Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
Lett Appl Microbiol ; 77(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39191534

RESUMEN

Co-evolution of plant beneficial microbes in contaminated environments enhances plant growth and mitigates abiotic stress. However, few studies on heavy metal (HM) tolerant plant growth-promoting bacteria (PGPB) promoting crop growth in Morocco's farming areas affected by drought and salinity are available. Plant associated bacteria tolerant to HM and able to produce indole acetic acid and siderophores, display ACC-deaminase activity and solubilize phosphate, were isolated from long-term metal exposed environments. Tolerance to HM and biofilms formation in the absence or presence of HM were assessed. A consortium including two Ensifer meliloti strains (RhOL6 and RhOL8), one Pseudomonas sp. strain (DSP17), and one Proteus sp. strain (DSP1), was used to inoculate alfalfa (Medicago sativa) seedlings under various conditions, namely, salt stress (85 mM) and water stress (30% water holding capacity). Shoot and root dry weights of alfalfa were measured 60 days after sowing. In the presence of HM, DSP17 showed the greatest auxin production, whereas RhOL8 had the highest ACC-deaminase activity and DSP17 formed the densest biofilm. Root dry weight increased 138% and 195% in salt and water stressed plants, respectively, regarding non-inoculated controls. Our results confirm the improvement of alfalfa growth and mitigation of salt and drought stress upon inoculation.


Asunto(s)
Medicago sativa , Metales Pesados , Medicago sativa/microbiología , Medicago sativa/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Microbiología del Suelo , Estrés Salino , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Marruecos , Sequías , Contaminantes del Suelo , Biopelículas/crecimiento & desarrollo , Estrés Fisiológico , Liasas de Carbono-Carbono/metabolismo
2.
Microbiol Res ; 286: 127823, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959523

RESUMEN

Plant-associated streptomycetes play important roles in plant growth and development. However, knowledge of volatile-mediated crosstalk between Streptomyces spp. and plants remains limited. In this study, we investigated the impact of volatiles from nine endophytic Streptomyces strains on the growth and development of plants. One versatile strain, Streptomyces setonii WY228, was found to significantly promote the growth of Arabidopsis thaliana and tomato seedlings, confer salt tolerance, and induce early flowering and increased fruit yield following volatile treatment. Analysis of plant growth-promoting traits revealed that S. setonii WY228 could produce indole-3-acetic acid, siderophores, ACC deaminase, fix nitrogen, and solubilize inorganic phosphate. These capabilities were further confirmed through genome sequencing and analysis. Volatilome analysis indicated that the volatile organic compounds emitted from ISP-2 medium predominantly comprised sesquiterpenes and 2-ethyl-5-methylpyrazine. Further investigations showed that 2-ethyl-5-methylpyrazine and sesquiterpenoid volatiles were the primary regulators promoting growth, as confirmed by experiments using the terpene synthesis inhibitor phosphomycin, pure compounds, and comparisons of volatile components. Transcriptome analysis, combined with mutant and inhibitor studies, demonstrated that WY228 volatiles promoted root growth by activating Arabidopsis auxin signaling and polar transport, and enhanced root hair development through ethylene signaling activation. Additionally, it was confirmed that volatiles can stimulate plant abscisic acid signaling and activate the MYB75 transcription factor, thereby promoting anthocyanin synthesis and enhancing plant salt stress tolerance. Our findings suggest that aerial signaling-mediated plant growth promotion and abiotic stress tolerance represent potentially overlooked mechanisms of Streptomyces-plant interactions. This study also provides an exciting strategy for the regulation of plant growth and the improvement of horticultural crop yields within sustainable agricultural practices.


Asunto(s)
Arabidopsis , Ácidos Indolacéticos , Tolerancia a la Sal , Streptomyces , Compuestos Orgánicos Volátiles , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Streptomyces/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Estrés Salino , Transducción de Señal , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/microbiología , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas de Carbono-Carbono/metabolismo , Fosfatos/metabolismo
3.
Microbiol Res ; 286: 127827, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002396

RESUMEN

Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress.


Asunto(s)
Agricultura , Productos Agrícolas , Sequías , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Estrés Fisiológico , Productos Agrícolas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Bacterias/genética , Bacterias/metabolismo , Liasas de Carbono-Carbono/metabolismo , Liasas de Carbono-Carbono/genética
4.
Nat Commun ; 15(1): 5745, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987239

RESUMEN

Complications of diabetes are often attributed to glucose and reactive dicarbonyl metabolites derived from glycolysis or gluconeogenesis, such as methylglyoxal. However, in the CNS, neurons and endothelial cells use lactate as energy source in addition to glucose, which does not lead to the formation of methylglyoxal and has previously been considered a safer route of energy consumption than glycolysis. Nevertheless, neurons and endothelial cells are hotspots for the cellular pathology underlying neurological complications in diabetes, suggesting a cause that is distinct from other diabetes complications and independent of methylglyoxal. Here, we show that in clinical and experimental diabetes plasma concentrations of dimethylglyoxal are increased. In a mouse model of diabetes, ilvb acetolactate-synthase-like (ILVBL, HACL2) is the enzyme involved in formation of increased amounts of dimethylglyoxal from lactate-derived pyruvate. Dimethylglyoxal reacts with lysine residues, forms Nε-3-hydroxy-2-butanonelysine (HBL) as an adduct, induces oxidative stress more strongly than other dicarbonyls, causes blood-brain barrier disruption, and can mimic mild cognitive impairment in experimental diabetes. These data suggest dimethylglyoxal formation as a pathway leading to neurological complications in diabetes that is distinct from other complications. Importantly, dimethylglyoxal formation can be reduced using genetic, pharmacological and dietary interventions, offering new strategies for preventing CNS dysfunction in diabetes.


Asunto(s)
Neuropatías Diabéticas , Glioxal , Ácido Pirúvico , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Animales , Ratones , Glioxal/análogos & derivados , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/patología , Glucosa/metabolismo , Ácido Pirúvico/metabolismo , Acetolactato Sintasa/metabolismo , Encéfalo/metabolismo , Liasas de Carbono-Carbono/metabolismo , Humanos , Ratones Endogámicos C57BL
5.
Transgenic Res ; 33(4): 267-282, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39044015

RESUMEN

An essential aromatic plant, Pelargonium graveolens, does not grow well in areas where chromium contamination is a problem. Because of oxidative stress and the collapse of the photosynthetic system, crops frequently sustain severe damage. The production of excess ethylene, known as stress ethylene, which is detrimental to plant growth, the formation of roots, and early senescence, is also increased by heavy metal exposure. The effectiveness of the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase gene in transgenic Pelargonium graveolens under the control of CaMV 35S promoter was investigated to lessen the stress ethylene during chromium stress. Chromium was administered as potassium dichromate (K2Cr2O7) at four distinct concentrations (100 µM, 200 µM, 300 µM, and 500 µM) to transgenic and wild-type P. graveolens and stress-induced physiological changes were monitored. Transgenic P. graveolens demonstrated greater tolerance to chromium stress than wild-type P. graveolens, as evidenced by higher leaf-relative water content, chlorophyll content, CO2 absorption, transpiration rate, stomatal conductance, proline buildup, and antioxidant activity. The L1, L5, and L7, ACC deaminase-expressing transgenic lines also show a drop in ACC content during chromium stress, which subsequently lowered ethylene synthesis. Therefore, the reported transgenic P. graveolens lines having the ACC deaminase gene could be useful resources for growing in chromium-prone regions.


Asunto(s)
Liasas de Carbono-Carbono , Pelargonium , Plantas Modificadas Genéticamente , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Pelargonium/genética , Pelargonium/crecimiento & desarrollo , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Estrés Fisiológico/genética , Cromo/toxicidad , Cromo/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Oxidativo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Clorofila/metabolismo
6.
Physiol Plant ; 176(3): e14371, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837414

RESUMEN

The WRKY transcription factor (TF) genes form a large family in higher plants, with 72 members in Arabidopsis (Arabidopsis thaliana). The gaseous phytohormone ethylene (ET) regulates multiple physiological processes in plants. It is known that 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs, EC 4.4.1.14) limit the enzymatic reaction rate of ethylene synthesis. However, whether WRKY TFs regulate the expression of ACSs and/or ACC oxidases (ACOs, EC 1.14.17.4) remains largely elusive. Here, we demonstrated that Arabidopsis WRKY22 positively regulated the expression of a few ACS and ACO genes, thus promoting ethylene production. Inducible overexpression of WRKY22 caused shorter hypocotyls without ACC treatment. A qRT-PCR screening demonstrated that overexpression of WRKY22 activates the expression of several ACS and ACO genes. The promoter regions of ACS5, ACS11, and ACO5 were also activated by WRKY22, which was revealed by a dual luciferase reporter assay. A follow-up chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA) showed that the promoter regions of ACS5 and ACO5 could be bound by WRKY22 directly. Moreover, wrky22 mutants had longer primary roots and more lateral roots than wild type, while WRKY22-overexpressing lines showed the opposite phenotype. In conclusion, this study revealed that WRKY22 acts as a novel TF activating, at least, the expression of ACS5 and ACO5 to increase ethylene synthesis and modulate root development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulación de la Expresión Génica de las Plantas , Liasas , Raíces de Plantas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/biosíntesis , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Liasas/genética , Liasas/metabolismo , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Regiones Promotoras Genéticas/genética , Liasas de Carbono-Carbono/metabolismo , Liasas de Carbono-Carbono/genética , Activación Transcripcional/genética
7.
Plant Biol (Stuttg) ; 26(5): 789-797, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38858861

RESUMEN

Petunia hybrida, widely grown as a bedding plant, has reduced growth and flower quality at temperatures above 30 °C (heat stress), primarily due to heat stress-induced ethylene (ET) production. The gene acdS encodes the 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD) enzyme, which is known for its role in reducing ET production by breaking down the ET precursor, ACC, in plant tissues. This study investigated the impact of heat stress on both 'Mirage Rose' WT petunia and its acdS-overexpressing transgenic lines. Heat stress-induced growth inhibition was observed in WT plants but not in transgenic plants. The increased stress tolerance of transgenic plants over WT plants was associated with lower ET production, ROS accumulation, higher SPAD values, water content, and relative water content. Furthermore, higher sensitivity of the WT to heat stress than the transgenic plants was confirmed by analysing ET signalling genes, heat shock transcription factor genes, and antioxidant- and proline-related genes, more strongly induced in WT than in transgenic plants. Overall, this study suggests the potential application of acdS overexpression in other floriculture plants as a viable strategy for developing heat stress-tolerant varieties. This approach holds promise for advancing the floricultural industry by overcoming challenges related to heat-induced growth inhibition and loss of flower quality.


Asunto(s)
Etilenos , Respuesta al Choque Térmico , Petunia , Plantas Modificadas Genéticamente , Petunia/genética , Petunia/fisiología , Petunia/metabolismo , Etilenos/metabolismo , Respuesta al Choque Térmico/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas de Carbono-Carbono/metabolismo , Liasas de Carbono-Carbono/genética , Especies Reactivas de Oxígeno/metabolismo , Termotolerancia/genética , Termotolerancia/fisiología , Calor
8.
Sci Rep ; 14(1): 14645, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918548

RESUMEN

Soil salinity is a major environmental stressor impacting global food production. Staple crops like wheat experience significant yield losses in saline environments. Bioprospecting for beneficial microbes associated with stress-resistant plants offers a promising strategy for sustainable agriculture. We isolated two novel endophytic bacteria, Bacillus cereus (ADJ1) and Priestia aryabhattai (ADJ6), from Agave desmettiana Jacobi. Both strains displayed potent plant growth-promoting (PGP) traits, such as producing high amounts of indole-3-acetic acid (9.46, 10.00 µgml-1), ammonia (64.67, 108.97 µmol ml-1), zinc solubilization (Index of 3.33, 4.22, respectively), ACC deaminase production and biofilm formation. ADJ6 additionally showed inorganic phosphate solubilization (PSI of 2.77), atmospheric nitrogen fixation, and hydrogen cyanide production. Wheat seeds primed with these endophytes exhibited enhanced germination, improved growth profiles, and significantly increased yields in field trials. Notably, both ADJ1 and ADJ6 tolerated high salinity (up to 1.03 M) and significantly improved wheat germination and seedling growth under saline stress, acting both independently and synergistically. This study reveals promising stress-tolerance traits within endophytic bacteria from A. desmettiana. Exploiting such under-explored plant microbiomes offers a sustainable approach to developing salt-tolerant crops, mitigating the impact of climate change-induced salinization on global food security.


Asunto(s)
Productos Agrícolas , Tolerancia a la Sal , Triticum , Triticum/microbiología , Triticum/crecimiento & desarrollo , Productos Agrícolas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Bacillus/aislamiento & purificación , Bacillus/fisiología , Bacillus/metabolismo , Endófitos/fisiología , Salinidad , Ácidos Indolacéticos/metabolismo , Microbiología del Suelo , Fijación del Nitrógeno , Germinación , Bacillus cereus/fisiología , Bacillus cereus/crecimiento & desarrollo , Bacillus cereus/aislamiento & purificación , Plantones/microbiología , Plantones/crecimiento & desarrollo , Liasas de Carbono-Carbono/metabolismo
9.
Microbiol Res ; 284: 127738, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692035

RESUMEN

This study aimed to (i) investigate the potential for enhanced phytoremediation to remove contaminants from soil historically co-contaminated with petroleum hydrocarbons (PHs) and heavy metals (HMs) and (ii) analyze the expression of crucial bacterial genes and whole metatranscriptomics profiles for better understanding of soil processes during applied treatment. Phytoremediation was performed using Zea mays and supported by the Pseudomonas qingdaonensis ZCR6 strain and a natural biofertilizer: meat and bone meal (MBM). In previous investigations, mechanisms supporting plant growth and PH degradation were described in the ZCR6 strain. Here, ZCR6 survived in the soil throughout the experiment, but the efficacy of PH removal from all soils fertilized with MBM reached 32 % regardless of the bacterial inoculation. All experimental groups contained 2 % (w/w) MBM. The toxic effect of this amendment on plants was detected 30 days after germination, irrespective of ZCR6 inoculation. Among the 17 genes tested using the qPCR method, only expression of the acdS gene, encoding 1-aminocyclopropane-1-carboxylic acid deaminase, and the CYP153 gene, encoding cytochrome P450-type alkane hydroxylase, was detected in soils. Metatranscriptomic analysis of soils indicated increased expression of methane particulated ammonia monooxygenase subunit A (pmoA-amoA) by Nitrosomonadales bacteria in all soils enriched with MBM compared to the non-fertilized control. We suggest that the addition of 2 % (w/w) MBM caused the toxic effect on plants via the rapid release of ammonia, and this led to high pmoA-amoA expression. In parallel, due to its wide substrate specificity, enhanced bacterial hydrocarbon removal in MBM-treated soils was observed. The metatranscriptomic results indicate that MBM application should be considered to improve bioremediation of soils polluted with PHs rather than phytoremediation. However, lower concentrations of MBM could be considered for phytoremediation enhancement. From a broader perspective, these results indicated the superior capability of metatranscriptomics to investigate the microbial mechanisms driving various bioremediation techniques.


Asunto(s)
Biodegradación Ambiental , Pseudomonas , Microbiología del Suelo , Contaminantes del Suelo , Zea mays , Contaminantes del Suelo/metabolismo , Zea mays/metabolismo , Zea mays/microbiología , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas/aislamiento & purificación , Metales Pesados/metabolismo , Petróleo/metabolismo , Suelo/química , Hidrocarburos/metabolismo , Perfilación de la Expresión Génica , Liasas de Carbono-Carbono/metabolismo , Liasas de Carbono-Carbono/genética , Transcriptoma
10.
Sci Rep ; 14(1): 12189, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806526

RESUMEN

In the present study, ten (10) selected bacteria isolated from chasmophytic wild Chenopodium were evaluated for alleviation of drought stress in chickpea. All the bacterial cultures were potential P, K and Zn solubilizer. About 50% of the bacteria could produce Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The bacteria showed wide range of tolerance towards pH, salinity, temperature and osmotic stress. Bacillus paralicheniformis L38, Pseudomonas sp. LN75, Enterobacter hormachei subsp. xiangfengensis LJ89, B. paramycoides L17 and Micrococcus luteus LA9 significantly improved growth and nutrient (N, P, K, Fe and Zn) content in chickpea under water stress during a green house experiment conducted following a completely randomized design (CRD). Application of Microbacterium imperiale LJ10, B. stercoris LN74, Pseudomonas sp. LN75, B. paralicheniformis L38 and E. hormachei subsp. xiangfengensis LJ89 reduced the antioxidant enzymes under water stress. During field experiments conducted following randomized block design (RBD), all the bacterial inoculations improved chickpea yield under water stress. Highest yield (1363 kg ha-1) was obtained in plants inoculated with Pseudomonas sp. LN75. Pseudomonas sp. LN75, B. paralicheniformis L38 and E. hormachei subsp. xiangfengensis LJ89 have potential as microbial stimulants to alleviate the water stress in chickpea. To the best of our knowledge this is the first report of using chasmophyte associated bacteria for alleviation of water stress in a crop plant.


Asunto(s)
Cicer , Sequías , Estrés Fisiológico , Cicer/microbiología , Cicer/fisiología , Cicer/crecimiento & desarrollo , Bacterias/metabolismo , Ácidos Indolacéticos/metabolismo , Nutrientes/metabolismo , Liasas de Carbono-Carbono/metabolismo , Enterobacter/fisiología , Enterobacter/metabolismo , Pseudomonas/fisiología , Antioxidantes/metabolismo
11.
J Agric Food Chem ; 72(21): 12057-12071, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38753758

RESUMEN

Plant growth-promoting endophytes (PGPE) can effectively regulate plant growth and metabolism. The regulation is modulated by metabolic signals, and the resulting metabolites can have considerable effects on the plant yield and quality. Here, tissue culture Houttuynia cordata Thunb., was inoculated with Rhizobium sp. (BH46) to determine the effect of BH46 on H. cordata growth and metabolism, and elucidate associated regulatory mechanisms. The results revealed that BH46 metabolized indole-3-acetic acid and induced 1-aminocyclopropane-1-carboxylate deaminase to decrease ethylene metabolism. Host peroxidase synthesis MPK3/MPK6 genes were significantly downregulated, whereas eight genes associated with auxins, cytokinins, abscisic acid, jasmonic acid, and antioxidant enzymes were significantly upregulated. Eight genes associated with flavonoid biosynthesis were significantly upregulated, with the CPY75B1 gene regulating the production of rutin and quercitrin and the HCT gene directly regulating the production of chlorogenic acid. Therefore, BH46 influences metabolic signals in H. cordata to modulate its growth and metabolism, in turn, enhancing yield and quality of H. cordata.


Asunto(s)
Endófitos , Houttuynia , Proteínas de Plantas , Houttuynia/microbiología , Houttuynia/metabolismo , Houttuynia/genética , Endófitos/metabolismo , Endófitos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Ácidos Indolacéticos/metabolismo , Rhizobium/genética , Rhizobium/metabolismo , Flavonoides/metabolismo , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Liasas de Carbono-Carbono/metabolismo , Liasas de Carbono-Carbono/genética
12.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791163

RESUMEN

The genome sequencing of Botrytis cinerea supplies a general overview of the map of genes involved in secondary metabolite synthesis. B. cinerea genomic data reveals that this phytopathogenic fungus has seven sesquiterpene cyclase (Bcstc) genes that encode proteins involved in the farnesyl diphosphate cyclization. Three sesquiterpene cyclases (BcStc1, BcStc5 and BcStc7) are characterized, related to the biosynthesis of botrydial, abscisic acid and (+)-4-epi-eremophilenol, respectively. However, the role of the other four sesquiterpene cyclases (BcStc2, BcStc3, BcStc4 and BcStc6) remains unknown. BcStc3 is a well-conserved protein with homologues in many fungal species, and here, we undertake its functional characterization in the lifecycle of the fungus. A null mutant ΔBcstc3 and an overexpressed-Bcstc3 transformant (OvBcstc3) are generated, and both strains show the deregulation of those other sesquiterpene cyclase-encoding genes (Bcstc1, Bcstc5 and Bcstc7). These results suggest a co-regulation of the expression of the sesquiterpene cyclase gene family in B. cinerea. The phenotypic characterization of both transformants reveals that BcStc3 is involved in oxidative stress tolerance, the production of reactive oxygen species and virulence. The metabolomic analysis allows the isolation of characteristic polyketides and eremophilenols from the secondary metabolism of B. cinerea, although no sesquiterpenes different from those already described are identified.


Asunto(s)
Botrytis , Liasas de Carbono-Carbono , Botrytis/enzimología , Botrytis/genética , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Estrés Oxidativo , Sesquiterpenos/metabolismo
13.
Microbiol Spectr ; 12(5): e0405623, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563743

RESUMEN

Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE: We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress.


Asunto(s)
Codonopsis , Klebsiella , Rizosfera , Microbiología del Suelo , Klebsiella/genética , Klebsiella/enzimología , Klebsiella/efectos de los fármacos , Klebsiella/crecimiento & desarrollo , Codonopsis/genética , Codonopsis/crecimiento & desarrollo , Codonopsis/microbiología , Desarrollo de la Planta , Rhizoctonia/crecimiento & desarrollo , Rhizoctonia/genética , Rhizoctonia/efectos de los fármacos , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Suelo/química
14.
Microbiol Res ; 284: 127708, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38599021

RESUMEN

Climate change intensifies soil salinization and jeopardizes the development of crops worldwide. The accumulation of salts in plant tissue activates the defense system and triggers ethylene production thus restricting cell division. We hypothesize that the inoculation of plant growth-promoting bacteria (PGPB) producing ACC (1-aminocyclopropane-1-carboxylate) deaminase favors the development of arbuscular mycorrhizal fungi (AMF), promoting the growth of maize plants under saline stress. We investigated the efficacy of individual inoculation of PGPB, which produce ACC deaminase, as well as the co-inoculation of PGPB with Rhizophagus clarus on maize plant growth subjected to saline stress. The isolates were acquired from the bulk and rhizospheric soil of Mimosa bimucronata (DC.) Kuntze in a temporary pond located in Pernambuco State, Brazil. In the first greenhouse experiment, 10 halophilic PGPB were inoculated into maize at 0, 40 and 80 mM of NaCl, and in the second experiment, the PGPB that showed the best performance were co-inoculated with R. clarus in maize under the same conditions as in the first experiment. Individual PGPB inoculation benefited the number of leaves, stem diameter, root and shoot dry mass, and the photosynthetic pigments. Inoculation with PGPB 28-10 Pseudarthrobacter enclensis, 24-1 P. enclensis and 52 P. chlorophenolicus increased the chlorophyll a content by 138%, 171%, and 324% at 0, 40 and 80 mM NaCl, respectively, comparing to the non-inoculated control. We also highlight that the inoculation of PGPB 28-10, 28-7 Arthrobacter sp. and 52 increased the content of chlorophyll b by 72%, 98%, and 280% and carotenoids by 82%, 98%, and 290% at 0, 40 and 80 mM of NaCl, respectively. Co-inoculation with PGPB 28-7, 46-1 Leclercia tamurae, 70 Artrobacter sp., and 79-1 Micrococcus endophyticus significantly increased the rate of mycorrhizal colonization by roughly 50%. Furthermore, co-inoculation promoted a decrease in the accumulation of Na and K extracted from plant tissue, with an increase in salt concentration, from 40 mM to 80 mM, also favoring the establishment and development of R. clarus. In addition, co-inoculation of these PGPB with R. clarus promoted maize growth and increased plant biomass through osmoregulation and protection of the photosynthetic apparatus. The tripartite symbiosis (plant-fungus-bacterium) is likely to reprogram metabolic pathways that improve maize growth and crop yield, suggesting that the AMF-PGPB consortium can minimize damages caused by saline stress.


Asunto(s)
Bacterias , Liasas de Carbono-Carbono , Micorrizas , Raíces de Plantas , Microbiología del Suelo , Zea mays , Zea mays/microbiología , Zea mays/crecimiento & desarrollo , Micorrizas/fisiología , Liasas de Carbono-Carbono/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Estrés Salino , Clorofila/metabolismo , Glomeromycota/fisiología , Tolerancia a la Sal , Fotosíntesis , Rizosfera , Cloruro de Sodio/metabolismo , Hojas de la Planta/microbiología , Suelo/química
15.
Plant Cell Physiol ; 65(3): 428-446, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38174441

RESUMEN

Many terrestrial plants produce large quantities of alkanes for use in epicuticular wax and the pollen coat. However, their carbon chains must be long to be useful as fuel or as a petrochemical feedstock. Here, we focus on Nymphaea odorata, which produces relatively short alkanes in its anthers. We identified orthologs of the Arabidopsis alkane biosynthesis genes AtCER1 and AtCER3 in N. odorata and designated them NoCER1A, NoCER3A and NoCER3B. Expression analysis of NoCER1A and NoCER3A/B in Arabidopsis cer mutants revealed that the N. odorata enzymes cooperated with the Arabidopsis enzymes and that the NoCER1A produced shorter alkanes than AtCER1, regardless of which CER3 protein it interacted with. These results indicate that AtCER1 frequently uses a C30 substrate, whereas NoCER1A, NoCER3A/B and AtCER3 react with a broad range of substrate chain lengths. The incorporation of shorter alkanes disturbed the formation of wax crystals required for water-repellent activity in stems, suggesting that chain-length specificity is important for surface cleaning. Moreover, cultured tobacco cells expressing NoCER1A and NoCER3A/B effectively produced C19-C23 alkanes, indicating that the introduction of the two enzymes is sufficient to produce alkanes. Taken together, our findings suggest that these N. odorata enzymes may be useful for the biological production of alkanes of specific lengths. 3D modeling revealed that CER1s and CER3s share a similar structure that consists of N- and C-terminal domains, in which their predicted active sites are respectively located. We predicted the complex structure of both enzymes and found a cavity that connects their active sites.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Nymphaea , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nymphaea/metabolismo , Alcanos/metabolismo , Liasas de Carbono-Carbono/metabolismo
16.
ISME J ; 17(8): 1267-1277, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37264153

RESUMEN

Plant growth promoting bacteria can confer resistance to various types of stress and increase agricultural yields. The mechanisms they employ are diverse. One of the most important genes associated with the increase in plant biomass and stress resistance is acdS, which encodes a 1-aminocyclopropane-1-carboxylate- or ACC-deaminase. The non-proteinogenic amino acid ACC is the precursor and means of long-distance transport of ethylene, a plant hormone associated with growth arrest. Expression of acdS reduces stress induced ethylene levels and the enzyme is abundant in rhizosphere colonizers. Whether ACC hydrolysis plays a role in the phyllosphere, both as assembly cue and in growth promotion, remains unclear. Here we show that Paraburkholderia dioscoreae Msb3, a yam phyllosphere symbiont, colonizes the tomato phyllosphere and promotes plant growth by action of its ACC deaminase. We found that acdS is required for improved plant growth but not for efficient leaf colonization. Strain Msb3 readily proliferates on the leaf surface of tomato, only occasionally spreading to the leaf endosphere through stomata. The strain can also colonize the soil or medium around the roots but only spreads into the root if the plant is wounded. Our results indicate that the degradation of ACC is not just an important trait of plant growth promoting rhizobacteria but also one of leaf dwelling phyllosphere bacteria. Manipulation of the leaf microbiota by means of spray inoculation may be more easily achieved than that of the soil. Therefore, the application of ACC deaminase containing bacteria to the phyllosphere may be a promising strategy to increasing plant stress resistance, pathogen control, and harvest yields.


Asunto(s)
Liasas de Carbono-Carbono , Raíces de Plantas , Raíces de Plantas/microbiología , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Etilenos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Suelo
17.
Antonie Van Leeuwenhoek ; 115(9): 1165-1176, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35867173

RESUMEN

It has been previously shown that a number of plant associated methylotrophic bacteria contain an enzyme aminocyclopropane carboxylate (ACC) deaminase (AcdS) hydrolyzing ACC, the immediate precursor of ethylene in plants. The genome of the epiphytic methylotroph Methylobacterium radiotolerans JCM2831 contains an open reading frame encoding a protein homologous to transcriptional regulatory protein AcdR of the Lrp (leucine-responsive regulatory protein) family. The acdR gene of M. radiotolerans was heterologously expressed in Escherichia coli and purified. The results of gel retardation experiments have shown that AcdR specifically binds the DNA fragment containing the promoter-operator region of the acdS gene. ACC decreased electrophoretic mobility of the AcdR-DNA complex whereas leucine had no effect on the complex mobility. The mutant strains of M. radiotolerans obtained by insertion of a tetracycline cassette in the acdS or acdR gene lost the ACC-deaminase activity but the strains with complementation of the mutation recovered this function. The acdS- mutant but not acdR- strain expressed the xylE reporter gene under the control of acdS promoter region thus resulting in a catechol 2,3-dioxygenase activity. This suggested that AcdR in vivo functions as activator of transcription of the acdS gene. The results obtained in this study showed that in phytosymbiotic methylotroph Methylobacterium radiotolerans AcdR mediates activation of the acdS gene transcription in the presence of an inducer ACC or 2-aminoisobutyrate and the excess of the regulatory protein assists in transcription initiation even in the absence of the inducer. The model of regulation of acdS transcription in M. radiotolerans was proposed.


Asunto(s)
Liasas de Carbono-Carbono , Methylobacterium , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Methylobacterium/genética , Methylobacterium/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética
18.
Nat Commun ; 13(1): 782, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145075

RESUMEN

Untargeted metabolomics via high-resolution mass spectrometry can reveal more than 100,000 molecular features in a single sample, many of which may represent unidentified metabolites, posing significant challenges to data analysis. We here introduce Metaboseek, an open-source analysis platform designed for untargeted comparative metabolomics and demonstrate its utility by uncovering biosynthetic functions of a conserved fat metabolism pathway, α-oxidation, using C. elegans as a model. Metaboseek integrates modules for molecular feature detection, statistics, molecular formula prediction, and fragmentation analysis, which uncovers more than 200 previously uncharacterized α-oxidation-dependent metabolites in an untargeted comparison of wildtype and α-oxidation-defective hacl-1 mutants. The identified metabolites support the predicted enzymatic function of HACL-1 and reveal that α-oxidation participates in metabolism of endogenous ß-methyl-branched fatty acids and food-derived cyclopropane lipids. Our results showcase compound discovery and feature annotation at scale via untargeted comparative metabolomics applied to a conserved primary metabolic pathway and suggest a model for the metabolism of cyclopropane lipids.


Asunto(s)
Caenorhabditis elegans/metabolismo , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Metabolómica/métodos , Animales , Caenorhabditis elegans/genética , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Humanos , Larva , Metabolismo de los Lípidos/genética , Espectrometría de Masas , Redes y Vías Metabólicas/genética , Metaboloma , Oxidación-Reducción
19.
Environ Microbiol ; 24(8): 3612-3624, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35191581

RESUMEN

The omics-based studies are important for identifying characteristic proteins in plants to elucidate the mechanism of ACC deaminase producing bacteria-mediated salt tolerance. This study evaluates the changes in the proteome of rice inoculated with ACC deaminase producing bacteria under salt-stress conditions. Salt stress resulted in a significant decrease in photosynthetic pigments, whereas inoculation of Methylobacterium oryzae CBMB20 had significantly increased pigment contents under normal and salt-stress conditions. A total of 76, 51 and 33 differentially abundant proteins (DAPs) were identified in non-inoculated salt-stressed plants, bacteria-inoculated plants under normal and salt stress conditions respectively. The abundances of proteins responsible for ethylene emission and programmed cell death were increased, and that of photosynthesis-related proteins were decreased in non-inoculated plants under salt stress. However, bacteria-inoculated plants had shown higher abundance of antioxidant proteins, RuBisCo and ribosomal proteins that are important for enhancing stress tolerance and improving plant physiological traits. Collectively, salt stress might affect plant physiological traits by impairing photosynthetic machinery and accelerating apoptosis leading to a decline in biomass. However, inoculation of plants with bacteria can assist in enhancing photosynthetic activity, antioxidant activities and ethylene regulation related proteins for attenuating salt-induced apoptosis and sustaining growth and development.


Asunto(s)
Oryza , Antioxidantes/metabolismo , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Etilenos/metabolismo , Oryza/microbiología , Proteómica , Estrés Salino , Estrés Fisiológico
20.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884785

RESUMEN

Drought is a major abiotic stress imposed by climate change that affects crop production and soil microbial functions. Plants respond to water deficits at the morphological, biochemical, and physiological levels, and invoke different adaptation mechanisms to tolerate drought stress. Plant growth-promoting bacteria (PGPB) can help to alleviate drought stress in plants through various strategies, including phytohormone production, the solubilization of mineral nutrients, and the production of 1-aminocyclopropane-1-carboxylate deaminase and osmolytes. However, PGPB populations and functions are influenced by adverse soil factors, such as drought. Therefore, maintaining the viability and stability of PGPB applied to arid soils requires that the PGPB have to be protected by suitable coatings. The encapsulation of PGPB is one of the newest and most efficient techniques for protecting beneficial bacteria against unfavorable soil conditions. Coatings made from polysaccharides, such as sodium alginate, chitosan, starch, cellulose, and their derivatives, can absorb and retain substantial amounts of water in the interstitial sites of their structures, thereby promoting bacterial survival and better plant growth.


Asunto(s)
Bacterias/metabolismo , Encapsulación Celular/métodos , Sequías , Desarrollo de la Planta/fisiología , Raíces de Plantas/microbiología , Polisacáridos/metabolismo , Aclimatación/fisiología , Alginatos/metabolismo , Liasas de Carbono-Carbono/metabolismo , Quitosano/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/microbiología , Rizosfera , Microbiología del Suelo , Estrés Fisiológico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA