Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.974
Filtrar
1.
Biochem Biophys Res Commun ; 716: 150019, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703555

RESUMEN

- Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a life-threatening condition marked by severe lung inflammation and increased lung endothelial barrier permeability. Endothelial glycocalyx deterioration is the primary factor of vascular permeability changes in ARDS/ALI. Although previous studies have shown that phospholipase D2 (PLD2) is closely related to the onset and progression of ARDS/ALI, its role and mechanism in the damage of endothelial cell glycocalyx remains unclear. We used LPS-induced ARDS/ALI mice (in vivo) and LPS-stimulated injury models of EA.hy926 endothelial cells (in vitro). We employed C57BL/6 mice, including wild-type and PLD2 knockout (PLD2-/-) mice, to establish the ARDS/ALI model. We applied immunofluorescence and ELISA to examine changes in syndecan-1 (SDC-1), matrix metalloproteinase-9 (MMP9), inflammatory cytokines (TNF-α, IL-6, and IL-1ß) levels and the effect of external factors, such as phosphatidic acid (PA), 1-butanol (a PLD inhibitor), on SDC-1 and MMP9 expression levels. We found that PLD2 deficiency inhibits SDC-1 degradation and MMP9 expression in LPS-induced ARDS/ALI. Externally added PA decreases SDC-1 levels and increases MMP9 in endothelial cells, hence underlining PA's role in SDC-1 degradation. Additionally, PLD2 deficiency decreases the production of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in LPS-induced ARDS/ALI. In summary, these findings suggest that PLD2 deficiency plays a role in inhibiting the inflammatory process and protecting against endothelial glycocalyx injury in LPS-induced ARDS/ALI.


Asunto(s)
Lesión Pulmonar Aguda , Glicocálix , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasa D , Síndrome de Dificultad Respiratoria , Animales , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Glicocálix/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/etiología , Ratones , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Sindecano-1/metabolismo , Sindecano-1/genética , Citocinas/metabolismo , Línea Celular
2.
Wiad Lek ; 77(3): 497-505, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38691792

RESUMEN

OBJECTIVE: Aim: The aim of this research is to clarify the potential effect of CDDO-EA against experimentally sepsis induced lung injury in mice. PATIENTS AND METHODS: Materials and Methods: Mice have divided into four groups: Sham group CLP group, Vehicle-treatment group, CDDO-EA-treated group: mice in this group received CDDO-EA 2mg/kg intraperitoneally, 1hr before CLP, then the animals were sacrificed 24hr after CLP. After exsAngpuinations, tissue samples of lung were collected, followed by markers measurement including, TNF-α, IL-1ß, VEGF, MPO, caspase11, Angp-1and Angp-2 by ELISA, gene expression of TIE2 and VE-cadherin by qRT-PCR, in addition to histopathological study. RESULTS: Results: A significant elevation (p<0.05) in TNF-α, IL-1ß, MPO, ANGP-2, VEGF, CASPASE 11 in CLP and vehicle groups when compared with sham group. CDDO-EA group showed significantly lower levels p<0.05, level of ANGP-1 was significantly lower p<0.05 in the CLP and vehicle groups as compared with the sham group. Quantitative real-time PCR demonstrated a significant decrement in mRNA expression of TIE2&ve-cadherin genes p<0.05 in sepsis & vehicle. CONCLUSION: Conclusions: CDDO-EA has lung protective effects due to its anti-inflammatory and antiAngpiogenic activity, additionally, CDDO-EA showes a lung protective effect as they affect tissue mRNA expression of TIE2 and cadherin gene. Furthermore, CDDO-EA attenuate the histopathological changes that occur during polymicrobial sepsis thereby lung protection effect.


Asunto(s)
Lesión Pulmonar Aguda , Modelos Animales de Enfermedad , Endotoxemia , Sepsis , Animales , Ratones , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Endotoxemia/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Masculino , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Pulmón/patología , Pulmón/metabolismo , Interleucina-1beta/metabolismo
3.
Mol Med ; 30(1): 53, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649840

RESUMEN

OBJECTIVE: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with significant mortality rates. The role of Fcgr2b in the pathogenesis of ALI/ARDS is not fully elucidated. This study aimed to investigate the functions of Fcgr2b in ALI/ARDS and explore its underlying mechanisms. METHODS: Methods: In this study, rat models of ARDS and pulmonary microvascular endothelial cell (PMVEC) injury models were established through the administration of lipopolysaccharide (LPS). The expression levels of Fcgr2b and Elk1 were quantified in both LPS-induced ARDS rats and PMVECs. Subsequent gain- and loss-of-function experiments were conducted, followed by comprehensive assessments of lung tissue for pathomorphological changes, edema, glycogen storage, fibrosis, and infiltration of inflammatory cells. Additionally, bronchoalveolar lavage fluid was analyzed for T-helper 17 (Th17) cell infiltration, inflammatory response, and microvascular permeability to evaluate lung injury severity in ARDS models. Furthermore, the activity, cytotoxicity, apoptosis, and angiogenic potential of PMVECs were assessed to gauge cell injury. The interaction between Elk1 and Fcgr2b was also examined to confirm their regulatory relationship. RESULTS: In the context of LPS-induced ARDS and PMVEC injury, Fcgr2b expression was markedly reduced, whereas Elk1 expression was elevated. Overexpression of Fcgr2b led to a decrease in Th17 cell infiltration and mitigated lung tissue damage in ARDS models, in addition to reducing LPS-induced injury in PMVECs. Elk1 was found to suppress Fcgr2b transcription through the recruitment of histone 3 lysine 9 trimethylation (H3K9me3). Knockdown of Elk1 diminished Th17 cell infiltration and lung tissue damage in ARDS models, and alleviated LPS-induced injury in PMVECs, effects that were reversed upon Fcgr2b upregulation. CONCLUSION: Elk1 negatively regulates Fcgr2b transcription, thereby augmenting the inflammatory response and exacerbating lung injury in LPS-induced ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Modelos Animales de Enfermedad , Células Endoteliales , Lipopolisacáridos , Receptores de IgG , Síndrome de Dificultad Respiratoria , Proteína Elk-1 con Dominio ets , Animales , Masculino , Ratas , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/etiología , Células Endoteliales/metabolismo , Proteína Elk-1 con Dominio ets/metabolismo , Proteína Elk-1 con Dominio ets/genética , Pulmón/patología , Pulmón/metabolismo , Ratas Wistar , Receptores de IgG/metabolismo , Receptores de IgG/genética , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/genética , Células Th17/metabolismo , Células Th17/inmunología , Transcripción Genética
4.
Cell Commun Signal ; 22(1): 241, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664775

RESUMEN

Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Células Endoteliales , Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Sepsis/complicaciones , Sepsis/patología , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/etiología , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/etiología , Células Endoteliales/patología , Animales
5.
Clin Immunol ; 263: 110206, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599263

RESUMEN

Patients suffering from sepsis-induced acute lung injury (ALI) exhibit a high mortality rate, and their prognosis is closely associated with infiltration of neutrophils into the lungs. In this study, we found a significant elevation of CD64+ neutrophils, which highly expressed p75 neurotrophin receptor (p75NTR) in peripheral blood of mice and patients with sepsis-induced ALI. p75NTR+CD64+ neutrophils were also abundantly expressed in the lung of ALI mice induced by lipopolysaccharide. Conditional knock-out of the myeloid lineage's p75NTR gene improved the survival rates, attenuated lung tissue inflammation, reduced neutrophil infiltration and enhanced the phagocytic functions of CD64+ neutrophils. In vitro, p75NTR+CD64+ neutrophils exhibited an upregulation and compromised phagocytic activity in blood samples of ALI patients. Blocking p75NTR activity by soluble p75NTR extracellular domain peptide (p75ECD-Fc) boosted CD64+ neutrophils phagocytic activity and reduced inflammatory cytokine production via regulation of the NF-κB activity. The findings strongly indicate that p75NTR+CD64+ neutrophils are a novel pathogenic neutrophil subpopulation promoting sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ratones Endogámicos C57BL , Neutrófilos , Fagocitosis , Receptores de IgG , Receptores de Factor de Crecimiento Nervioso , Sepsis , Animales , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/etiología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Sepsis/inmunología , Sepsis/complicaciones , Humanos , Receptores de IgG/metabolismo , Receptores de IgG/genética , Receptores de IgG/inmunología , Ratones , Masculino , Fagocitosis/inmunología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/inmunología , Ratones Noqueados , Lipopolisacáridos , Citocinas/metabolismo , Citocinas/inmunología , Pulmón/inmunología , Pulmón/patología , Femenino , FN-kappa B/metabolismo , FN-kappa B/inmunología , Proteínas del Tejido Nervioso
6.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673868

RESUMEN

This study aimed to investigate the preventive effects of the total polyphenols from Nymphaea candida (NCTP) on LPS-induced septic acute lung injury (ALI) in mice and its mechanisms. NCTP could significantly ameliorate LPS-induced lung tissue pathological injury in mice as well as lung wet/dry ratio and MPO activities (p < 0.05). NCTP could significantly decrease the blood leukocyte, neutrophil, monocyte, basophil, and eosinophil amounts and LPS contents in ALI mice compared with the model group (p < 0.05), improving lymphocyte amounts (p < 0.05). Moreover, compared with the model group, NCTP could decrease lung tissue TNF-α, IL-6, and IL-1ß levels (p < 0.05) and downregulate the protein expression of TLR4, MyD88, TRAF6, IKKß, IκB-α, p-IκB-α, NF-κB p65, p-NF-κB p65, NLRP3, ASC, and Caspase1 in lung tissues (p < 0.05). Furthermore, NCTP could inhibit ileum histopathological injuries, restoring the ileum tight junctions by increasing the expression of ZO-1 and occludin. Simultaneously, NCTP could reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Clostridiales and Lachnospiraceae, and enhance the content of SCFAs (acetic acid, propionic acid, and butyric acid) in feces. These results suggested that NCTP has preventive effects on septic ALI, and its mechanism is related to the regulation of gut microbiota, SCFA metabolism, and the TLR-4/NF-κB and NLRP3 pathways.


Asunto(s)
Lesión Pulmonar Aguda , Microbioma Gastrointestinal , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Polifenoles , Sepsis , Transducción de Señal , Receptor Toll-Like 4 , Animales , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/prevención & control , Lesión Pulmonar Aguda/microbiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , FN-kappa B/metabolismo , Polifenoles/farmacología , Sepsis/complicaciones , Sepsis/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Lipopolisacáridos
7.
BMC Pulm Med ; 24(1): 197, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649913

RESUMEN

BACKGROUND: High-flow nasal cannula (HFNC) has emerged as a promising noninvasive method for delivering oxygen to critically ill patients, particularly those with sepsis and acute lung injury. However, uncertainties persist regarding its therapeutic benefits in this specific patient population. METHODS: This retrospective study utilized a propensity score-matched cohort from the Medical Information Mart in Intensive Care-IV (MIMIC-IV) database to explore the correlation between HFNC utilization and mortality in patients with sepsis-induced acute lung injury. The primary outcome was 28-day all-cause mortality. RESULTS: In the propensity score-matched cohort, the 28-day all-cause mortality rate was 18.63% (95 out of 510) in the HFNC use group, compared to 31.18% (159 out of 510) in the non-HFNC group. The use of HFNC was associated with a lower 28-day all-cause mortality rate (hazard ratio [HR] = 0.53; 95% confidence interval [CI] = 0.41-0.69; P < 0.001). HFNC use was also associated with lower ICU mortality (odds ratio [OR] = 0.52; 95% CI = 0.38-0.71; P < 0.001) and lower in-hospital mortality (OR = 0.51; 95% CI = 0.38-0.68; P < 0.001). Additionally, HFNC use was found to be associated with a statistically significant increase in both the ICU and overall hospitalization length. CONCLUSIONS: These findings indicate that HFNC may be beneficial for reducing mortality rates among sepsis-induced acute lung injury patients; however, it is also associated with longer hospital stays.


Asunto(s)
Lesión Pulmonar Aguda , Cánula , Mortalidad Hospitalaria , Unidades de Cuidados Intensivos , Terapia por Inhalación de Oxígeno , Puntaje de Propensión , Sepsis , Humanos , Estudios Retrospectivos , Masculino , Sepsis/mortalidad , Sepsis/terapia , Sepsis/complicaciones , Femenino , Persona de Mediana Edad , Anciano , Lesión Pulmonar Aguda/mortalidad , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/etiología , Terapia por Inhalación de Oxígeno/métodos , Enfermedad Crítica/mortalidad
8.
AAPS J ; 26(3): 47, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622374

RESUMEN

BACKGROUND: Sepsis-induced acute lung injury (ALI) is one of the serious life-threatening complications of sepsis and is pathologically associated with mitochondrial dysfunction. Ginsenoside Rg1 has good therapeutic effects on ALI. Herein, the pharmacological effects of Rg1 in sepsis-induced ALI were investigated. METHODS: Sepsis-induced ALI models were established by CLP operation and LPS treatment. HE staining was adopted to analyze lung pathological changes. The expression and secretion of cytokines were measured by RT-qPCR and ELISA. Cell viability and apoptosis were assessed by MTT assay, flow cytometry and TUNEL staining. ROS level and mitochondrial membrane potential (MMP) were analyzed using DHE probe and JC-1 staining, respectively. FBXO3 m6A level was assessed using MeRIP assay. The interactions between FBXO3, YTHDF1, and PGC-1α were analyzed by Co-IP or RIP. RESULTS: Rg1 administration ameliorated LPS-induced epithelial cell inflammation, apoptosis, and mitochondrial dysfunction in a dose-dependent manner. Mechanically, Rg1 reduced PGC-1α ubiquitination modification level by inhibiting FBXO3 expression m6A-YTHDF1 dependently. As expected, Rg1's mitigative effect on LPS-induced inflammation, apoptosis and mitochondrial dysfunction in lung epithelial cells was abolished by FBXO3 overexpression. Moreover, FBXO3 upregulation eliminated the restoring effect of Rg1 on CLP-induced lung injury in rats. CONCLUSION: Rg1 activated PGC-1α/Nrf2 signaling pathway by reducing FBXO3 stability in an m6A-YTHDF1-dependent manner to improve mitochondrial function in lung epithelial cells during sepsis-induced ALI progression.


Asunto(s)
Lesión Pulmonar Aguda , Ginsenósidos , Enfermedades Mitocondriales , Sepsis , Ratas , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/uso terapéutico , Transducción de Señal , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/complicaciones , Inflamación , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Enfermedades Mitocondriales/complicaciones
9.
Int J Surg ; 110(5): 2649-2668, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38445453

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a leading cause of mortality in patients with sepsis due to proinflammatory endothelial changes and endothelial permeability defects. Mitochondrial dysfunction is recognized as a critical mediator in the pathogenesis of sepsis-induced ALI. Although mitophagy regulation of mitochondrial quality is well recognized, little is known about its role in lung ECs during sepsis-induced ALI. Sirtuin 1 (SIRT1) is a histone protein deacetylase involved in inflammation, mitophagy, and cellular senescence. Here, the authors show a type of late endosome-dependent mitophagy that inhibits NLRP3 and STING activation through SIRT1 signaling during sepsis-induced ALI. METHODS: C57BL/6J male mice with or without administration of the SIRT1 inhibitor EX527 in the CLP model and lung ECs in vitro were developed to identify mitophagy mechanisms that underlie the cross-talk between SIRT1 signaling and sepsis-induced ALI. RESULTS: SIRT1 deficient mice exhibited exacerbated sepsis-induced ALI. Knockdown of SIRT1 interfered with mitophagy through late endosome Rab7, leading to the accumulation of damaged mitochondria and inducing excessive mitochondrial reactive oxygen species (mtROS) generation and cytosolic release of mitochondrial DNA (mtDNA), which triggered NLRP3 inflammasome and the cytosolic nucleotide sensing pathways (STING) over-activation. Pharmacological inhibition of STING and NLRP3 i n vivo or genetic knockdown in vitro reversed SIRT1 deficiency mediated endothelial permeability defects and endothelial inflammation in sepsis-induced ALI. Moreover, activation of SIRT1 with SRT1720 in vivo or overexpression of SIRT1 in vitro protected against sepsis-induced ALI. CONCLUSION: These findings suggest that SIRT1 signaling is essential for restricting STING and NLRP3 hyperactivation by promoting endosomal-mediated mitophagy in lung ECs, providing potential therapeutic targets for treating sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Proteínas de la Membrana , Ratones Endogámicos C57BL , Mitofagia , Proteína con Dominio Pirina 3 de la Familia NLR , Sepsis , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/antagonistas & inhibidores , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/etiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Sepsis/metabolismo , Sepsis/complicaciones , Mitofagia/fisiología , Masculino , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Transducción de Señal/fisiología , Endosomas/metabolismo , Modelos Animales de Enfermedad
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167119, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479484

RESUMEN

BACKGROUND: Individuals with obesity have higher level of circulating succinate, which acts as a signaling factor that initiates inflammation. It is obscure whether succinate and succinate receptor 1 (SUCNR1) are involved in the process of obesity aggravating acute lung injury (ALI). METHODS: The lung tissue and blood samples from patients with obesity who underwent lung wedgectomy or segmental resection were collected. Six-week-old male C57BL/6J mice were fed a high-fat diet for 12 weeks to induce obesity and lipopolysaccharides (LPS) were injected intratracheally (100 µg, 1 mg/ml) for 24 h to establish an ALI model. The pulmonary SUCNR1 expression and succinate level were measured. Exogenous succinate was supplemented to assess whether succinate exacerbated the LPS-induced lung injury. We next examined the cellular localization of pulmonary SUCNR1. Furthermore, the role of the succinate-SUCNR1 pathway in LPS-induced inflammatory responses in MH-s macrophages and obese mice was investigated. RESULT: The pulmonary SUCNR1 expression and serum succinate level were significantly increased in patients with obesity and in HFD mice. Exogenous succinate supplementation significantly increased the severity of ALI and inflammatory response. SUCNR1 was mainly expressed on lung macrophages. In LPS-stimulated MH-s cells, knockdown of SUCNR1 expression significantly inhibited pro-inflammatory cytokines' expression, the increase of hypoxia-inducible factor-1α (HIF-1α) expression, inhibitory κB-α (IκB-α) phosphorylation, p65 phosphorylation and p65 translocation to nucleus. In obese mice, SUCNR1 inhibition significantly alleviated LPS-induced lung injury and decreased the HIF-1α expression and IκB-α phosphorylation. CONCLUSION: The high expression of pulmonary SUCNR1 and serum succinate accumulation at least partly participate in the process of obesity aggravating LPS-induced lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Dieta Alta en Grasa , Lipopolisacáridos , Pulmón , Ratones Endogámicos C57BL , Obesidad , Receptores Acoplados a Proteínas G , Ácido Succínico , Animales , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/etiología , Masculino , Lipopolisacáridos/toxicidad , Humanos , Ratones , Ácido Succínico/metabolismo , Dieta Alta en Grasa/efectos adversos , Pulmón/metabolismo , Pulmón/patología , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Transducción de Señal/efectos de los fármacos , Persona de Mediana Edad , Factor de Transcripción ReIA/metabolismo , Femenino , Modelos Animales de Enfermedad
11.
Braz J Med Biol Res ; 57: e13235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38511769

RESUMEN

The imbalance between pro-inflammatory M1 and anti-inflammatory M2 macrophages plays a critical role in the pathogenesis of sepsis-induced acute lung injury (ALI). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may modulate macrophage polarization toward the M2 phenotype by altering mitochondrial activity. This study aimed to investigate the role of the PGC-1α agonist pioglitazone (PGZ) in modulating sepsis-induced ALI. A mouse model of sepsis-induced ALI was established using cecal ligation and puncture (CLP). An in vitro model was created by stimulating MH-S cells with lipopolysaccharide (LPS). qRT-PCR was used to measure mRNA levels of M1 markers iNOS and MHC-II and M2 markers Arg1 and CD206 to evaluate macrophage polarization. Western blotting detected expression of peroxisome proliferator-activated receptor gamma (PPARγ) PGC-1α, and mitochondrial biogenesis proteins NRF1, NRF2, and mtTFA. To assess mitochondrial content and function, reactive oxygen species levels were detected by dihydroethidium staining, and mitochondrial DNA copy number was measured by qRT-PCR. In the CLP-induced ALI mouse model, lung tissues exhibited reduced PGC-1α expression. PGZ treatment rescued PGC-1α expression and alleviated lung injury, as evidenced by decreased lung wet-to-dry weight ratio, pro-inflammatory cytokine secretion (tumor necrosis factor-α, interleukin-1ß, interleukin-6), and enhanced M2 macrophage polarization. Mechanistic investigations revealed that PGZ activated the PPARγ/PGC-1α/mitochondrial protection pathway to prevent sepsis-induced ALI by inhibiting M1 macrophage polarization. These results may provide new insights and evidence for developing PGZ as a potential ALI therapy.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Ratones , Animales , Pioglitazona , Regulación hacia Arriba , PPAR gamma/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/prevención & control , Sepsis/complicaciones , Lipopolisacáridos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
12.
Trends Parasitol ; 40(4): 278-279, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485580

RESUMEN

Du, Ren, et al. recently showed in a Plasmodium berghei ANKA (PbA) experimental malaria model that phosphatase of regenerating liver 2 (PRL2) regulates neutrophil extracellular traps (NETs) in severe malaria (SM)-related acute lung injury (ALI). PRL2 deficiency caused SM with ALI in a mouse model by increasing NETs in pulmonary tissue; hydroxychloroquine (HCQ) may ameliorate this.


Asunto(s)
Lesión Pulmonar Aguda , Trampas Extracelulares , Malaria , Animales , Ratones , Neutrófilos , Pulmón/patología , Malaria/complicaciones , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología
13.
Blood Adv ; 8(9): 2290-2299, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38447116

RESUMEN

ABSTRACT: Patients treated with antineoplastic therapy often develop thrombocytopenia requiring platelet transfusion, which has potential to exacerbate pulmonary injury. This study tested the hypothesis that amotosalen-UVA pathogen-reduced platelet components (PRPCs) do not potentiate pulmonary dysfunction compared with conventional platelet components (CPCs). A prospective, multicenter, open-label, sequential cohort study evaluated the incidence of treatment-emergent assisted mechanical ventilation initiated for pulmonary dysfunction (TEAMV-PD). The first cohort received CPC. After the CPC cohort, each site enrolled a second cohort transfused with PRPC. Other outcomes included clinically significant pulmonary adverse events (CSPAE) and the incidence of treatment-emergent acute respiratory distress syndrome (TEARDS) diagnosed by blinded expert adjudication. The incidence of TEAMV-PD in all patients (1068 PRPC and 1223 CPC) was less for PRPC (1.7 %) than CPC (3.1%) with a treatment difference of -1.5% (95% confidence interval [CI], -2.7 to -0.2). In patients requiring ≥2 PCs, the incidence of TEAMV-PD was reduced for PRPC recipients compared with CPC recipients (treatment difference, -2.4%; 95% CI, -4.2 to -0.6). CSPAE increased with increasing PC exposure but were not significantly different between the cohorts. For patients receiving ≥2 platelet transfusions, TEARDS occurred in 1.3% PRPC and 2.6% CPC recipients (P = .086). Bayesian analysis demonstrated PRPC may be superior in reducing TEAMV-PD and TEARDS for platelet transfusion recipients compared with CPC recipients, with 99.2% and 88.8% probability, respectively. In this study, PRPC compared with CPC demonstrated high probability of reduced severe pulmonary injury requiring assisted mechanical ventilation in patients with hematology disorders dependent on platelet transfusion. This trial was registered at www.ClinicalTrials.gov as #NCT02549222.


Asunto(s)
Transfusión de Plaquetas , Humanos , Transfusión de Plaquetas/efectos adversos , Femenino , Persona de Mediana Edad , Masculino , Anciano , Lesión Pulmonar Aguda/etiología , Plaquetas , Estudios Prospectivos , Adulto , Trombocitopenia/etiología , Enfermedades Hematológicas/terapia
14.
Pharm Biol ; 62(1): 272-284, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38445620

RESUMEN

CONTEXT: Sepsis-induced acute lung injury (ALI) is associated with high morbidity and mortality. Rhodiola rosea L. (Crassulaceae) (RR) and its extracts have shown anti-inflammatory, antioxidant, immunomodulatory, and lung-protective effects. OBJECTIVE: This study elucidates the molecular mechanisms of RR against sepsis-induced ALI. MATERIALS AND METHODS: The pivotal targets of RR against sepsis-induced ALI and underlying mechanisms were revealed by network pharmacology and molecular docking. Human umbilical vein endothelial cells (HUVECs) were stimulated by 1 µg/mL lipopolysaccharide for 0.5 h and treated with 6.3, 12.5, 25, 50, 100, and 200 µg/mL RR for 24 h. Then, the lipopolysaccharide-stimulated HUVECs were subjected to cell counting kit-8 (CCK-8), enzyme-linked immunosorbent, apoptosis, and Western blot analyses. C57BL/6 mice were divided into sham, model, low-dose (40 mg/kg), mid-dose (80 mg/kg), and high-dose (160 mg/kg) RR groups. The mouse model was constructed through caecal ligation and puncture, and histological, apoptosis, and Western blot analyses were performed for further validation. RESULTS: We identified six hub targets (MPO, HRAS, PPARG, FGF2, JUN, and IL6), and the PI3K-AKT pathway was the core pathway. CCK-8 assays showed that RR promoted the viability of the lipopolysaccharide-stimulated HUVECs [median effective dose (ED50) = 18.98 µg/mL]. Furthermore, RR inhibited inflammation, oxidative stress, cell apoptosis, and PI3K-AKT activation in lipopolysaccharide-stimulated HUVECs and ALI mice, which was consistent with the network pharmacology results. DISCUSSION AND CONCLUSION: This study provides foundational knowledge of the effective components, potential targets, and molecular mechanisms of RR against ALI, which could be critical for developing targeted therapeutic strategies for sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Rhodiola , Sepsis , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Lipopolisacáridos/toxicidad , Simulación del Acoplamiento Molecular , Farmacología en Red , Estrés Oxidativo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Células Endoteliales de la Vena Umbilical Humana
15.
Respir Res ; 25(1): 117, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454475

RESUMEN

Heart surgery may be complicated by acute lung injury and adult respiratory distress syndrome. Expression and release of mucins MUC5AC and MUC5B in the lungs has been reported to be increased in acute lung injury. The aim of our study was to [1] investigate the perioperative changes of MUC5AC, MUC5B and other biomarkers in mini-bronchoalveolar lavage (minBAL), and [2] relate these to clinical outcomes after cardiac surgery. In this prospective cohort study in 49 adult cardiac surgery patients pre- and post-surgery non-fiberscopic miniBAL fluids were analysed for MUC5AC, MUC5B, IL-8, human neutrophil elastase, and neutrophils. All measured biomarkers increased after surgery. Perioperative MUC5AC-change showed a significant negative association with postoperative P/F ratio (p = 0.018), and a positive association with ICU stay (p = 0.027). In conclusion, development of lung injury after cardiac surgery and prolonged ICU stay are associated with an early increase of MUC5AC as detected in mini-BAL.


Asunto(s)
Lesión Pulmonar Aguda , Procedimientos Quirúrgicos Cardíacos , Adulto , Humanos , Líquido del Lavado Bronquioalveolar , Estudios Prospectivos , Lesión Pulmonar Aguda/diagnóstico , Lesión Pulmonar Aguda/etiología , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Biomarcadores/análisis , Mucina 5AC/metabolismo
16.
Eur J Pharmacol ; 968: 176354, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316248

RESUMEN

Sepsis is a life-threatening condition involving dysfunctional organ responses stemming from dysregulated host immune reactions to various infections. The lungs are most prone to failure during sepsis, resulting in acute lung injury (ALI). ALI is associated with oxidative stress and inflammation, and current therapeutic strategies are limited. To develop a more specific treatment, this study aimed to synthesise Prussian blue nanozyme (PBzyme), which can reduce oxidative stress and inflammation, to alleviate ALI. PBzyme with good biosafety was synthesised using a modified hydrothermal method. PBzyme was revealed to be an activator of haem oxygenase-1 (HO-1), improving survival rate and ameliorating lung injury in mice. Zinc protoporphyrin, an inhibitor of HO-1, inhibited the prophylactic therapeutic efficacy of PBzyme on ALI, and affected the nuclear factor-κB signaling pathway and activity of HO-1. This study demonstrates that PBzyme can alleviate oxidative stress and inflammation through HO-1 and has a prophylactic therapeutic effect on ALI. This provides a new strategy and direction for the clinical treatment of sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ferrocianuros , Sepsis , Ratones , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/prevención & control , Hemo-Oxigenasa 1/metabolismo , Pulmón , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Lipopolisacáridos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo
17.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L589-L595, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375568

RESUMEN

Cold-stored (CS) platelets are once again being reintroduced for clinical use. Transfused CS platelets offer benefits over room temperature-stored (RTS) platelets such as increased hemostatic effects and prolongation of shelf-life. Despite these advantages little is known about their association with transfusion-related acute lung injury (TRALI). TRALI is associated with prolonged storage of RTS platelets and has a mortality of >15%. Determining the safety of CS platelets is important considering their proposed use in TRALI-vulnerable populations with inflammation such as surgical patients or patients with trauma. Donor platelet-derived ceramide causes TRALI, whereas donor platelet sphingosine-1-phosphate (S1P) is barrier protective. Females have higher plasma levels of S1P than males. Cold temperatures increase S1P levels in cells. Therefore, we hypothesized that female (donors or recipients) and/or CS platelets would decrease TRALI. To test this, we compared how male and female donor and recipient allogeneic platelet transfusions of CS (4°C) versus RTS (23°C) platelets stored for 5 days influence murine TRALI. Transfusion of CS platelets significantly reduced recipient lung tissue wet-to-dry ratios, bronchoalveolar lavage total protein, lung tissue myeloperoxidase enzyme activity, histological lung injury scores, and increased plasma sphingosine-1-phosphate (S1P) levels compared with RTS platelet transfusions. Female as opposed to male recipients had less TRALI and higher plasma S1P levels. Female donor mouse platelets had higher S1P levels than males. Mouse and human CS platelets had increased S1P levels compared with RTS platelets. Higher recipient plasma S1P levels appear protective considering females, and males receiving platelets from females or male CS platelets had less TRALI.NEW & NOTEWORTHY Transfusion-related acute lung injury (TRALI) though relatively rare represents a severe lung injury. The sphingolipid sphingosine-1-phosphate (S1P) regulates the severity of platelet-mediated TRALI. Female platelet transfusion recipient plasmas or stored platelets from female donors have higher S1P levels than males, which reduces TRALI. Cold storage of murine platelets preserves platelet-S1P, which reduces TRALI in platelet-transfused recipients.


Asunto(s)
Conservación de la Sangre , Lisofosfolípidos , Esfingosina , Esfingosina/análogos & derivados , Lesión Pulmonar Aguda Postransfusional , Lisofosfolípidos/sangre , Lisofosfolípidos/metabolismo , Esfingosina/sangre , Animales , Femenino , Masculino , Ratones , Conservación de la Sangre/métodos , Lesión Pulmonar Aguda Postransfusional/sangre , Transfusión de Plaquetas , Ratones Endogámicos C57BL , Plaquetas/metabolismo , Humanos , Lesión Pulmonar Aguda/sangre , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/prevención & control
18.
Surgery ; 175(5): 1346-1351, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38342730

RESUMEN

BACKGROUND: Gut ischemia/reperfusion causes the release of damage-associated molecular patterns, leading to acute lung injury and high mortality. Cold-inducible ribonucleic acid-binding protein is a ribonucleic acid chaperon that binds the polyadenylation tail of messenger ribonucleic acid intracellularly. Upon cell stress, cold-inducible ribonucleic acid-binding protein is released, and extracellular cold-inducible ribonucleic acid-binding protein acts as a damage-associated molecular pattern, worsening inflammation. To inhibit extracellular cold-inducible ribonucleic acid-binding protein, we have recently developed an engineered polyadenylation tail named A12. Here, we sought to investigate the therapeutic potential of A12 in gut ischemia/reperfusion-induced acute lung injury. METHODS: Male C57BL6/J mice underwent superior mesenteric artery occlusion and were treated with intraperitoneal A12 (0.5 nmol/g body weight) or vehicle at the time of reperfusion. Blood and lungs were collected 4 hours after gut ischemia/reperfusion. Systemic levels of extracellular cold-inducible ribonucleic acid-binding protein, interleukin-6, aspartate transaminase, alanine transaminase, and lactate dehydrogenase were determined. The pulmonary gene expression of cytokines (interleukin-6, interleukin-1ß) and chemokines (macrophage-inflammatory protein-2, keratinocyte-derived chemokine) was also assessed. In addition, lung myeloperoxidase, injury score, and cell death were determined. Mice were monitored for 48 hours after gut ischemia/reperfusion for survival assessment. RESULTS: Gut ischemia/reperfusion significantly increased the serum extracellular cold-inducible ribonucleic acid-binding protein levels. A12 treatment markedly reduced the elevated serum interleukin-6, alanine transaminase, aspartate transaminase, and lactate dehydrogenase by 53%, 23%, 23%, and 24%, respectively, in gut ischemia/reperfusion mice. A12 also significantly decreased cytokine and chemokine messenger ribonucleic acids and myeloperoxidase activity in the lungs of gut ischemia/reperfusion mice. Histological analysis revealed that A12 attenuated tissue injury and cell death in the lungs of gut ischemia/reperfusion mice. Finally, administration of A12 markedly improved the survival of gut ischemia/reperfusion mice. CONCLUSION: A12, a novel extracellular cold-inducible ribonucleic acid-binding protein inhibitor, diminishes inflammation and mitigates acute lung injury when employed as a treatment during gut ischemia/reperfusion. Hence, the targeted approach toward extracellular cold-inducible ribonucleic acid-binding protein emerges as a promising therapeutic strategy for alleviating gut ischemia/reperfusion-induced acute lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Daño por Reperfusión , Ratones , Masculino , Animales , Interleucina-6/metabolismo , Daño por Reperfusión/etiología , Daño por Reperfusión/prevención & control , Pulmón/metabolismo , Isquemia/metabolismo , Reperfusión/efectos adversos , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/prevención & control , Lesión Pulmonar Aguda/tratamiento farmacológico , Citocinas/metabolismo , ARN Mensajero/metabolismo , ARN/metabolismo , ARN/uso terapéutico , Ratones Endogámicos C57BL , Inflamación/metabolismo , Peroxidasa/metabolismo , Lactato Deshidrogenasas/metabolismo
19.
Am J Respir Crit Care Med ; 209(7): 789-797, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324017

RESUMEN

There is considerable interest in the potential for cell-based therapies, particularly mesenchymal stromal cells (MSCs) and their products, as a therapy for acute respiratory distress syndrome (ARDS). MSCs exert effects via diverse mechanisms including reducing excessive inflammation by modulating neutrophil, macrophage and T-cell function, decreasing pulmonary permeability and lung edema, and promoting tissue repair. Clinical studies indicate that MSCs are safe and well tolerated, with promising therapeutic benefits in specific clinical settings, leading to regulatory approvals of MSCs for specific indications in some countries.This perspective reassesses the therapeutic potential of MSC-based therapies for ARDS given insights from recent cell therapy trials in both COVID-19 and in 'classic' ARDS, and discusses studies in graft-vs.-host disease, one of the few licensed indications for MSC therapies. We identify important unknowns in the current literature, address challenges to clinical translation, and propose an approach to facilitate assessment of the therapeutic promise of MSC-based therapies for ARDS.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Trasplante de Células Madre Mesenquimatosas , Síndrome de Dificultad Respiratoria , Humanos , Pulmón , Lesión Pulmonar Aguda/etiología , Tratamiento Basado en Trasplante de Células y Tejidos
20.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338744

RESUMEN

Nowadays, acute respiratory distress syndrome (ARDS) still has a high mortality rate, and the alleviation and treatment of ARDS remains a major research focus. There are various causes of ARDS, among which pneumonia and non-pulmonary sepsis are the most common. Trauma and blood transfusion can also cause ARDS. In ARDS, the aggregation and infiltration of neutrophils in the lungs have a great influence on the development of the disease. Neutrophils regulate inflammatory responses through various pathways, and the release of neutrophils through neutrophil extracellular traps (NETs) is considered to be one of the most important mechanisms. NETs are mainly composed of DNA, histones, and granuloproteins, all of which can mediate downstream signaling pathways that can activate inflammatory responses, generate immune clots, and cause damage to surrounding tissues. At the same time, the components of NETs can also promote the formation and release of NETs, thus forming a vicious cycle that continuously aggravates the progression of the disease. NETs are also associated with cytokine storms and immune balance. Since DNA is the main component of NETs, DNase I is considered a viable drug for removing NETs. Other therapeutic methods to inhibit the formation of NETs are also worthy of further exploration. This review discusses the formation and mechanism of NETs in ARDS. Understanding the association between NETs and ARDS may help to develop new perspectives on the treatment of ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Trampas Extracelulares , Síndrome de Dificultad Respiratoria , Humanos , Trampas Extracelulares/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Pulmón , Neutrófilos/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA