Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
BMC Microbiol ; 22(1): 15, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996376

RESUMEN

BACKGROUND: Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. RESULTS: The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. CONCLUSIONS: The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future.


Asunto(s)
Gammaproteobacteria/aislamiento & purificación , Hemípteros/microbiología , Microbiota , Animales , Áfidos/microbiología , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Hemípteros/clasificación , Liberibacter/clasificación , Liberibacter/genética , Liberibacter/aislamiento & purificación , Filogenia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Rickettsia/clasificación , Rickettsia/genética , Rickettsia/aislamiento & purificación , Serratia/clasificación , Serratia/genética , Serratia/aislamiento & purificación , Simbiosis , Wolbachia/clasificación , Wolbachia/genética , Wolbachia/aislamiento & purificación
2.
Microbiol Spectr ; 9(2): e0050921, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34523996

RESUMEN

Liberibacter pathogens are the causative agents of several severe crop diseases worldwide, including citrus Huanglongbing and potato zebra chip. These bacteria are endophytic and nonculturable, which makes experimental approaches challenging and highlights the need for bioinformatic analysis in advancing our understanding about Liberibacter pathogenesis. Here, we performed an in-depth comparative phylogenomic analysis of the Liberibacter pathogens and their free-living, nonpathogenic, ancestral species, aiming to identify major genomic changes and determinants associated with their evolutionary transitions in living habitats and pathogenicity. Using gene neighborhood analysis and phylogenetic classification, we systematically uncovered, annotated, and classified all prophage loci into four types, including one previously unrecognized group. We showed that these prophages originated through independent gene transfers at different evolutionary stages of Liberibacter and only the SC-type prophage was associated with the emergence of the pathogens. Using ortholog clustering, we vigorously identified two additional sets of genomic genes, which were either lost or gained in the ancestor of the pathogens. Consistent with the habitat change, the lost genes were enriched for biosynthesis of cellular building blocks. Importantly, among the gained genes, we uncovered several previously unrecognized toxins, including new toxins homologous to the EspG/VirA effectors, a YdjM phospholipase toxin, and a secreted endonuclease/exonuclease/phosphatase (EEP) protein. Our results substantially extend the knowledge of the evolutionary events and potential determinants leading to the emergence of endophytic, pathogenic Liberibacter species, which will facilitate the design of functional experiments and the development of new methods for detection and blockage of these pathogens. IMPORTANCELiberibacter pathogens are associated with several severe crop diseases, including citrus Huanglongbing, the most destructive disease to the citrus industry. Currently, no effective cure or treatments are available, and no resistant citrus variety has been found. The fact that these obligate endophytic pathogens are not culturable has made it extremely challenging to experimentally uncover the genes/proteins important to Liberibacter pathogenesis. Further, earlier bioinformatics studies failed to identify key genomic determinants, such as toxins and effector proteins, that underlie the pathogenicity of the bacteria. In this study, an in-depth comparative genomic analysis of Liberibacter pathogens along with their ancestral nonpathogenic species identified the prophage loci and several novel toxins that are evolutionarily associated with the emergence of the pathogens. These results shed new light on the disease mechanism of Liberibacter pathogens and will facilitate the development of new detection and blockage methods targeting the toxins.


Asunto(s)
Toxinas Bacterianas/genética , Endófitos/clasificación , Endófitos/genética , Liberibacter/genética , Filogenia , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Citrus/microbiología , Endófitos/fisiología , Evolución Molecular , Genoma Bacteriano , Genómica , Liberibacter/química , Liberibacter/clasificación , Liberibacter/fisiología , Enfermedades de las Plantas/microbiología
3.
World J Microbiol Biotechnol ; 37(6): 95, 2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-33963452

RESUMEN

Huanglongbing (HLB), also known as 'citrus greening', is an extremely destructive disease of citrus worldwide. HLB is associated with three species of the fastidious proteobacterium, Candidatus Liberibacter asiaticus (CaLas), Ca. L. africanus and Ca. L. americanus with CaLas being the most widely distributed around the world and the only species detected and described so far in India, one of the major global citrus fruit producers. Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. Three types of prophages, Type 1, Type 2 and Type 3 have been identified and described in CaLas so far. In the present study, 441 CaLas isolates sampled across 18 Indian states were used for prophage typing. Based on detection of three prophage types by PCR, all the eight probable combinations of CaLas prophages were identified, including single Type 1 (26.5%), single Type 2 (18.8%), single Type 3 (1.4%), Type 1 + Type 2 (20.4%), Type 1 + Type 3 (12.5%), Type 2 + Type 3 (4.8%), Type 1 + Type 2 + Type 3 (11.3%) and None type (4.3%). Prophage types were confirmed by PCR amplicon sequencing and subsequent phylogenetic analysis. By discovery of all 3 prophages and based on genetic identity and genetic distance, CaLas populations from eighteen citrus growing states were separated into two major Prophage Typing Groups (PTGs): PTG1 and PTG2. The PTG1 comprised of CaLas from North-West India and PTG2 from rest of the country (North-East, Central and South India), and both major groups were further divided into two (PTG1-A, PTG1-B) and three (PTG2-A, PTG2-B and PTG2-C) subgroups respectively. The findings of CaLas population patterns provide evidence for independent origins of HLB-associated CaLas. CRISPR (clustered regularly interspaced short palindromic repeats) array was also detected in CaLas isolates. This is the first report evaluating the genetic variation of a large population of CaLas bacterium in India using the PCR markers from the prophage regions which would certainly assist the ongoing HLB management efforts in India.


Asunto(s)
Citrus/microbiología , Liberibacter/clasificación , Profagos/genética , Análisis de Secuencia de ADN/métodos , Sistemas CRISPR-Cas , ADN Viral/genética , Variación Genética , India , Liberibacter/aislamiento & purificación , Liberibacter/virología , Tipificación Molecular , Filogenia , Enfermedades de las Plantas/microbiología , Profagos/clasificación
4.
Sci Rep ; 10(1): 14000, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814781

RESUMEN

'Candidatus Liberibacter solanacearum' (Lso) is a pathogen of solanaceous crops. Two haplotypes of Lso (LsoA and LsoB) are present in North America; both are transmitted by the tomato psyllid, Bactericera cockerelli (Sulc), in a circulative and propagative manner and cause damaging plant diseases (e.g. Zebra chip in potatoes). In this study, we investigated the acquisition and transmission of LsoA or LsoB by the tomato psyllid. We quantified the titer of Lso haplotype A and B in adult psyllid guts after several acquisition access periods (AAPs). We also performed sequential inoculation of tomato plants by adult psyllids following a 7-day AAP and compared the transmission of each Lso haplotype. The results indicated that LsoB population increased faster in the psyllid gut than LsoA. Further, LsoB population plateaued after 12 days, while LsoA population increased slowly during the 16 day-period evaluated. Additionally, LsoB had a shorter latent period and higher transmission rate than LsoA following a 7 day-AAP: LsoB was first transmitted by the adult psyllids between 17 and 21 days following the beginning of the AAP, while LsoA was first transmitted between 21 and 25 days after the beginning of the AAP. Overall, our data suggest that the two Lso haplotypes have distinct acquisition and transmission rates. The information provided in this study will improve our understanding of the biology of Lso acquisition and transmission as well as its relationship with the tomato psyllid at the gut interface.


Asunto(s)
Haplotipos , Hemípteros/microbiología , Insectos Vectores/microbiología , Liberibacter/genética , Solanum lycopersicum/crecimiento & desarrollo , Animales , Hemípteros/fisiología , Insectos Vectores/fisiología , Liberibacter/clasificación , Liberibacter/fisiología , Solanum lycopersicum/microbiología , Solanum lycopersicum/parasitología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA