , Animales , Cestodos/genética , Diphyllobothrium/anatomía & histología , Perú/epidemiología , Leones Marinos/genética , América del Sur/epidemiologíaRESUMEN
The phylogeny and systematics of fur seals and sea lions (Otariidae) have long been studied with diverse data types, including an increasing amount of molecular data. However, only a few phylogenetic relationships have reached acceptance because of strong gene-tree species tree discordance. Divergence times estimates in the group also vary largely between studies. These uncertainties impeded the understanding of the biogeographical history of the group, such as when and how trans-equatorial dispersal and subsequent speciation events occurred. Here, we used high-coverage genome-wide sequencing for 14 of the 15 species of Otariidae to elucidate the phylogeny of the family and its bearing on the taxonomy and biogeographical history. Despite extreme topological discordance among gene trees, we found a fully supported species tree that agrees with the few well-accepted relationships and establishes monophyly of the genus Arctocephalus. Our data support a relatively recent trans-hemispheric dispersal at the base of a southern clade, which rapidly diversified into six major lineages between 3 and 2.5 Ma. Otaria diverged first, followed by Phocarctos and then four major lineages within Arctocephalus. However, we found Zalophus to be nonmonophyletic, with California (Zalophus californianus) and Steller sea lions (Eumetopias jubatus) grouping closer than the Galapagos sea lion (Zalophus wollebaeki) with evidence for introgression between the two genera. Overall, the high degree of genealogical discordance was best explained by incomplete lineage sorting resulting from quasi-simultaneous speciation within the southern clade with introgresssion playing a subordinate role in explaining the incongruence among and within prior phylogenetic studies of the family. [Hybridization; ILS; phylogenomics; Pleistocene; Pliocene; monophyly.].
Asunto(s)
Sustancias Explosivas , Lobos Marinos , Leones Marinos , Animales , Secuencia de Bases , Lobos Marinos/genética , Filogenia , Leones Marinos/genéticaRESUMEN
The Steller sea lion is the largest member of the Otariidae family and is found in the coastal waters of the northern Pacific Rim. Here, we present the Steller sea lion genome, determined through DNA sequencing approaches that utilized microfluidic partitioning library construction, as well as nanopore technologies. These methods constructed a highly contiguous assembly with a scaffold N50 length of over 14 megabases, a contig N50 length of over 242 kilobases and a total length of 2.404 gigabases. As a measure of completeness, 95.1% of 4104 highly conserved mammalian genes were found to be complete within the assembly. Further annotation identified 19,668 protein coding genes. The assembled genome sequence and underlying sequence data can be found at the National Center for Biotechnology Information (NCBI) under the BioProject accession number PRJNA475770.
Asunto(s)
Genoma , Leones Marinos/genética , Animales , Biblioteca Genómica , Microfluídica/métodos , Nanoporos , Secuenciación Completa del GenomaRESUMEN
We examined the associations between California sea lion MHC class II DRB (Zaca-DRB) configuration and diversity, and leptospirosis. As Zaca-DRB gene sequences are involved with antigen presentation of bacteria and other extracellular pathogens, we predicted that they would play a role in determining responses to these pathogenic spirochaetes. Specifically, we investigated whether Zaca-DRB diversity (number of genes) and configuration (presence of specific genes) explained differences in disease severity, and whether higher levels of Zaca-DRB diversity predicted the number of specific Leptospira interrogans serovars that a sea lion's serum would react against. We found that serum from diseased sea lions with more Zaca-DRB loci reacted against a wider array of serovars. Specific Zaca-DRB loci were linked to reactions with particular serovars. Interestingly, sea lions with clinical manifestation of leptospirosis that had higher numbers of Zaca-DRB loci were less likely to recover from disease than those with lower diversity, and those that harboured Zaca-DRB.C or -G were 4.5 to 5.3 times more likely to die from leptospirosis, regardless of the infective serovars. We propose that for leptospirosis, a disadvantage of having a wider range of antigen presentation might be increased disease severity due to immunopathology. Ours is the first study to examine the importance of Zaca-DRB diversity for antigen detection and disease severity following natural exposure to infective leptospires.
Asunto(s)
Alelos , Enfermedades de los Animales/genética , Enfermedades de los Animales/microbiología , Genes MHC Clase II , Variación Genética , Leptospira interrogans , Leptospirosis/veterinaria , Leones Marinos/genética , Leones Marinos/microbiología , Enfermedades de los Animales/diagnóstico , Enfermedades de los Animales/inmunología , Animales , Predisposición Genética a la Enfermedad , Genotipo , Leptospira interrogans/inmunología , Índice de Severidad de la EnfermedadRESUMEN
The South American sea lion (Otaria flavescens) is widely distributed along the southern Atlantic and Pacific coasts of South America with a history of significant commercial exploitation. We aimed to evaluate the population genetic structure and the evolutionary history of South American sea lion along its distribution by analyses of mitochondrial DNA (mtDNA) and 10 nuclear microsatellites loci. We analyzed 147 sequences of mtDNA control region and genotyped 111 individuals of South American sea lion for 10 microsatellite loci, representing six populations (Peru, Northern Chile, Southern Chile, Uruguay (Brazil), Argentina and Falkland (Malvinas) Islands) and covering the entire distribution of the species. The mtDNA phylogeny shows that haplotypes from the two oceans comprise two very divergent clades as observed in previous studies, suggesting a long period (>1 million years) of low inter-oceanic female gene flow. Bayesian analysis of bi-parental genetic diversity supports significant (but less pronounced than mitochondrial) genetic structure between Pacific and Atlantic populations, although also suggested some inter-oceanic gene flow mediated by males. Higher male migration rates were found in the intra-oceanic population comparisons, supporting very high female philopatry in the species. Demographic analyses showed that populations from both oceans went through a large population expansion ~10,000 years ago, suggesting a very similar influence of historical environmental factors, such as the last glacial cycle, on both regions. Our results support the proposition that the Pacific and Atlantic populations of the South American sea lion should be considered distinct evolutionarily significant units, with at least two managements units in each ocean.
Asunto(s)
Migración Animal/fisiología , ADN Mitocondrial/genética , Flujo Génico , Leones Marinos/genética , Animales , Femenino , Variación Genética , Genética de Población , Masculino , Océanos y Mares , Filogenia , Dinámica Poblacional , América del SurRESUMEN
While terrestrial megafaunal extinctions have been well characterized worldwide, our understanding of declines in marine megafauna remains limited. Here, we use ancient DNA analyses of prehistoric (<1450-1650 AD) sea lion specimens from New Zealand's isolated Chatham Islands to assess the demographic impacts of human settlement. These data suggest there was a large population of sea lions, unique to the Chatham Islands, at the time of Polynesian settlement. This distinct mitochondrial lineage became rapidly extinct within 200 years due to overhunting, paralleling the extirpation of a similarly large endemic mainland population. Whole mitogenomic analyses confirm substantial intraspecific diversity among prehistoric lineages. Demographic models suggest that even low harvest rates would likely have driven rapid extinction of these lineages. This study indicates that surviving Phocarctos populations are remnants of a once diverse and widespread sea lion assemblage, highlighting dramatic human impacts on endemic marine biodiversity. Our findings also suggest that Phocarctos bycatch in commercial fisheries may contribute to the ongoing population decline.
Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Extinción Biológica , Leones Marinos/genética , Animales , ADN Antiguo/análisis , ADN Mitocondrial/genética , Explotaciones Pesqueras , Actividades Humanas , Humanos , Islas , Nueva ZelandaRESUMEN
Inflammation is one of the most important non-specific and rapid responses that a vertebrate can elicit in response to damage or a foreign insult. To date, despite increasing evidence that the innate and adaptive branches of immunity are more intricately related than previously thought, few have examined interactions between the Major Histocompatibility Complex (MHC, a polymorphic region of the vertebrate genome that is involved with antigen presentation) and inflammation, and even less is known about these interactions in an eco-immunological context. Here, we examined the effect of MHC class II DRB gene multiplicity and transcription on phytohemagglutinin (PHA)-induced inflammation during the early stages of development of California sea lions. Neither constitutive nor expressed ZacaDRB diversity was found to be associated with pup responses to PHA at any of the stages of pup development. However, for two-month-old pups, those with a specific MHC-DRB locus (ZacaDRB-A) tended to have less efficient responsive inflammation. Transcription of distinct MHC-DRB loci was also linked to PHA-induced inflammation, with patterns that varied markedly between ages, and that suggested that ongoing infectious processes could limit the capacity to respond to a secondary challenge. Life history constraints and physiological processes associated with development of California sea lions, in conjunction with their changing pathogenic environment could explain the observed effects of MHC class II transcription on PHA-induced inflammation. To our knowledge, ours is the first study to examine the importance of expressed vs. constitutive MHC loci on inflammation in a natural population.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cadenas HLA-DRB1/genética , Inmunidad Innata , Leones Marinos/genética , Transcripción Genética , Factores de Edad , Animales , Animales Recién Nacidos , Femenino , Cadenas HLA-DRB1/inmunología , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Masculino , Fitohemaglutininas , Polimorfismo Genético , Leones Marinos/inmunologíaRESUMEN
A species, according to the biological concept, is a natural group of potentially interbreeding individuals isolated by diverse mechanisms. Hybridization is considered the production of offspring resulting from the interbreeding of two genetically distinct taxa. It has been documented in over 10% of wild animals, and at least in 34 cases for Artic marine mammals. In Otariids, intergeneric hybridization has been reported though neither confirming it through genetic analyses nor presenting evidence of fertile offspring. In this study, we report the finding of a hybrid adult female between a South American fur seal (Arctocephalus australis) and a South American sea lion (Otaria byronia), and its offspring, a male pup, in Uruguay. Further based on morphological constraints and breeding seasons, sex-biased hybridization between the two species is hypothesized. Morphological and genetic (nuclear and mitochondrial) results confirm de hybrid nature of the female-pup pair. Here we discuss a genetic dilution effect, considering other hybridization events must be occurring, and how isolation mechanisms could be circumvented. Moreover, the results obtained from stable isotope analysis suggest feeding habits may be a trait transmitted maternally, leading to consider broader issues regarding hybridization as an evolutionary innovation phenomenon.
Asunto(s)
Lobos Marinos/genética , Hibridación Genética , Leones Marinos/genética , Animales , Conducta Alimentaria , Femenino , Lobos Marinos/fisiología , Masculino , Filogenia , Leones Marinos/fisiologíaRESUMEN
The New Zealand sea lion (NZSL) is of high conservation concern due to its limited distribution and its declining population size. Historically, it occupied most of coastal New Zealand, but is now restricted to a few coastal sites in southern mainland New Zealand and the sub-Antarctic Islands. NZSLs have experienced a recent reduction in population size due to sealing in the 1900s, which is expected to have resulted in increased inbreeding and a loss of genetic variation, potentially reducing the evolutionary capacity of the species and negatively impacting on its long-term prospects for survival. We used 17 microsatellite loci, previously shown to have cross-species applications in pinnipeds, to determine locus- and population-specific statistics for 1205 NZSLs from 7 consecutive breeding seasons. We show that the NZSL population has a moderate level of genetic diversity in comparison to other pinnipeds. We provide genetic evidence for a population reduction, likely caused by historical sealing, and a measure of allele sharing/parental relatedness (internal relatedness) that is suggestive of increased inbreeding in pups that died during recent epizootic episodes. We hypothesize that population bottlenecks and nonrandom mating have impacted on the population genetic architecture of NZSLs, affecting its population recovery.
Asunto(s)
Especies en Peligro de Extinción , Genética de Población , Endogamia , Leones Marinos/genética , Animales , Teorema de Bayes , Evolución Molecular , Variación Genética , Genotipo , Repeticiones de Microsatélite , Nueva ZelandaRESUMEN
Karyotype evolution in Carnivora is thoroughly studied by classical and molecular cytogenetics and supplemented by reconstructions of Ancestral Carnivora Karyotype (ACK). However chromosome painting information from two pinniped families (Odobenidae and Otariidae) is noticeably missing. We report on the construction of the comparative chromosome map for species from each of the three pinniped families: the walrus (Odobenus rosmarus, Odobenidae-monotypic family), near threatened Steller sea lion (Eumetopias jubatus, Otariidae) and the endemic Baikal seal (Pusa sibirica, Phocidae) using combination of human, domestic dog and stone marten whole-chromosome painting probes. The earliest karyological studies of Pinnipedia showed that pinnipeds were characterized by a pronounced karyological conservatism that is confirmed here with species from Phocidae, Otariidae and Odobenidae sharing same low number of conserved human autosomal segments (32). Chromosome painting in Pinnipedia and comparison with non-pinniped carnivore karyotypes provide strong support for refined structure of ACK with 2n = 38. Constructed comparative chromosome maps show that pinniped karyotype evolution was characterized by few tandem fusions, seemingly absent inversions and slow rate of genome rearrangements (less then one rearrangement per 10 million years). Integrative comparative analyses with published chromosome painting of Phoca vitulina revealed common cytogenetic signature for Phoca/Pusa branch and supports Phocidae and Otaroidea (Otariidae/Odobenidae) as sister groups. We revealed rearrangements specific for walrus karyotype and found the chromosomal signature linking together families Otariidae and Odobenidae. The Steller sea lion karyotype is the most conserved among three studied species and differs from the ACK by single fusion. The study underlined the strikingly slow karyotype evolution of the Pinnipedia in general and the Otariidae in particular.
Asunto(s)
Leones Marinos/genética , Phocidae/genética , Morsas/genética , Animales , Carnivoría , Mapeo Cromosómico , Pintura Cromosómica , Sondas de ADN/genética , Evolución Molecular , Humanos , Cariotipo , Masculino , Mustelidae/genéticaRESUMEN
BACKGROUND: A multitude of correlations between heterozygosity and fitness proxies associated with disease have been reported from wild populations, but the genetic basis of these associations is unresolved. We used a longitudinal dataset on wild Galapagos sea lions (Zalophus wollebaeki) to develop a relatively new perspective on this problem, by testing for associations between heterozygosity and immune variation across age classes and between ecological contexts. RESULTS: Homozygosity by locus was negatively correlated with serum immunoglobulin G production in pups (0-3 months of age), suggesting that reduced genetic diversity has a detrimental influence on the early development of immune defence in the Galapagos sea lion. In addition, homozygosity by locus was positively correlated with total circulating leukocyte concentration in juveniles (6-24 months of age), but only in a colony subject to the anthropogenic environmental impacts of development, pollution and introduced species, which suggests that reduced genetic diversity influences mature immune system activity in circumstances of high antigen exposure. CONCLUSIONS: These findings demonstrate the environmental context-dependency of the phenotypic expression of immune variation, which is implicit in the theory of ecoimmunology, but which has been rarely demonstrated in the wild. They also indicate that heterozygosity may be linked to the maintenance of heterogeneity in mammalian immune system development and response to infection, adding to the body of evidence on the nature of the mechanistic link between heterozygosity and fitness.