Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.237
Filtrar
1.
Sultan Qaboos Univ Med J ; 24(2): 161-176, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38828247

RESUMEN

This study aimed to assess the prevalence of neuropsychiatric sequelae following traumatic brain injury (TBI) among the Western Asian, South Asian and African regions of the global south. All studies on psychiatric disturbances or cognitive impairment following TBI conducted (until August 2021) in the 83 countries that constitute the aforementioned regions were reviewed; 6 databases were selected for the literature search. After evaluating the articles using the Joanna Briggs Institute guidelines, the random effects model was used to estimate the prevalence of depression, anxiety, post-traumatic stress disorder (PTSD), TBI-related sleep disturbance (TBI-SD), obsessive-compulsive disorder (OCD) and cognitive impairment. Of 56 non-duplicated studies identified in the initial search, 27 were eligible for systematic review and 23 for meta-analysis. The pooled prevalence of depression in 1,882 samples was 35.35%, that of anxiety in 1,211 samples was 28.64%, that of PTSD in 426 samples was 19.94%, that of OCD in 313 samples was 19.48%, that of TBI-SD in 562 samples was 26.67% and that of cognitive impairment in 941 samples was 49.10%. To date, this is the first critical review to examine the spectrum of post-TBI neuropsychiatric sequelae in the specified regions. Although existing studies lack homogeneous data due to variability in the diagnostic tools and outcome measures utilised, the reported prevalence rates are significant and comparable to statistics from the global north.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Humanos , Lesiones Traumáticas del Encéfalo/epidemiología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/psicología , Prevalencia , Trastornos por Estrés Postraumático/epidemiología , Trastornos por Estrés Postraumático/etiología , Trastorno Obsesivo Compulsivo/epidemiología , Trastorno Obsesivo Compulsivo/etiología , Depresión/epidemiología , Depresión/etiología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/epidemiología , Ansiedad/epidemiología , Ansiedad/etiología , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/etiología , África/epidemiología , Trastornos Mentales/epidemiología , Trastornos Mentales/etiología
2.
Continuum (Minneap Minn) ; 30(3): 721-756, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830069

RESUMEN

OBJECTIVE: This article reviews the mechanisms of primary traumatic injury to the brain and spinal cord, with an emphasis on grading severity, identifying surgical indications, anticipating complications, and managing secondary injury. LATEST DEVELOPMENTS: Serum biomarkers have emerged for clinical decision making and prognosis after traumatic injury. Cortical spreading depolarization has been identified as a potentially modifiable mechanism of secondary injury after traumatic brain injury. Innovative methods to detect covert consciousness may inform prognosis and enrich future studies of coma recovery. The time-sensitive nature of spinal decompression is being elucidated. ESSENTIAL POINTS: Proven management strategies for patients with severe neurotrauma in the intensive care unit include surgical decompression when appropriate, the optimization of perfusion, and the anticipation and treatment of complications. Despite validated models, predicting outcomes after traumatic brain injury remains challenging, requiring prognostic humility and a model of shared decision making with surrogate decision makers to establish care goals. Penetrating injuries, especially gunshot wounds, are often devastating and require public health and policy approaches that target prevention.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Traumatismos de la Médula Espinal , Humanos , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/fisiopatología , Descompresión Quirúrgica/métodos , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Masculino , Adulto Joven , Persona de Mediana Edad , Femenino
3.
JAMA Netw Open ; 7(6): e2413459, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829619

RESUMEN

Importance: Chronic pain after traumatic brain injury (TBI) is prevalent and associated with poor outcomes. By providing multidisciplinary care through expert consultation, a collaborative care (CC) treatment approach may reduce pain interference. Objective: To compare CC with usual care (UC) in decreasing pain interference. Design, Setting, and Participants: This randomized clinical trial was conducted from July 2018 through April 2021 at 2 hospital-based academic rehabilitation medicine clinics in Seattle, Washington. Participants included adults with mild-to-severe TBI (at least 6 months before enrollment) and chronic pain. Data analysis was performed from March 30, 2022, to August 30, 2023. Intervention: The CC intervention (called TBI Care) included up to 12 in-person or telephone visits over 16 weeks with a care manager (CM) who provided person-centered cognitive behavioral treatment. The CM met weekly with members of the expert team to review participants and discuss recommendations to optimize treatment. Main Outcomes and Measures: The primary outcome was pain interference on the Brief Pain Inventory at treatment conclusion (4 months after randomization). Secondary outcomes included pain interference at 8 months; pain severity; symptoms of depression, anxiety, and sleep disturbance; pain-related emergency department visits; community participation; and participant satisfaction. Linear mixed-effects regression was used for analysis. Results: A total of 1379 individuals were screened for eligibility, and 158 were randomized (79 to CC and 79 to UC). The participants were mostly women (92 participants [58%]) with a mean (SD) age of 46.8 (13.2) years and a mean (SD) of 15.3 (3.0) years of education. TBI occurred a mean (SD) of 4.0 (5.9) years (median [IQR], 1.9 [0.8-4.5] years) before enrollment. All TBI severities were included, and of 149 participants for whom TBI severity was known, the majority (97 participants [65%]) had mild TBI. In the CC group, 71 participants (90%) completed at least 11 sessions, and, at 4 months, this group had significantly lower pain interference scores compared with the UC group (mean [SD], 3.46 [2.17] vs 5.03 [2.28]). This difference was maintained at 8 months after randomization, with mean (SD) TBI care pain interference scores of 3.61 (2.22) for CC vs 4.68 (2.51) for UC. At 4 months, there was significantly lower pain severity in the CC group vs UC group (mean [SD] score, 3.63 [1.95] vs 4.90 [1.96]), as well as symptoms of depression (mean [SD] score, 8.07 [5.34] vs 11.31 [6.37]) and anxiety (mean [SD], 6.20 [5.17] vs 9.58 [6.00]). Satisfaction with pain treatment (mean [SD] score, 2.99 [1.23] vs 2.52 [1.25]), clinical care (mean [SD] score, 3.28 [1.00] vs 2.84 [1.26]), and overall health care (mean [SD] score, 3.25 [0.88] vs 2.82 [1.00]) were significantly higher in the CC group vs the UC group; global impression of change was significantly lower in the CC group vs the UC group (mean [SD] score, 2.74 [1.02] vs 3.47 [1.26]) (lower scores denote a better impression of change). Conclusions and Relevance: In this randomized clinical trial of CC compared with UC for patients with TBI, CC was effective at reducing pain interference and was sustained at 8-month follow-up. Further research is needed to examine the implementation and cost-effectiveness of CC for TBI in other health care settings. Trial Registration: ClinicalTrials.gov Identifier: NCT03523923.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Dolor Crónico , Humanos , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/terapia , Femenino , Masculino , Dolor Crónico/terapia , Dolor Crónico/etiología , Persona de Mediana Edad , Adulto , Manejo del Dolor/métodos , Washingtón , Grupo de Atención al Paciente , Dimensión del Dolor , Terapia Cognitivo-Conductual/métodos
4.
Am J Case Rep ; 25: e941601, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38859569

RESUMEN

BACKGROUND Penetrating traumatic brain injury (TBI) caused by gunshots is a rare type of TBI that leads to poor outcomes and high mortality rates. Conducting a formal neuropsychological evaluation concerning a patient's neurologic status during the chronic recovery phase can be challenging. Furthermore, the clinical assessment of survivors of penetrating TBI has not been adequately documented in the available literature. Severe TBI in patients can provide valuable information about the functional significance of the damaged brain regions. This information can help inform our understanding of the brain's intricate neural network. CASE REPORT We present a case of a 29-year-old right-handed man who sustained a left-hemisphere TBI after a gunshot, causing extensive diffuse damage to the left cerebral and cerebellar hemispheres, mainly sparing the right hemisphere. The patient survived. The patient experienced spastic right-sided hemiplegia, facial hemiparesis, left hemiparesis, and right hemianopsia. Additionally, he had severe global aphasia, which caused difficulty comprehending verbal commands and recognizing printed letters or words within his visual field. However, his spontaneous facial expressions indicating emotions were preserved. The patient received a thorough neuropsychological assessment to evaluate his functional progress following a severe TBI and is deemed to have had a favorable outcome. CONCLUSIONS Research on cognitive function recovery following loss of the right cerebral hemisphere typically focuses on pediatric populations undergoing elective surgery to treat severe neurological disorders. In this rare instance of a favorable outcome, we assessed the capacity of the fully developed right hemisphere to sustain cognitive and emotional abilities, such as language.


Asunto(s)
Heridas por Arma de Fuego , Humanos , Masculino , Adulto , Heridas por Arma de Fuego/complicaciones , Recuperación de la Función , Lesiones Traumáticas del Encéfalo/complicaciones , Pruebas Neuropsicológicas , Traumatismos Penetrantes de la Cabeza/complicaciones , Hemiplejía/etiología , Hemiplejía/rehabilitación , Afasia/etiología , Afasia/rehabilitación
5.
Neuromolecular Med ; 26(1): 24, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864941

RESUMEN

Depression frequently occurs following traumatic brain injury (TBI). However, the role of Fibromodulin (FMOD) in TBI-related depression is not yet clear. Previous studies have suggested FMOD as a potential key factor in TBI, yet its association with depression post-TBI and underlying mechanisms are not well understood. Serum levels of FMOD were measured in patients with traumatic brain injury using qPCR. The severity of depression was assessed using the self-depression scale (SDS). Neurological function, depressive state, and cognitive function in mice were assessed using the modified Neurological Severity Score (mNSS), forced swimming test (FST), tail suspension test (TST), Sucrose Preference Test (SPT), and morris water maze (MWM). The morphological features of mouse hippocampal synapses and neuronal dendritic spines were revealed through immunofluorescence, transmission electron microscopy, and Golgi-Cox staining. The protein expression levels of FMOD, MAP2, SYP, and PSD95, as well as the phosphorylation levels of the PI3K/AKT/mTOR signaling pathway, were detected through Western blotting. FMOD levels were decreased in TBI patients' serum. Overexpression of FMOD preserved neuronal function and alleviated depression-like behaviour, increased synaptic protein expression, and induced ultrastructural changes in hippocampal neurons. The increased phosphorylation of PI3K, AKT, and mTOR suggested the involvement of the PI3K/AKT/mTOR signaling pathway in FMOD's protective effects. FMOD exhibits potential as a therapeutic target for depression related to TBI, with its protective effects potentially mediated through the PI3K/AKT/mTOR signaling pathway.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Depresión , Hipocampo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Serina-Treonina Quinasas TOR/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Ratones , Masculino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Hipocampo/metabolismo , Depresión/etiología , Depresión/tratamiento farmacológico , Humanos , Adulto , Femenino , Persona de Mediana Edad , Ratones Endogámicos C57BL , Sinapsis , Modelos Animales de Enfermedad , Espinas Dendríticas/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large/metabolismo
6.
J Neuroinflammation ; 21(1): 122, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720343

RESUMEN

Pneumonia is a common comorbidity in patients with severe traumatic brain injury (TBI), and is associated with increased morbidity and mortality. In this study, we established a model of intratracheal Klebsiella pneumoniae administration in young adult male and female mice, at 4 days following an experimental TBI, to investigate how K. pneumoniae infection influences acute post-TBI outcomes. A dose-response curve determined the optimal dose of K. pneumoniae for inoculation (1 x 10^6 colony forming units), and administration at 4 days post-TBI resulted in transient body weight loss and sickness behaviors (hypoactivity and acute dyspnea). K. pneumoniae infection led to an increase in pro-inflammatory cytokines in serum and bronchoalveolar lavage fluid at 24 h post-infection, in both TBI and sham (uninjured) mice. By 7 days, when myeloperoxidase + neutrophil numbers had returned to baseline in all groups, lung histopathology was observed with an increase in airspace size in TBI + K. pneumoniae mice compared to TBI + vehicle mice. In the brain, increased neuroinflammatory gene expression was observed acutely in response to TBI, with an exacerbated increase in Ccl2 and Hmox1 in TBI + K. pneumoniae mice compared to either TBI or K. pneumoniae alone. However, the presence of neuroinflammatory immune cells in the injured brain, and the extent of damage to cortical and hippocampal brain tissue, was comparable between K. pneumoniae and vehicle-treated mice by 7 days. Examination of the fecal microbiome across a time course did not reveal any pronounced effects of either injury or K. pneumoniae on bacterial diversity or abundance. Together, these findings demonstrate that K. pneumoniae lung infection after TBI induces an acute and transient inflammatory response, primarily localized to the lungs with some systemic effects. However, this infection had minimal impact on secondary injury processes in the brain following TBI. Future studies are needed to evaluate the potential longer-term consequences of this dual-hit insult.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Modelos Animales de Enfermedad , Infecciones por Klebsiella , Klebsiella pneumoniae , Ratones Endogámicos C57BL , Animales , Lesiones Traumáticas del Encéfalo/microbiología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Ratones , Infecciones por Klebsiella/patología , Infecciones por Klebsiella/microbiología , Femenino , Masculino , Citocinas/metabolismo , Líquido del Lavado Bronquioalveolar
8.
Artículo en Inglés | MEDLINE | ID: mdl-38728669

RESUMEN

The Psychiatric Consultation Service at Massachusetts General Hospital sees medical and surgical inpatients with comorbid psychiatric symptoms and conditions. During their twice-weekly rounds, Dr Stern and other members of the Consultation Service discuss diagnosis and management of hospitalized patients with complex medical or surgical problems who also demonstrate psychiatric symptoms or conditions. These discussions have given rise to rounds reports that will prove useful for clinicians practicing at the interface of medicine and psychiatry.Prim Care Companion CNS Disord 2024;26(3):23f03667. Author affiliations are listed at the end of this article.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Humanos , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/complicaciones , Trastornos Mentales/terapia , Trastornos Mentales/diagnóstico
9.
Cells ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727269

RESUMEN

The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Inflamación , Lisofosfatidilcolinas , Ratones Endogámicos C57BL , Neuronas , Ácido Valproico , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/complicaciones , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Ratones , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Lisofosfatidilcolinas/sangre , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteínas Represoras/metabolismo , Proteínas Represoras/genética
10.
Neurol India ; 72(2): 285-291, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691471

RESUMEN

BACKGROUND: Microparticles (MPs) have been implicated in thrombosis and endothelial dysfunction. Their involvement in early coagulopathy and in worsening of outcomes in isolated severe traumatic brain injury (sTBI) patients remains ill defined. OBJECTIVE: We sought to quantify the circulatory MP subtypes derived from platelets (PMPs; CD42), endothelial cells (EMPs; CD62E), and those bearing tissue factor (TFMP; CD142) and analyze their correlation with early coagulopathy, thrombin generation, and in-hospital mortality. MATERIALS AND METHODS: Prospective screening of sTBI patients was done. Blood samples were collected before blood and fluid transfusion. MP enumeration and characterization were performed using flow cytometry, and thrombin-antithrombin complex (TAT) levels were determined using enzyme-linked immunosorbent assay (ELISA). Circulating levels of procoagulant MPs were compared between isolated sTBI patients and age- and gender-matched healthy controls (HC). Patients were stratified according to their PMP, EMP, and TFMP levels, respectively (high ≥HC median and low < HC median). RESULTS: Isolated sTBI resulted in an increased generation of PMPs (456.6 [228-919] vs. 249.1 [198.9-404.5]; P = 0.01) and EMPs (301.5 [118.8-586.7] vs. 140.9 [124.9-286]; P = 0.09) compared to HCs. Also, 5.3% of MPs expressed TF (380 [301-710]) in HCs, compared to 6.6% MPs (484 [159-484]; P = 0.87) in isolated sTBI patients. Early TBI-associated coagulopathy (TBI-AC) was seen in 50 (41.6%) patients. PMP (380 [139-779] vs. 523.9 [334-927]; P = 0.19) and EMP (242 [86-483] vs. 344 [168-605]; P = 0.81) counts were low in patients with TBI-AC, compared to patients without TBI-AC. CONCLUSION: Our results suggest that enhanced cellular activation and procoagulant MP generation are predominant after isolated sTBI. TBI-AC was associated with low plasma PMPs count compared to the count in patients without TBI-AC. Low PMPs may be involved with the development of TBI-AC.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Lesiones Traumáticas del Encéfalo , Micropartículas Derivadas de Células , Humanos , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/mortalidad , Micropartículas Derivadas de Células/metabolismo , Femenino , Masculino , Adulto , Trastornos de la Coagulación Sanguínea/etiología , Trastornos de la Coagulación Sanguínea/sangre , Persona de Mediana Edad , Estudios Prospectivos , Tromboplastina/metabolismo , Plaquetas/metabolismo , Mortalidad Hospitalaria , Células Endoteliales/metabolismo
11.
J Neuroinflammation ; 21(1): 124, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730498

RESUMEN

Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.


Asunto(s)
Antiinflamatorios , Lesiones Traumáticas del Encéfalo , Eje Cerebro-Intestino , Humanos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Eje Cerebro-Intestino/fisiología , Eje Cerebro-Intestino/efectos de los fármacos , Animales , Antiinflamatorios/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología
12.
Medicine (Baltimore) ; 103(20): e35375, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758899

RESUMEN

BACKGROUND: Paroxysmal sympathetic hyperexcitability (PSH) is a group of complex syndromes with various etiologies. Previous studies were limited to the description of traumatic brain injury (TBI), and the description of PSH after other types of brain injury was rare. We explored the clinical features, treatment, and prognosis of PSH after various types of brain injuries. METHODS: Patients admitted to the neurosurgery intensive care unit with PSH after brain injury from July 2019 to December 2022 were included. Demographic data, clinical manifestations, drug therapy, and disease prognosis were retrospectively collected and analyzed. RESULTS: Fifteen male and 9 female patients with PSH after brain injury were selected. TBI was most likely to cause PSH (66.7%), followed by spontaneous intracerebral hemorrhage (25%). Glasgow coma scale scores of 19 patients (79.2%) were lower than 8 and 14 patients (58.3%) underwent tracheotomy. Electroencephalogram monitoring was performed in 12 individuals, none of which showed epileptic waves. Clinical symptom scale showed mild symptoms in 17 cases (70.8%). Almost all patients were administered a combination of drugs. After follow-up, most patients had a poor prognosis and 2 (8.3%) died after discharge. CONCLUSION: The etiology of PSH is complex. TBI may be the most common cause of PSH. Non-TBI may also be an important cause of PSH. Therefore, early identification, prevention and diagnosis are helpful for determining the prognosis and outcome of the disease.


Asunto(s)
Electroencefalografía , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Pronóstico , Electroencefalografía/métodos , Escala de Coma de Glasgow , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/fisiopatología , Anciano , Enfermedades del Sistema Nervioso Autónomo/etiología , Enfermedades del Sistema Nervioso Autónomo/diagnóstico , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/fisiopatología , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/fisiopatología
13.
J Alzheimers Dis ; 99(2): 739-752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701142

RESUMEN

Background: Early detection of Alzheimer's disease (AD) is a key component for the success of the recently approved lecanemab and aducanumab. Patients with neuroinflammation-related conditions are associated with a higher risk for developing AD. Objective: Investigate the incidence of AD among patients with neuroinflammation-related conditions including epilepsy, hemorrhage stroke, multiple sclerosis (MS), and traumatic brain injury (TBI). Methods: We used Optum's de-identified Clinformatics Data Mart Database (CDM). We derived covariate-matched cohorts including patients with neuroinflammation-related conditions and controls without the corresponding condition. The matched cohorts were: 1) patients with epilepsy and controls (N = 67,825 matched pairs); 2) patients with hemorrhage stroke and controls (N = 81,510 matched pairs); 3) patients with MS and controls (N = 9,853 matched pairs); and 4) patients TBI and controls (N = 104,637 matched pairs). We used the Cox model to investigate the associations between neuroinflammation-related conditions and AD. Results: We identified that epilepsy, hemorrhage stroke, and TBI were associated with increased risks of AD in both males and females (hazard ratios [HRs]≥1.74, p < 0.001), as well as in gender- and race-conscious subpopulations (HRs≥1.64, p < 0.001). We identified that MS was associated with increased risks of AD in both males and females (HRs≥1.47, p≤0.004), while gender- and race-conscious subgroup analysis shown mixed associations. Conclusions: Patients with epilepsy, hemorrhage stroke, MS, and/or TBI are associated with a higher risk of developing AD. More attention on cognitive status should be given to older patients with these conditions.


Asunto(s)
Enfermedad de Alzheimer , Epilepsia , Humanos , Masculino , Enfermedad de Alzheimer/epidemiología , Femenino , Estados Unidos/epidemiología , Anciano , Persona de Mediana Edad , Epilepsia/epidemiología , Esclerosis Múltiple/epidemiología , Lesiones Traumáticas del Encéfalo/epidemiología , Lesiones Traumáticas del Encéfalo/complicaciones , Enfermedades Neuroinflamatorias/epidemiología , Incidencia , Accidente Cerebrovascular Hemorrágico/epidemiología , Adulto , Anciano de 80 o más Años , Estudios de Cohortes , Bases de Datos Factuales , Revisión de Utilización de Seguros
14.
J Speech Lang Hear Res ; 67(6): 1803-1818, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749013

RESUMEN

PURPOSE: Traumatic brain injury (TBI) is associated with a range of cognitive-communicative deficits that interfere with everyday communication and social interaction. Considerable effort has been directed at characterizing the nature and scope of cognitive-communication disorders in TBI, yet the underlying mechanisms of impairment are largely unspecified. The present research examines sensitivity to a common communicative cue, disfluency, and its impact on memory for spoken language in TBI. METHOD: Fifty-three participants with moderate-severe TBI and 53 noninjured comparison participants listened to a series of sentences, some of which contained disfluencies. A subsequent memory test probed memory for critical words in the sentences. RESULTS: Participants with TBI successfully remembered the spoken words (b = 1.57, p < .0001) at a similar level to noninjured comparison participants. Critically, participants with TBI also exhibited better recognition memory for words preceded by disfluency compared to words from fluent sentences (b = 0.57, p = .02). CONCLUSIONS: These findings advance mechanistic accounts of cognitive-communication disorder by revealing that, when isolated for experimental study, individuals with moderate-severe TBI are sensitive to attentional orienting cues in speech and exhibit enhanced recognition of individual words preceded by disfluency. These results suggest that some aspects of cognitive-communication disorders may not emerge from an inability to perceive and use individual communication cues, but rather from disruptions in managing (i.e., attending, weighting, integrating) multiple cognitive, communicative, and social cues in complex and dynamic interactions. This hypothesis warrants further investigation.


Asunto(s)
Atención , Lesiones Traumáticas del Encéfalo , Humanos , Lesiones Traumáticas del Encéfalo/psicología , Lesiones Traumáticas del Encéfalo/complicaciones , Masculino , Adulto , Femenino , Persona de Mediana Edad , Adulto Joven , Señales (Psicología) , Memoria , Percepción del Habla , Trastornos de la Comunicación/etiología , Trastornos de la Comunicación/psicología , Reconocimiento en Psicología
15.
Crit Care ; 28(1): 170, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769582

RESUMEN

AIMS AND SCOPE: The aim of this panel was to develop consensus recommendations on targeted temperature control (TTC) in patients with severe traumatic brain injury (TBI) and in patients with moderate TBI who deteriorate and require admission to the intensive care unit for intracranial pressure (ICP) management. METHODS: A group of 18 international neuro-intensive care experts in the acute management of TBI participated in a modified Delphi process. An online anonymised survey based on a systematic literature review was completed ahead of the meeting, before the group convened to explore the level of consensus on TTC following TBI. Outputs from the meeting were combined into a further anonymous online survey round to finalise recommendations. Thresholds of ≥ 16 out of 18 panel members in agreement (≥ 88%) for strong consensus and ≥ 14 out of 18 (≥ 78%) for moderate consensus were prospectively set for all statements. RESULTS: Strong consensus was reached on TTC being essential for high-quality TBI care. It was recommended that temperature should be monitored continuously, and that fever should be promptly identified and managed in patients perceived to be at risk of secondary brain injury. Controlled normothermia (36.0-37.5 °C) was strongly recommended as a therapeutic option to be considered in tier 1 and 2 of the Seattle International Severe Traumatic Brain Injury Consensus Conference ICP management protocol. Temperature control targets should be individualised based on the perceived risk of secondary brain injury and fever aetiology. CONCLUSIONS: Based on a modified Delphi expert consensus process, this report aims to inform on best practices for TTC delivery for patients following TBI, and to highlight areas of need for further research to improve clinical guidelines in this setting.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Consenso , Técnica Delphi , Hipotermia Inducida , Humanos , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/complicaciones , Hipotermia Inducida/métodos , Hipotermia Inducida/normas , Unidades de Cuidados Intensivos/organización & administración , Presión Intracraneal/fisiología , Encuestas y Cuestionarios
16.
J Neuroinflammation ; 21(1): 135, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802931

RESUMEN

Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, particularly among the elderly, yet our mechanistic understanding of what renders the post-traumatic brain vulnerable to poor outcomes, and susceptible to neurological disease, is incomplete. It is well established that dysregulated and sustained immune responses elicit negative consequences after TBI; however, our understanding of the neuroimmune interface that facilitates crosstalk between central and peripheral immune reservoirs is in its infancy. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in both healthy and disease settings. It has been previously shown that disruption of this system exacerbates neuroinflammation in age-related neurodegenerative disorders such as Alzheimer's disease; however, we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. In this manuscript, we will offer a detailed overview of the holistic nature of neuroinflammatory responses in TBI, including hallmark features observed across clinical and animal models. We will highlight the structure and function of the meningeal lymphatic system, including its role in immuno-surveillance and immune responses within the meninges and the brain. We will provide a comprehensive update on our current knowledge of meningeal-derived responses across the spectrum of TBI, and identify new avenues for neuroimmune modulation within the neurotrauma field.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Meninges , Enfermedades Neuroinflamatorias , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Humanos , Animales , Meninges/inmunología , Meninges/patología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/patología , Neuroinmunomodulación/fisiología , Neuroinmunomodulación/inmunología
17.
Comput Med Imaging Graph ; 115: 102386, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718562

RESUMEN

A late post-traumatic seizure (LPTS), a consequence of traumatic brain injury (TBI), can potentially evolve into a lifelong condition known as post-traumatic epilepsy (PTE). Presently, the mechanism that triggers epileptogenesis in TBI patients remains elusive, inspiring the epilepsy community to devise ways to predict which TBI patients will develop PTE and to identify potential biomarkers. In response to this need, our study collected comprehensive, longitudinal multimodal data from 48 TBI patients across multiple participating institutions. A supervised binary classification task was created, contrasting data from LPTS patients with those without LPTS. To accommodate missing modalities in some subjects, we took a two-pronged approach. Firstly, we extended a graphical model-based Bayesian estimator to directly classify subjects with incomplete modality. Secondly, we explored conventional imputation techniques. The imputed multimodal information was then combined, following several fusion and dimensionality reduction techniques found in the literature, and subsequently fitted to a kernel- or a tree-based classifier. For this fusion, we proposed two new algorithms: recursive elimination of correlated components (RECC) that filters information based on the correlation between the already selected features, and information decomposition and selective fusion (IDSF), which effectively recombines information from decomposed multimodal features. Our cross-validation findings showed that the proposed IDSF algorithm delivers superior performance based on the area under the curve (AUC) score. Ultimately, after rigorous statistical comparisons and interpretable machine learning examination using Shapley values of the most frequently selected features, we recommend the two following magnetic resonance imaging (MRI) abnormalities as potential biomarkers: the left anterior limb of internal capsule in diffusion MRI (dMRI), and the right middle temporal gyrus in functional MRI (fMRI).


Asunto(s)
Biomarcadores , Lesiones Traumáticas del Encéfalo , Aprendizaje Automático , Neuroimagen , Humanos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/complicaciones , Neuroimagen/métodos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Epilepsia Postraumática/diagnóstico por imagen , Epilepsia Postraumática/etiología , Imagen Multimodal/métodos , Convulsiones/diagnóstico por imagen , Teorema de Bayes , Persona de Mediana Edad
18.
Sci Rep ; 14(1): 11690, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778144

RESUMEN

This study explores the progression of intracerebral hemorrhage (ICH) in patients with mild to moderate traumatic brain injury (TBI). It aims to predict the risk of ICH progression using initial CT scans and identify clinical factors associated with this progression. A retrospective analysis of TBI patients between January 2010 and December 2021 was performed, focusing on initial CT evaluations and demographic, comorbid, and medical history data. ICH was categorized into intraparenchymal hemorrhage (IPH), petechial hemorrhage (PH), and subarachnoid hemorrhage (SAH). Within our study cohort, we identified a 22.2% progression rate of ICH among 650 TBI patients. The Random Forest algorithm identified variables such as petechial hemorrhage (PH) and countercoup injury as significant predictors of ICH progression. The XGBoost algorithm, incorporating key variables identified through SHAP values, demonstrated robust performance, achieving an AUC of 0.9. Additionally, an individual risk assessment diagram, utilizing significant SHAP values, visually represented the impact of each variable on the risk of ICH progression, providing personalized risk profiles. This approach, highlighted by an AUC of 0.913, underscores the model's precision in predicting ICH progression, marking a significant step towards enhancing TBI patient management through early identification of ICH progression risks.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Progresión de la Enfermedad , Aprendizaje Automático , Humanos , Masculino , Femenino , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Persona de Mediana Edad , Estudios Retrospectivos , Adulto , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/patología , Tomografía Computarizada por Rayos X , Anciano , Medición de Riesgo/métodos
19.
Exp Neurol ; 377: 114806, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701941

RESUMEN

Endoplasmic reticulum (ER) stress and neuroinflammation play an important role in secondary brain damage after traumatic brain injury (TBI). Due to the complex brain cytoarchitecture, multiple cell types are affected by TBI. However, cell type-specific and sex-specific responses to ER stress and neuroinflammation remain unclear. Here we investigated differential regulation of ER stress and neuroinflammatory pathways in neurons and microglia during the acute phase post-injury in a mouse model of impact acceleration TBI in both males and females. We found that TBI resulted in significant weight loss only in males, and sensorimotor impairment and depressive-like behaviors in both males and females at the acute phase post-injury. By concurrently isolating neurons and microglia from the same brain sample of the same animal, we were able to evaluate the simultaneous responses in neurons and microglia towards ER stress and neuroinflammation in both males and females. We discovered that the ER stress and anti-inflammatory responses were significantly stronger in microglia, especially in female microglia, compared with the male and female neurons. Whereas the degree of phosphorylated-tau (pTau) accumulation was significantly higher in neurons, compared with the microglia. In conclusion, TBI resulted in behavioral deficits and cell type-specific and sex-specific responses to ER stress and neuroinflammation, and abnormal protein accumulation at the acute phase after TBI in immature mice.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL , Microglía , Enfermedades Neuroinflamatorias , Neuronas , Caracteres Sexuales , Animales , Femenino , Ratones , Masculino , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/psicología , Estrés del Retículo Endoplásmico/fisiología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismo , Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología
20.
J Neuroinflammation ; 21(1): 141, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807149

RESUMEN

The lectin pathway (LP) of complement mediates inflammatory processes linked to tissue damage and loss of function following traumatic brain injury (TBI). LP activation triggers a cascade of proteolytic events initiated by LP specific enzymes called MASPs (for Mannan-binding lectin Associated Serine Proteases). Elevated serum and brain levels of MASP-2, the effector enzyme of the LP, were previously reported to be associated with the severity of tissue injury and poor outcomes in patients with TBI. To evaluate the therapeutic potential of LP inhibition in TBI, we first conducted a pilot study testing the effect of an inhibitory MASP-2 antibody (α-MASP-2), administered systemically at 4 and 24 h post-TBI in a mouse model of controlled cortical impact (CCI). Treatment with α-MASP-2 reduced sensorimotor and cognitive deficits for up to 5 weeks post-TBI. As previous studies by others postulated a critical role of MASP-1 in LP activation, we conducted an additional study that also assessed treatment with an inhibitory MASP-1 antibody (α-MASP-1). A total of 78 mice were treated intraperitoneally with either α-MASP-2, or α-MASP-1, or an isotype control antibody 4 h and 24 h after TBI or sham injury. An amelioration of the cognitive deficits assessed by Barnes Maze, prespecified as the primary study endpoint, was exclusively observed in the α-MASP-2-treated group. The behavioral data were paralleled by a reduction of the lesion size when evaluated histologically and by reduced systemic LP activity. Our data suggest that inhibition of the LP effector enzyme MASP-2 is a promising treatment strategy to limit neurological deficits and tissue loss following TBI. Our work has translational value because a MASP-2 antibody has already completed multiple late-stage clinical trials in other indications and we used a clinically relevant treatment protocol testing the therapeutic mechanism of MASP-2 inhibition in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Modelos Animales de Enfermedad , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Ratones Endogámicos C57BL , Animales , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/antagonistas & inhibidores , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/psicología , Ratones , Masculino , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/tratamiento farmacológico , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA