Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.532
Filtrar
1.
Lipids Health Dis ; 23(1): 282, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232759

RESUMEN

OBJECTIVE: This study aimed to reveal the role and mechanism of MG-132 in delaying hyperlipidemia-induced senescence of vascular smooth muscle cells (VSMCs). METHODS: Immunohistochemistry and hematoxylin-eosin staining confirmed the therapeutic effect of MG-132 on arterial senescence in vivo and its possible mechanism. Subsequently, VSMCs were treated with sodium palmitate (PA), an activator (Recilisib) or an inhibitor (Pictilisib) to activate or inhibit PI3K, and CCK-8 and EdU staining, wound healing assays, Transwell cell migration assays, autophagy staining assays, reactive oxygen species assays, senescence-associated ß-galactosidase staining, and Western blotting were performed to determine the molecular mechanism by which MG-132 inhibits VSMC senescence. Validation of the interaction between MG-132 and PI3K using molecular docking. RESULTS: Increased expression of p-PI3K, a key protein of the autophagy regulatory system, and decreased expression of the autophagy-associated proteins Beclin 1 and ULK1 were observed in the aortas of C57BL/6J mice fed a high-fat diet (HFD), and autophagy was inhibited in aortic smooth muscle. MG-132 inhibits atherosclerosis by activating autophagy in VSMCs to counteract PA-induced cell proliferation, migration, oxidative stress, and senescence, thereby inhibiting VSMC senescence in the aorta. This process is achieved through the PI3K/AKT/mTOR signaling pathway. CONCLUSION: MG-132 activates autophagy by inhibiting the PI3K/AKT/mTOR pathway, thereby inhibiting palmitate-induced proliferation, migration, and oxidative stress in vascular smooth muscle cells and suppressing their senescence.


Asunto(s)
Autofagia , Senescencia Celular , Leupeptinas , Músculo Liso Vascular , Miocitos del Músculo Liso , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Autofagia/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Senescencia Celular/efectos de los fármacos , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Leupeptinas/farmacología , Masculino , Ratones Endogámicos C57BL , Ácido Palmítico/farmacología , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos
2.
BMC Res Notes ; 17(1): 216, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095914

RESUMEN

OBJECTIVE: Proteasomes are conserved proteases crucial for proteostasis in eukaryotes and are promising drug targets for protozoan parasites. Yet, the proteasomes of Entamoeba histolytica remain understudied. The study's objective was to analyse the differences in the substrate binding pockets of amoeba proteasomes from those of host, and computational modelling of ß5 catalytic subunit, with the goal of finding selective inhibitors. RESULTS: Comparative sequence analysis revealed differences in substrate binding sites of E. histolytica proteasomes, especially in the S1 and S3 pockets of the catalytic beta subunits, implying differences in substrate preference and susceptibility to inhibitors from host proteasomes. This was strongly supported by significantly lower sensitivity to MG132 mediated inhibition of amoebic proteasome ß5 subunit's chymotryptic activity compared to human proteasomes, also reflected in lower sensitivity of E. histolytica to MG132 for inhibition of proliferation. Computational models of ß4 and ß5 subunits, and a docked ß4-ß5 model revealed a binding pocket between ß4-ß5, similar to that of Leishmania tarentolae. Selective inhibitors for visceral leishmaniasis, LXE408 and compound 8, docked well to this pocket. This functional and sequence-based analysis predicts differences between amoebic and host proteasomes that can be utilized to develop rationally designed, selective inhibitors against E. histolytica.


Asunto(s)
Entamoeba histolytica , Complejo de la Endopetidasa Proteasomal , Entamoeba histolytica/enzimología , Entamoeba histolytica/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Humanos , Sitios de Unión , Leupeptinas/farmacología , Especificidad por Sustrato , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Inhibidores de Proteasoma/farmacología , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Dominio Catalítico , Unión Proteica , Modelos Moleculares
3.
Plant Cell Environ ; 47(11): 4449-4463, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39007522

RESUMEN

Living organisms have the capacity to respond to environmental stimuli, including warm conditions. Upon sensing mild temperature, plants launch a transcriptional response that promotes morphological changes, globally known as thermomorphogenesis. This response is orchestrated by different hormonal networks and by the activity of different transcription factors, including the heat shock factor A1 (HSFA1) family. Members of this family interact with heat shock protein 70 (HSP70) and heat shock protein 90 (HSP90); however, the effect of this binding on the regulation of HSFA1 activity or of the role of cochaperones, such as the HSP70-HSP90 organizing protein (HOP) on HSFA1 regulation, remains unknown. Here, we show that AtHOPs are involved in the folding and stabilization of the HSFA1a and are required for the onset of the transcriptional response associated to thermomorphogenesis. Our results demonstrate that the three members of the AtHOP family bind in vivo to the HSFA1a and that the expression of multiple HSFA1a-responsive-responsive genes is altered in the hop1 hop2 hop3 mutant under warm temperature. Interestingly, HSFA1a is accumulated at lower levels in the hop1 hop2 hop3 mutant, while control levels are recovered in the presence of the proteasome inhibitor MG132 or the synthetic chaperone tauroursodeoxycholic acid (TUDCA). This uncovers the HSFA1a as a client of HOP complexes in plants and reveals the participation of HOPs in HSFA1a stability.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción del Choque Térmico , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Estabilidad Proteica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Unión Proteica , Temperatura , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Leupeptinas/farmacología , Vernalización
4.
J Muscle Res Cell Motil ; 45(3): 155-169, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39080182

RESUMEN

Pyruvate dehydrogenase kinase (PDK), which phosphorylates the pyruvate dehydrogenase complex, regulates glucose metabolism in skeletal muscle. PDK1, an isozyme whose expression is controlled by hypoxia-inducible factor-1α (HIF-1α), is thought to play a role in muscle adaptation to hypoxia. While transcriptional upregulation of PDK1 by HIF-1α is well characterised, mechanisms controlling proteolysis of PDK1 in skeletal muscle have not been thoroughly investigated. Proteasome inhibitor MG132 paradoxically reduced the abundance of PDK1 in human cancer cells and rat L6 myotubes, suggesting that MG132 might direct PDK1 towards autophagic degradation. The objectives of our current study were to determine (1) whether MG132 suppresses PDK1 levels in primary human myotubes, (2) whether chloroquine, an inhibitor of autophagy, prevents MG132-induced suppression of PDK1 in L6 myotubes, and (3) whether PYR-41, an inhibitor of ubiquitination, suppresses PDK1 in L6 myotubes. Using qPCR and/or immunoblotting, we found that despite markedly upregulating HIF-1α protein, MG132 did not alter the PDK1 expression in cultured primary human myotubes, while it suppressed both PDK1 mRNA and protein in L6 myotubes. The PDK1 levels in L6 myotubes were suppressed also during co-treatment with chloroquine and MG132. PYR-41 markedly increased the abundance of HIF-1α in primary human and L6 myotubes, while reducing the abundance of PDK1. In L6 myotubes treated with PYR-41, chloroquine increased the abundance of the epidermal growth factor receptor, but did not prevent the suppression of PDK1. Collectively, our results suggest that cultured myotubes degrade PDK1 via a pathway that cannot be inhibited by MG132, PYR-41, and/or chloroquine.


Asunto(s)
Fibras Musculares Esqueléticas , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Animales , Humanos , Ratas , Células Cultivadas , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Leupeptinas/farmacología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Ubiquitina/metabolismo
5.
Mol Biol Rep ; 51(1): 770, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896168

RESUMEN

BACKGROUND: MG132, a proteasome inhibitor, is widely used to inhibit nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity by proteasome-mediated degradation of IκB. It has been marketed as a specific, reversible, cell-permeable and low-cost inhibitor. However, adverse effects of the compound have been reported in the literature. We recently discovered and characterised a point mutation in the acute phase protein serum amyloid A (SAA) in chickens, by overexpressing the protein in chicken hepatocellular carcinoma (LMH) cells. This serine to arginine exchange at amino acid position 90 (SAA.R90S) leads to intra- and extracellular accumulation of SAA, which is surprisingly counteracted by MG132 treatment, independent of SAA's intrinsic promoter. METHODS AND RESULTS: To test, whether low proteasomal degradation of SAA.R90S is responsible for the observed intra- and extracellular SAA accumulation, we intended to inhibit the proteasome in SAA wild type (SAA.WT) overexpressing cells with MG132. However, we observed an unexpected drastic decrease in SAA protein expression at the transcript level. NF-κB gene expression was unchanged by MG132 at the measured time point. CONCLUSIONS: The observed results demonstrate that MG132 inhibits SAA expression at the transcript level, independent of its endogenous promoter. Further, the data might indicate that NF-κB is not involved in the observed MG132-induced inhibition of SAA expression. We, consequently, question in this brief report whether MG132 should truly be categorised as a specific ubiquitin proteasome inhibitor and recommend the usage of alternative compounds.


Asunto(s)
Carcinoma Hepatocelular , Pollos , Leupeptinas , Neoplasias Hepáticas , FN-kappa B , Regiones Promotoras Genéticas , Proteína Amiloide A Sérica , Animales , Leupeptinas/farmacología , Pollos/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Regiones Promotoras Genéticas/genética , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
6.
Biomed Pharmacother ; 176: 116920, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876054

RESUMEN

Sarcopenia is a major public health concern among older adults, leading to disabilities, falls, fractures, and mortality. This study aimed to elucidate the pathophysiological mechanisms of sarcopenia and identify potential therapeutic targets using systems biology approaches. RNA-seq data from muscle biopsies of 24 sarcopenic and 29 healthy individuals from a previous cohort were analysed. Differential expression, gene set enrichment, gene co-expression network, and topology analyses were conducted to identify target genes implicated in sarcopenia pathogenesis, resulting in the selection of 6 hub genes (PDHX, AGL, SEMA6C, CASQ1, MYORG, and CCDC69). A drug repurposing approach was then employed to identify new pharmacological treatment options for sarcopenia (clofibric-acid, troglitazone, withaferin-a, palbociclib, MG-132, bortezomib). Finally, validation experiments in muscle cell line (C2C12) revealed MG-132 and troglitazone as promising candidates for sarcopenia treatment. Our approach, based on systems biology and drug repositioning, provides insight into the molecular mechanisms of sarcopenia and offers potential new treatment options using existing drugs.


Asunto(s)
Reposicionamiento de Medicamentos , Sarcopenia , Biología de Sistemas , Humanos , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Sarcopenia/genética , Reposicionamiento de Medicamentos/métodos , Anciano , Animales , Redes Reguladoras de Genes/efectos de los fármacos , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Femenino , Línea Celular , Troglitazona , Terapia Molecular Dirigida , Leupeptinas/farmacología , Leupeptinas/uso terapéutico
7.
COPD ; 21(1): 2342797, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38712759

RESUMEN

Objective: To investigate the effects of cigarette smoke (CS) on Serine/Threonine Kinase 11 (STK11) and to determine STK11's role in CS-induced airway epithelial cell cytotoxicity.Methods: STK11 expression levels in the lung tissues of smokers with or without COPD and mice exposed to CS or room air (RA) were determined by immunoblotting and RT-PCR. BEAS-2Bs-human bronchial airway epithelial cells were exposed to CS extract (CSE), and the changes in STK11 expression levels were determined by immunoblotting and RT-PCR. BEAS-2B cells were transfected with STK11-specific siRNA or STK11 expression plasmid, and the effects of CSE on airway epithelial cell cytotoxicity were measured. To determine the specific STK11 degradation-proteolytic pathway, BEAS-2Bs were treated with cycloheximide alone or combined with MG132 or leupeptin. Finally, to identify the F-box protein mediating the STK11 degradation, a screening assay was performed using transfection with a panel of FBXL E3 ligase subunits.Results: STK11 protein levels were significantly decreased in the lung tissues of smokers with COPD relative to smokers without COPD. STK11 protein levels were also significantly decreased in mouse lung tissues exposed to CS compared to RA. Exposure to CSE shortened the STK11 mRNA and protein half-life to 4 h in BEAS-2B cells. STK11 protein overexpression attenuated the CSE-induced cytotoxicity; in contrast, its knockdown augmented CSE-induced cytotoxicity. FBXL19 mediates CSE-induced STK11 protein degradation via the ubiquitin-proteasome pathway in cultured BEAS-2B cells. FBXL19 overexpression led to accelerated STK11 ubiquitination and degradation in a dose-dependent manner.Conclusions: Our results suggest that CSE enhances the degradation of STK11 protein in airway epithelial cells via the FBXL19-mediated ubiquitin-proteasomal pathway, leading to augmented cell death.HIGHLIGHTSLung tissues of COPD-smokers exhibited a decreased STK11 RNA and protein expression.STK11 overexpression attenuates CS-induced airway epithelial cell cytotoxicity.STK11 depletion augments CS-induced airway epithelial cell cytotoxicity.CS diminishes STK11 via FBXL19-mediated ubiquitin-proteasome degradation.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Células Epiteliales , Proteínas F-Box , Proteínas Serina-Treonina Quinasas , Humo , Animales , Humanos , Masculino , Ratones , Quinasas de la Proteína-Quinasa Activada por el AMP , Línea Celular , Fumar Cigarrillos/efectos adversos , Cicloheximida/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Leupeptinas/farmacología , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteolisis/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/efectos de los fármacos , ARN Interferente Pequeño , Humo/efectos adversos
8.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791473

RESUMEN

Reduced graphene oxide (rGO) and a proteasome inhibitor (MG-132) are some of the most commonly used compounds in various biomedical applications. However, the mechanisms of rGO- and MG-132-induced cytotoxicity remain unclear. The aim of this study was to investigate the anticancer effect of rGO and MG-132 against ZR-75-1 and MDA-MB-231 breast cancer cell lines. The results demonstrated that rGO, MG-132 or a mix (rGO + MG-132) induced time- and dose-dependent cytotoxicity in ZR-75-1 and MDA-MB-231 cells. Apart from that, we found that treatment with rGO and MG-132 or the mix increased apoptosis, necrosis and induction of caspase-8 and caspase-9 activity in both breast cancer cell lines. Apoptosis and caspase activation were accompanied by changes in the ultrastructure of mitochondria in ZR-75-1 and MDA-MB-231 cells incubated with rGO. Additionally, in the analyzed cells, we observed the induction of oxidative stress, accompanied by increased apoptosis and cell necrosis. In conclusion, oxidative stress induces apoptosis in the tested cells. At the same time, both mitochondrial and receptor apoptosis pathways are activated. These studies provided new information on the molecular mechanisms of apoptosis in the ZR-75-1 and MDA-MB-231 breast cancer cell lines.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Grafito , Estrés Oxidativo , Inhibidores de Proteasoma , Humanos , Grafito/farmacología , Grafito/química , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Inhibidores de Proteasoma/farmacología , Femenino , Leupeptinas/farmacología , Sinergismo Farmacológico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
9.
J Pharmacol Sci ; 155(2): 52-62, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677786

RESUMEN

The ubiquitin-proteasome system (UPS) is a major proteolytic system that plays an important role in the regulation of various cell processes, such as cell cycle, stress response, and transcriptional regulation, especially in neurons, and dysfunction of UPS is considered to be a cause of neuronal cell death in neurodegenerative diseases. However, the mechanism of neuronal cell death caused by UPS dysfunction has not yet been fully elucidated. In this study, we investigated the mechanism of neuronal cell death induced by proteasome inhibitors using human neuroblastoma SH-SY5Y cells. Z-Leu-D-Leu-Leu-al (MG132), a proteasome inhibitor, induced apoptosis in SH-SY5Y cells in a concentration- and time-dependent manner. Antioxidants N-acetylcysteine and EUK-8 attenuated MG132-induced apoptosis. Apocynin and diphenyleneiodonium, inhibitors of NADPH oxidase (NOX), an enzyme that produces superoxide anions, also attenuated MG132-induced apoptosis. It was also found that MG132 treatment increased the expression of NOX5, a NOX family member, and that siRNA-mediated silencing of NOX5 and BAPTA-AM, which inhibits NOX5 by chelating calcium, suppressed MG132-induced apoptosis and production of reactive oxygen species in SH-SY5Y cells. These results suggest that MG132 induces apoptosis in SH-SY5Y cells through the production of superoxide anion by NOX5.


Asunto(s)
Apoptosis , Leupeptinas , NADPH Oxidasa 5 , NADPH Oxidasas , Neuroblastoma , Inhibidores de Proteasoma , Superóxidos , Humanos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Inhibidores de Proteasoma/farmacología , Superóxidos/metabolismo , Línea Celular Tumoral , Neuroblastoma/patología , Neuroblastoma/metabolismo , Leupeptinas/farmacología , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , Antioxidantes/farmacología , Relación Dosis-Respuesta a Droga , Acetilcisteína/farmacología , Neuronas/metabolismo , Neuronas/efectos de los fármacos
10.
Cryobiology ; 115: 104882, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452847

RESUMEN

Oocyte cryopreservation is useful for human fertility treatment and strain preservation in both experimental and domestic animals. However, the embryonic development of vitrified rat oocytes was lower than that of vitrified embryos. To increase the viability of vitrified oocytes, intracellular ice formation during cooling and warming must be prevented. Rapid warming is important to prevent ice formation. Furthermore, suppressing the spontaneous activation of oocytes is also important because vitrification promotes the spontaneous activation of rat oocytes, and thus compromise developmental competence of the gametes. MG132, a proteasome inhibitor, suppresses the spontaneous activation of rat oocytes. Here, we examined the effects of rapid warming and MG132 treatment on the survival and embryonic development of vitrified rat oocytes. The warming rate was adjusted by changing the vitrification solution volume and warming solution temperature. The survival rate of oocytes vitrified in 10 µL solution and warmed at 50 °C (94%) was significantly higher than that of oocytes vitrified in 100 µL and 10 µL solution and warmed at 37 °C (49% and 81%, respectively). Furthermore, the rate of embryonic development of vitrified oocytes treated with MG132 during vitrification, warming, and intracytoplasmic sperm injection (ICSI) (44%) was significantly higher than that of untreated gametes (10%). Offspring were obtained after transferring embryos derived from MG132-treated vitrified oocytes (14%). Altogether, the survivability of vitrified rat oocytes increased by rapid warming, and MG132 improved embryonic development after ICSI.


Asunto(s)
Criopreservación , Desarrollo Embrionario , Leupeptinas , Oocitos , Inyecciones de Esperma Intracitoplasmáticas , Vitrificación , Animales , Oocitos/efectos de los fármacos , Oocitos/citología , Ratas , Femenino , Leupeptinas/farmacología , Criopreservación/métodos , Desarrollo Embrionario/efectos de los fármacos , Inyecciones de Esperma Intracitoplasmáticas/métodos , Supervivencia Celular/efectos de los fármacos , Masculino , Crioprotectores/farmacología
11.
Cell Biochem Biophys ; 82(2): 641-645, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38291169

RESUMEN

BACKGROUND: Activation of Mas-related G protein-coupled receptor C (MrgC) receptors relieves pain, but also leads to ubiquitination of MrgC receptors. Ubiquitination mediates MrgC receptor endocytosis and degradation. However, MrgC degradation pathways and ubiquitin-linked chain types are not known. METHODS: N2a cells were treated with cycloheximide (CHX, protein synthesis inhibitor), Mg132 (proteasome inhibitor), 3-Methyladenine (3MA, autophagy lysosome inhibitor) and Chloroquine (CQ, autophagy lysosome inhibitor) to observe the half-life and degradation pathway of MrgC. The location of internalized MrgC receptors and lysosomes (Lyso-Tracker) was observed by immunofluorescence staining. N2a cells were transfected with Myc-MrgC and a series of HA-tagged ubiquitin mutants to study the ubiquitin-linked chain type of MrgC. RESULTS: The amount of MrgC protein decreased with time after CHX treatment of N2a cells. Autophagy lysosome inhibitors can inhibit the degradation of MrgC. The amount of MrgC protein decreased with time after CHX treatment of N2a cells. 3-MA and CQ inhibited the degradation of MrgC protein, whereas Mg-132 did not inhibit it. Partially internalized MrgC receptors were co-labeled with lysosomes. MrgC proteins have multiple topologies of ubiquitin-modified chains. CONCLUSION: As a member of the G protein-coupled receptor family, MrgC receptors can be degraded over time. The complex topology of the ubiquitin-linked chain mediates the lysosomal degradation of MrgC proteins.


Asunto(s)
Lisosomas , Proteolisis , Ubiquitina , Lisosomas/metabolismo , Ubiquitina/metabolismo , Animales , Proteolisis/efectos de los fármacos , Ratones , Autofagia/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Cloroquina/farmacología , Línea Celular Tumoral , Leupeptinas/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Cicloheximida/farmacología , Receptores Acoplados a Proteínas G/metabolismo
12.
Cell Death Dis ; 13(10): 865, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224178

RESUMEN

Acute-on-chronic liver failure is a distinct clinical syndrome characterized by a dysregulated immune response and extensive hepatocyte death without satisfactory therapies. As a cytoplasmic degradative and quality-control process, autophagy was implicated in maintaining intracellular homeostasis, and decreased hepatic autophagy was found in many liver diseases and contributes to disease pathogenesis. Previously, we identified the therapeutic potential of mesenchymal stem cells (MSCs) in ACLF patients; however, the intrinsic mechanisms are incompletely understood. Herein, we showed that MSCs restored the impaired autophagic flux and alleviated liver injuries in ACLF mice, but these effects were abolished when autophago-lysosomal maturation was inhibited by leupeptin (leu), suggesting that MSCs exerted their hepatoprotective function in a pro-autophagic dependent manner. Moreover, we described a connection between transcription factor EB (TFEB) and autophagic activity in this context, as evidenced by increased nuclei translocation of TFEB elicited by MSCs were capable of promoting liver autophagy. Mechanistically, we confirmed that let-7a-5p enriched in MSCs derived exosomes (MSC-Exo) could activate autophagy by targeting MAP4K3 to reduce TFEB phosphorylation, and MAP4K3 knockdown partially attenuates the effect of anti-let-7a-5p oligonucleotide via decreasing the inflammatory response, in addition, inducing autophagy. Altogether, these findings revealed that the hepatoprotective effect of MSCs may partially profit from its exosomal let-7a-5p mediating autophagy repairment, which may provide new insights for the therapeutic target of ACLF treatment.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células Madre Mesenquimatosas , MicroARNs/genética , Insuficiencia Hepática Crónica Agudizada/genética , Insuficiencia Hepática Crónica Agudizada/metabolismo , Animales , Autofagia , Leupeptinas/farmacología , Células Madre Mesenquimatosas/metabolismo , Ratones , Oligonucleótidos/metabolismo
13.
Physiol Rep ; 10(15): e15411, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35924300

RESUMEN

Prolonged tourniquet use can lead to tissue ischemia and can cause progressive muscle and nerve injuries. Such injuries are accompanied by calpain activation and subsequent Wallerian-like degeneration. Several known inhibitors, including leupeptin, are known to impede the activity of calpain and associated tissue damage. We hypothesize that employment of leupeptin in a rat model of prolonged hind limb ischemia can mitigate muscle and nerve injuries. Sprague-Dawley rats (n = 10) weighing between 300-400 g were employed in this study. Their left hind limbs were subjected to blood flow occlusion for a period of 2-h using a neonatal blood pressure cuff. Five rats were given twice weekly intramuscular leupeptin injections, while the other five received saline. After 2 weeks, the animals were euthanized, their sciatic nerves and gastrocnemius muscles were harvested, fixed, stained, and analyzed using NIH Image J software. The administration of leupeptin resulted in larger gastrocnemius muscle fiber cross-sectional areas for the right (non-tourniquet applied) hindlimb as compared to that treated with the saline (p = 0.0110). However, no statistically significant differences were found between these two groups for the injured left hindlimb (p = 0.1440). With regards to the sciatic nerve cross-sectional areas and sciatic functional index, no differences were detected between the leupeptin and control treated groups for both the healthy and injured hindlimbs. This research provides new insights on how to employ leupeptin to inhibit the degenerative effects of calpain and preserve tissues following ischemia resulting from orthopedic or plastic surgery procedures.


Asunto(s)
Calpaína , Isquemia , Animales , Miembro Posterior/irrigación sanguínea , Isquemia/tratamiento farmacológico , Leupeptinas/farmacología , Músculo Esquelético , Ratas , Ratas Sprague-Dawley
14.
Cells ; 11(4)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35203262

RESUMEN

Progeroid syndromes (PS), including Hutchinson-Gilford Progeria Syndrome (HGPS), are premature and accelerated aging diseases, characterized by clinical features mimicking physiological aging. Most classical HGPS patients carry a de novo point mutation within exon 11 of the LMNA gene encoding A-type lamins. This mutation activates a cryptic splice site, leading to the production of a truncated prelamin A, called prelamin A ∆50 or progerin, that accumulates in HGPS cell nuclei and is a hallmark of the disease. Some patients with PS carry other LMNA mutations and are named "HGPS-like" patients. They produce progerin and/or other truncated prelamin A isoforms (∆35 and ∆90). We previously found that MG132, a proteasome inhibitor, induced progerin clearance in classical HGPS through autophagy activation and splicing regulation. Here, we show that MG132 induces aberrant prelamin A clearance and improves cellular phenotypes in HGPS-like patients' cells other than those previously described in classical HGPS. These results provide preclinical proof of principle for the use of a promising class of molecules toward a potential therapy for children with HGPS-like or classical HGPS.


Asunto(s)
Progeria , Núcleo Celular , Humanos , Leupeptinas/farmacología , Leupeptinas/uso terapéutico , Fenotipo , Progeria/tratamiento farmacológico , Progeria/genética
15.
Sci Rep ; 12(1): 2706, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177721

RESUMEN

Intracytoplasmic sperm injection (ICSI) is an effective reproductive technique for obtaining rat offspring using preserved sperm with low or no motility. However, rat oocytes undergo spontaneous activation immediately after retrieval from the oviduct and poorly develop after ICSI unless it is performed quickly. Here, we evaluated whether treatment with MG132, the proteasome inhibitor, suppresses the spontaneous activation of oocytes before and during ICSI. After retrieval from the oviducts, the rate of development into morula and blastocyst from the oocytes cultured in vitro for 1 h prior to ICSI significantly decreased compared with that from the control oocytes subject to ICSI without culture (7% versus 36%). However, a higher proportion of oocytes treated with MG132 for 0, 1, and 3 h before and during ICSI developed into morulae and blastocysts (70%, 60%, and 52%, respectively). Offspring were obtained from oocytes treated with MG132 for 0 and 1 h before and during ICSI (percentage: 31%). Altogether, MG132 could suppress the spontaneous activation of rat oocytes and increase embryonic development after ICSI.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Leupeptinas/farmacología , Leupeptinas/uso terapéutico , Oocitos/efectos de los fármacos , Inyecciones de Esperma Intracitoplasmáticas/métodos , Animales , Gonadotropina Coriónica/farmacología , Gonadotropina Coriónica/uso terapéutico , Cromosomas/efectos de los fármacos , Femenino , Masculino , Oocitos/citología , Ratas Wistar , Inyecciones de Esperma Intracitoplasmáticas/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Factores de Tiempo
16.
PLoS One ; 17(2): e0262612, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35196318

RESUMEN

Orthodontic treatment requires the regulation of bone remodeling in both compression and tension sides. Transforming growth factor-ß1 (TGF-ß1) is an important coupling factor for bone remodeling. However, the mechanism underlying the TGF-ß1-mediated regulation of the osteoclast-supporting activity of osteoblasts and stromal cells remain unclear. The current study investigated the effect of TGF-ß1 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in stromal cells induced by 1α,25(OH)2D3 (D3) and dexamethasone (Dex). TGF-ß1 downregulated the expression of RANKL induced by D3 and Dex in mouse bone marrow stromal lineage, ST2 cells. Co-culture system revealed that TGF-ß1 suppressed osteoclast differentiation from bone marrow cell induced by D3 and Dex-activated ST2 cells. The inhibitory effect of TGF-ß1 on RANKL expression was recovered by inhibiting the interaction between TGF-ß1 and the TGF-ß type I/activin receptor or by downregulating of smad2/3 expression. Interestingly, TGF-ß1 degraded the retinoid X receptor (RXR)-α protein which forms a complex with vitamin D receptor (VDR) and regulates transcriptional activity of RANKL without affecting nuclear translocation of VDR and phosphorylation of signal transducer and activator of transcription3 (STAT3). The degradation of RXR-α protein by TGF-ß1 was recovered by a ubiquitin-proteasome inhibitor. We also observed that poly-ubiquitination of RXR-α protein was induced by TGF-ß1 treatment. These results indicated that TGF-ß1 downregulates RANKL expression and the osteoclast-supporting activity of osteoblasts/stromal cells induced by D3 and Dex through the degradation of the RXR-α protein mediated by ubiquitin-proteasome system.


Asunto(s)
Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Ubiquitina/metabolismo , Ubiquitinación/efectos de los fármacos , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Técnicas de Cocultivo , Leupeptinas/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Osteoclastos/citología , Inhibidores de Proteasoma/farmacología , Proteínas Recombinantes/farmacología , Transducción de Señal/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Transfección , Ubiquitinación/genética
17.
PLoS Genet ; 18(1): e1010015, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025870

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease. Previous transcriptomic analyses revealed the consistent deregulation of the ubiquitin-proteasome system (UPS) in OPMD animal models and patients, suggesting a role of this deregulation in OPMD pathogenesis. Subsequent studies proposed that UPS contribution to OPMD involved PABPN1 aggregation. Here, we use a Drosophila model of OPMD to address the functional importance of UPS deregulation in OPMD. Through genome-wide and targeted genetic screens we identify a large number of UPS components that are involved in OPMD. Half dosage of UPS genes reduces OPMD muscle defects suggesting a pathological increase of UPS activity in the disease. Quantification of proteasome activity confirms stronger activity in OPMD muscles, associated with degradation of myofibrillar proteins. Importantly, improvement of muscle structure and function in the presence of UPS mutants does not correlate with the levels of PABPN1 aggregation, but is linked to decreased degradation of muscle proteins. Oral treatment with the proteasome inhibitor MG132 is beneficial to the OPMD Drosophila model, improving muscle function although PABPN1 aggregation is enhanced. This functional study reveals the importance of increased UPS activity that underlies muscle atrophy in OPMD. It also provides a proof-of-concept that inhibitors of proteasome activity might be an attractive pharmacological approach for OPMD.


Asunto(s)
Atrofia Muscular/patología , Distrofia Muscular Oculofaríngea/patología , Proteína I de Unión a Poli(A)/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster , Regulación de la Expresión Génica , Pruebas Genéticas , Humanos , Leupeptinas/farmacología , Leupeptinas/uso terapéutico , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Distrofia Muscular Oculofaríngea/tratamiento farmacológico , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Mutación , Proteína I de Unión a Poli(A)/química , Prueba de Estudio Conceptual , Agregado de Proteínas/efectos de los fármacos
18.
J Bacteriol ; 204(1): e0045621, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34633870

RESUMEN

The protective mechanisms of blood-brain barrier (BBB) prohibiting entry of pathogens into central nervous system (CNS) are critical for maintenance of brain homeostasis. These include various intracellular defense mechanisms that are vital to block transcytosis of neurotropic pathogens into the CNS. However, mechanistic details of coordination between these defense pathways remain unexplored. In this study, we established that BBB-driven ubiquitination acts as a major intracellular defense mechanism for clearance of Streptococcus pneumoniae, a critical neurotropic pathogen, during transit through BBB. Our findings suggest that the BBB employs differential ubiquitination with either K48- or K63-ubiquitin (Ub) chain topologies as an effective strategy to target S. pneumoniae toward diverse killing pathways. While K63-Ub decoration triggers autophagic killing, K48-Ub directs S. pneumoniae exclusively toward proteasomes. Time-lapse fluorescence imaging involving proteasomal marker LMP2 revealed that in the BBB, the majority of the ubiquitinated S. pneumoniae was cleared by proteasome. Fittingly, inhibition of proteasome and autophagy pathway led to accumulation of K48-Ub- and K63-Ub-marked S. pneumoniae, respectively, and triggered significant increases in intracellular S. pneumoniae burden. Moreover, genetic impairment of either K48- or K63-Ub chain formation demonstrated that although both chain types are key in disposal of intracellular S. pneumoniae, K48-Ub chains and subsequent proteasomal degradation have more pronounced contributions to intracellular S. pneumoniae killing in the BBB. Collectively, these observations, for the first time, illustrated a pivotal role of differential ubiquitination deployed by BBB in orchestrating a symphony of intracellular defense mechanisms for interception and degradation of S. pneumoniae, blocking its entry into the brain, which could be exploited to prevent bacterial CNS infections. IMPORTANCE The blood-brain barrier (BBB) represents a unique cellular barrier that provides structural integrity and protection to the CNS from pathogen invasion. Recently, ubiquitination, which is key for cellular homeostasis, was shown to be involved in pathogen clearance. In this study, we deciphered that the BBB deploys differential ubiquitination as an effective strategy to prevent S. pneumoniae trafficking into the brain. The different ubiquitin chain topologies formed on S. pneumoniae dictated the selection of downstream degradative pathways, namely, autophagy and proteasomes, among which the contribution of the proteasomal system in S. pneumoniae killing is more pronounced. Overall our study revealed how the BBB deploys differential ubiquitination as a strategy for synchronization of various intracellular defense pathways, which work in tandem to ensure the brain's identity as an immunologically privileged site.


Asunto(s)
Barrera Hematoencefálica/fisiología , Células Endoteliales/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Streptococcus pneumoniae/fisiología , Ubiquitinas/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Autofagia/efectos de los fármacos , Biomarcadores , Línea Celular , Supervivencia Celular/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Gentamicinas/administración & dosificación , Gentamicinas/farmacología , Humanos , Leupeptinas/farmacología , Imagen Óptica/métodos , Penicilinas/administración & dosificación , Penicilinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación , Ubiquitinas/química
19.
Bioengineered ; 13(2): 3620-3633, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34699308

RESUMEN

Preeclampsia (PE) is a pregnancy disorder characterized by excessive trophoblast cell death. This study aims to explore the exact mechanism of the ubiquitination level of FUN14 domain containing 1 (FUNDC1) in mitophagy and injury in hypoxic trophoblast cells. In this study, HTR-8/SVneo trophoblast cells were cultured under normoxic and hypoxic conditions and PE mouse model was established. We found low ubiquitination level of FUNDC1 in hypoxic trophoblast cells and placenta of pregnant women with PE. Proteasome inhibitor MG-132 and protease activator MF-094 were added into HTR-8/SVneo trophoblast cells. Proteasome inhibitor MG-132 decreased FUNDC1 ubiquitination level while protease activator MF-094 increased FUNDC1 ubiquitination level. Inhibition of FUNDC1 ubiquitination promoted mitophagy and mitochondrial membrane potential (Δψm) in normoxic trophoblast cells, increased levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and decreased levels of glutathione (GSH) and superoxide dismutase (SOD). In addition, FUNDC1 ubiquitination alleviated cell injury in PE mice in vivo. In conclusion, increased FUNDC1 ubiquitination level inhibited mitophagy and Δψm changes in hypoxic trophoblast cells, and thus alleviated oxidative injury.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Preeclampsia/metabolismo , Trofoblastos/metabolismo , Ubiquitinación , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Femenino , Humanos , Leupeptinas/farmacología , Embarazo
20.
J Appl Microbiol ; 132(2): 1176-1184, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34496097

RESUMEN

AIMS: Effects of a proteasome inhibitor, MG-132, on the riboflavin production in Ashbya gossypii were investigated to elucidate the relationship of the riboflavin production with flavoprotein homeostasis. METHODS AND RESULTS: The addition of MG-132 to the liquid medium reduced the specific riboflavin production by 79% in A. gossypii at 25 µM after 24 h. The addition of the inhibitor also caused the accumulation of reactive oxygen species and ubiquitinated proteins. These results indicated that MG-132 works in A. gossypii without any genetic engineering and reduces riboflavin production. In the presence of 25 µM MG-132, specific NADH dehydrogenase activity was increased by 1.4-fold compared to DMSO, but specific succinate dehydrogenase (SDH) activity was decreased to 52% compared to DMSO. Additionally, the amount of AgSdh1p (ACR052Wp) was also reduced. Specific riboflavin production was reduced to 22% when 20 mM malonate, a SDH inhibitor, was added to the culture medium. The riboflavin production in heterozygous AgSDH1 gene-disrupted mutant (AgSDH1-/+ ) was reduced to 63% compared to that in wild type. CONCLUSIONS: MG-132 suppresses the riboflavin production and SDH activity in A. gossypii. SDH is one of the flavoproteins involved in the riboflavin production in A. gossypii. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that MG-132 has a negative influence on the riboflavin production and SDH activity in A. gossypii and leads to the elucidation of the connection of the riboflavin production with flavoproteins.


Asunto(s)
Inhibidores de Proteasoma , Riboflavina , Saccharomycetales/metabolismo , Ingeniería Genética , Leupeptinas/farmacología , Inhibidores de Proteasoma/farmacología , Riboflavina/biosíntesis , Saccharomycetales/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA