Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.897
Filtrar
1.
Chin J Dent Res ; 27(2): 121-131, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38953477

RESUMEN

As the biological mechanisms of orthodontic tooth movement have been explored further, scholars have gradually focused on the remodelling mechanism of the extracellular matrix (ECM) in the periodontal ligament (PDL). The ECM of the PDL consists of various types of collagens and other glycoproteins. The specific process and mechanism of ECM remodelling during orthodontic tooth movement remains unclear. Collagen I and III, which constitute major components of the PDL, are upregulated under orthodontic force. The changes in the contents of ECM proteins also depend on the expression of ECM-related enzymes, which organise new collagen fibre networks to adapt to changes in tooth position. The matrix metalloproteinase family is the main enzyme that participates in collagen hydrolysis and renewal and changes its expression under orthodontic force. Moreover, ECM adhesion molecules, such as integrins, are also regulated by orthodontic force and participate in the dynamic reaction of cell adhesion and separation with the ECM. This article reviews the changes in ECM components, related enzymes and adhesion molecules in the PDL under orthodontic force to lay the foundation for the exploration of the regulatory mechanism of ECM remodelling during orthodontic tooth movement.


Asunto(s)
Matriz Extracelular , Ligamento Periodontal , Técnicas de Movimiento Dental , Matriz Extracelular/metabolismo , Humanos , Técnicas de Movimiento Dental/métodos , Ligamento Periodontal/citología , Periodoncio/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Integrinas/metabolismo , Colágeno/metabolismo
2.
Clin Oral Investig ; 28(8): 416, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38969964

RESUMEN

OBJECTIVES: To assess the biocompatibility, bioactivity, and immunomodulatory properties of three new calcium silicate cement-based sealers: Ceraseal (CS), Totalfill BC Sealer (TFbc) and WellRoot ST (WR-ST) on human periodontal ligament stem cells (hPDLSCs). MATERIALS AND METHODS: HPDLSCs were isolated from extracted third molars from healthy patients. Eluates (1:1, 1:2, and 1:4 ratio) and sample discs of CS, TFbc and WR-ST after setting were prepared. A series of assays were performed: cell characterization, cell metabolic activity (MTT assay) cell attachment and morphology (SEM assay), cell migration (wound-healing assay), cytoskeleton organization (phaloidin-based assay); IL-6 and IL-8 release (ELISA); differentiation marker expression (RT-qPCR assay), and cell mineralization (Alizarin Red S staining). HPDLSCs cultured in unconditioned (negative control) or osteogenic (positive control) culture media were used as a comparison. Statistical significance was established at p < 0.05. RESULTS: All the tested sealers exhibited similar results in the cytocompatibility assays (cell metabolic activity, migration, attachment, morphology, and cytoskeleton organization) compared with a negative control group. CS and TFbc exhibited an upregulation of at least one osteo/cementogenic marker compared to the negative and positive control groups. CS and TFbc also showed a significantly higher calcified nodule formation than the negative and positive control groups. Both the marker expression and calcified nodule formation were significantly higher in CS-treated cells than TFbc treated cells. WR-ST exhibited similar results to the control group. CS and TFbc-treated cells exhibited a significant downregulation of IL-6 after 72 h of culture compared to the negative control group (p < 0.05). CONCLUSION: All the tested sealers exhibited an adequate cytocompatibility. CS significantly enhances cell differentiation by upregulating the expression of key genes associated with bone and cementum formation. Additionally, CS was observed to facilitate the mineralization of the extracellular matrix effectively. In contrast, the effects of TFbc and WR-ST on these processes were less pronounced compared to CS. Furthermore, both CS and TFbc exhibited an anti-inflammatory potential, contributing to their potential therapeutic benefits in regenerative endodontics. CLINICAL RELEVANCE: This is the first study to compare the biological properties and immunomodulatory potential of Ceraseal, Totalfill BC Sealer, and WellRoot ST. The results act as supporting evidence for their use in root canal treatment.


Asunto(s)
Materiales Biocompatibles , Compuestos de Calcio , Ensayo de Materiales , Ligamento Periodontal , Silicatos , Compuestos de Calcio/farmacología , Silicatos/farmacología , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Materiales Biocompatibles/farmacología , Técnicas In Vitro , Células Cultivadas , Células Madre/efectos de los fármacos , Materiales de Obturación del Conducto Radicular/farmacología , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Adhesión Celular/efectos de los fármacos , Tercer Molar
3.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(7): 663-671, 2024 Jul 09.
Artículo en Chino | MEDLINE | ID: mdl-38949134

RESUMEN

Objective: To investigate the characteristics of extracellular matrix vesicle mimetics prepared by mechanical extrusion and their effects on the cell viability and osteogenic differentiation potential of human periodontal ligament stem cells (PDLSC). Methods: PDLSC derived extracellular matrix vesicles were prepared by collagenase digestion, while the cell derived vesicle mimetics were simulated by mechanical extrusion. The obtained extracellular matrix vesicles and parental cell derived vesicle mimetics were divided into 4 groups: matrix vesicles derived from PDLSC cultured in basic medium for 7 days (PDLSC matrix vesicles, MVs), vesicle mimetics derived from PDLSC cultured in basic medium for 7 days (PDLSC vesicle mimetics, CVMs), matrix vesicles derived from PDLSC cultured in osteogenic inducing medium for 7 days (osteogenic-induced PDLSC matrix vesicles, O-MVs) and vesicle mimetics derived from PDLSC cultured in osteogenic inducing medium for 7 days (osteogenic-induced PDLSC vesicle mimetics, O-CVMs). Vesicles morphologies and sizes were observed by transmission electron microscopy and nanoparticle tracking analysis. Vesicles uptake was detected by immunofluorescence. With PDLSC as the control group, the effects of vesicles on the viability of PDLSC were detected by cell activity assay (cell counting kit-8), and the effects of vesicles on the osteogenic differentiation potential of PDLSC were detected by alizarin red staining and Western blotting. Results: Vesicles in MVs, O-MVs, CVMs and O-CVMs were all observed with a round structure (size 50-250 nm), and could be taken up by PDLSC without affecting the cell viability. Under osteogenic inducing conditions, PDLSC incubated with O-MVs or O-CVMs could produce more mineralized nodules than those in the control group (PDLSC). MVs, O-MVs, CVMs and O-CVMs could promote the expression of osteogenic-related proteins in PDLSC. PDLSC in group O-CVMs showed significant higher expressions of osteogenic-related proteins, including alkaline phosphatase (ALP) (1.571±0.348), osteopontin (OPN) (1.827±0.627) and osteocalcin (OCN) (1.798±0.537) compared to MVs (ALP: 1.156±0.170, OPN: 1.260±0.293, OCN: 1.286±0.302) (P<0.05). Compared to CMVs-incubated PDLSC, O-CVMs-incubated PDLSC expressed more Runt-related transcription factor 2 (1.632±0.455 vs 1.176±0.128) and OPN (1.827±0.627 vs 1.428±0.427) (P<0.05). Moreover, there was no significant difference in the expression levels of osteoblast-related proteins in PDLSC cultured with MVs, O-MVs and CVMs (P>0.05). Conclusions: The vesicle mimetics prepared by mechanical extrusion method are similar in shape and size to the extracellular matrix vesicles. MVs, O-MVs, CVMs and O-CVMs do not affect the cell viability of PDLSC, and can promote the osteogenic differentiation potential of PDLSC to a certain extent.


Asunto(s)
Diferenciación Celular , Matriz Extracelular , Vesículas Extracelulares , Osteogénesis , Humanos , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre/citología , Fosfatasa Alcalina/metabolismo , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Osteocalcina/metabolismo , Osteopontina/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo
4.
Shanghai Kou Qiang Yi Xue ; 33(2): 123-129, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-39005086

RESUMEN

PURPOSE: To investigate the effect of Morinda officinalis polysaccharides(MOP) on the expression of fibronectin(FN) and fibronectin containing extra domain A(FN-EDA) in inflammatory periodontal ligament fibroblasts. METHODS: Thirty six rats were randomly divided into a control group(n=12) and a model group (n=24). The model group used orthodontic wire ligation to establish periodontitis. After three weeks, 6 rats from each group were selected and confirmed by Micro-CT to complete the modeling. The remaining rats in the model group were randomly divided into periodontitis group, normal saline(NS) group, and MOP group. In the MOP group, MOP (200 mg/kg for 3 d, 50 µL for 4 weeks) was injected into the palatal side of the left maxillary first molar of the rats. In the NS group, same volume of NS was injected, and no treatment was performed in the periodontitis group. The left maxillary tissue of rats were taken and the pathological changes of periodontal tissue were observed by H-E staining. The expression of FN and FN-EDA was detected by immunohistochemistry. Periodontal ligament fibroblasts were cultured in vitro, the effect of MOP on cell activity detected by CCK-8. The fourth generation cells were divided into control group, inflammation group (10 mg/mL lipopolysaccharide), and experimental group (12.5 µg/mL MOP, 12.5 µg/mL MOP+10 mg/mL lipopolysaccharide). The expression of FN and FN-EDA was detected by qRT-PCR and Western blot. The data were statistically analyzed using Prism 8.0 software package. RESULTS: In vivo experiments, the expression of FN-EDA in the MOP group was significantly lower than that in the periodontitis group and NS group(P<0.05), and the infiltration of inflammatory cells was reduced. However, there was no significant difference in the expression of FN in each group. In vitro experiments, compared with the control group, the expression of FN-EDA mRNA and protein in the inflammation group was significantly increased(P<0.000 1). MOP significantly reduced the expression of FN-EDA in inflammatory cells, but had no significant effect on FN expression. CONCLUSIONS: With increased expression of FN-EDA in inflammatory periodontal ligament tissues and cells, MOP may play a role in inhibiting inflammation by down-regulating FN-EDA.


Asunto(s)
Fibroblastos , Fibronectinas , Morinda , Ligamento Periodontal , Polisacáridos , Animales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Polisacáridos/farmacología , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Ratas , Morinda/química , Fibronectinas/metabolismo , Fibronectinas/genética , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo , Inflamación/tratamiento farmacológico , Ratas Sprague-Dawley
5.
Front Cell Infect Microbiol ; 14: 1414861, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938883

RESUMEN

Introduction: Recent studies have demonstrated a positive role of hyaluronic acid (HA) on periodontal clinical outcomes. This in-vitro study aimed to investigate the impact of four different HAs on interactions between periodontal biofilm and immune cells. Methods: The four HAs included: high-molecular-weight HA (HHA, non-cross-linked), low-molecular-weight HA (LHA), oligomers HA (OHA), and cross-linked high-molecular-weight HA (CHA). Serial experiments were conducted to verify the influence of HAs on: (i) 12-species periodontal biofilm (formation and pre-existing); (ii) expression of inflammatory cytokines and HA receptors in monocytic (MONO-MAC-6) cells and periodontal ligament fibroblasts (PDLF) with or without exposure to periodontal biofilms; (iii) generation of reactive oxygen species (ROS) in MONO-MAC-6 cells and PDLF with presence of biofilm and HA. Results: The results indicated that HHA and CHA reduced the bacterial counts in a newly formed (4-h) biofilm and in a pre-existing five-day-old biofilm. Without biofilm challenge, OHA triggered inflammatory reaction by increasing IL-1ß and IL-10 levels in MONO-MAC cells and IL-8 in PDLF in a time-dependent manner, whereas CHA suppressed this response by inhibiting the expression of IL-10 in MONO-MAC cells and IL-8 in PDLF. Under biofilm challenge, HA decreased the expression of IL-1ß (most decreasing HHA) and increased IL-10 levels in MONO-MAC-6 cells in a molecular weight dependent manner (most increasing CHA). The interaction between HA and both cells may occur via ICAM-1 receptor. Biofilm stimulus increased ROS levels in MONO-MAC-6 cells and PDLF, but only HHA slightly suppressed the high generation of ROS induced by biofilm stimulation in both cells. Conclusion: Overall, these results indicate that OHA induces inflammation, while HHA and CHA exhibit anti-biofilm, primarily anti-inflammatory, and antioxidant properties in the periodontal environment.


Asunto(s)
Biopelículas , Citocinas , Fibroblastos , Ácido Hialurónico , Especies Reactivas de Oxígeno , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Ácido Hialurónico/farmacología , Ácido Hialurónico/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Fibroblastos/efectos de los fármacos , Citocinas/metabolismo , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Ligamento Periodontal/citología , Ligamento Periodontal/microbiología , Ligamento Periodontal/efectos de los fármacos , Línea Celular , Interleucina-1beta/metabolismo , Interleucina-10/metabolismo
6.
Arch Oral Biol ; 165: 106027, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38870610

RESUMEN

OBJECTIVE: This study examined how range concentrations of Fibroblast Growth Factor-2 (FGF-2) influence the differentiation and activity of human-derived periodontal ligament (hPDLSCs) and alveolar bone-derived stem cells (haBMSCs). DESIGN: hPDLSCs and haBMSCs were cultured with varying concentrations of FGF-2 (0, 1, 2.5, 5, 10, 20 ng/mL) and monitored for osteogenic differentiation through alkaline phosphatase (ALP) activity and quantification of gene expression (qRT-PCR) for osteogenesis markers. Additionally, alizarin red staining and a hydroxyproline colorimetric assay evaluated and quantified osteogenic matrix mineralization and collagen deposition. Statistical analyses were performed using one-way ANOVA or two-way ANOVA for multiple comparisons between groups. RESULTS: At low FGF-2 concentrations, hPDLSCs differentiated toward an osteogenic lineage, whereas higher concentrations of FGF-2 inhibited osteogenesis and promoted fibroblastic differentiation. The effect of FGF-2 at the lowest concentration tested (1 ng/mL) led to significantly higher ALP activity than osteogenically induced positive controls at early time points and equivalent RUNX2 expression at early and later time points. FGF-2 supplementation of haBMSC cultures was sufficient, at all concentrations, to increase ALP activity at an earlier time point. Mineralization of haBMSC cultures increased significantly within 5-20 ng/mL FGF-2 concentrations under basal growth media conditions (α-minimal essential medium supplemented with 15 % fetal bovine serum and 1 % penicillin/streptomycin). CONCLUSIONS: FGF-2 has a dual capacity in promoting osteogenic and fibroblastic differentiation within hPDLSCs contingent upon the dosage and timing of administration, alongside supporting osteogenic differentiation in haBMSCs. These findings underscore the need for precision growth factors dosing when considering the design of biomaterials for periodontal regeneration.


Asunto(s)
Fosfatasa Alcalina , Diferenciación Celular , Factor 2 de Crecimiento de Fibroblastos , Osteogénesis , Ligamento Periodontal , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Células Cultivadas , Fosfatasa Alcalina/metabolismo , Proceso Alveolar/citología , Proceso Alveolar/efectos de los fármacos , Células Madre/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Clin Oral Investig ; 28(7): 399, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922383

RESUMEN

OBJECTIVES: The primary objective of this in vitro experiment was an assessment of proliferative capacity, metabolic activity, and potential cellular detriment of human periodontal ligament cells (hPDL) exposed to cigarette smoke (CS), electronic cigarette vapor (eCV), and heated tobacco product aerosol (HTP), or air (control). MATERIALS AND METHODS: Using a CAD/CAM-designed exposition chamber, hPDL were exposed to CS, eCV, HTP, or air (control) based on the Health Canada Intense Smoking Regime. Cell proliferation, metabolic activity, and cellular detriment were assessed at various time points. RESULTS: Compared to the control, hPDL exposed to CS exhibited significantly decreased cell numbers at all time points. HTP exposure led to reduced cell numbers 48 h and 72 h post-exposure, while eCV-exposed cells showed no significant decrease. The metabolic activity of eCV-treated hPDL was slightly reduced at 7 h but recovered at 24 h and 48 h. In contrast, CS-treated cells exhibited significantly decreased metabolic activity at 24 h and 48 h, and HTP-exposed cells showed a significant decrease after 48 h. Flow cytometry indicated both apoptotic and necrotic cell death following CS exposure, with necrotic cell death being more pronounced. CONCLUSIONS: eCV and HTP demonstrated comparatively reduced detrimental effects on hPDL compared to CS. CLINICAL RELEVANCE: The findings suggest that conventional cigarette smoke poses a substantial risk to periodontal health by significantly impairing cell proliferation and metabolic activity. However, alternatives such as eCV and HTP may offer a comparatively reduced risk.


Asunto(s)
Proliferación Celular , Sistemas Electrónicos de Liberación de Nicotina , Ligamento Periodontal , Productos de Tabaco , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Humanos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Productos de Tabaco/toxicidad , Citometría de Flujo , Técnicas In Vitro , Humo/efectos adversos , Cigarrillo Electrónico a Vapor/toxicidad , Aerosoles , Nicotina/farmacología , Nicotina/toxicidad , Apoptosis/efectos de los fármacos
8.
In Vivo ; 38(4): 1594-1600, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38936890

RESUMEN

BACKGROUND/AIM: Recent reports indicate that sclerostin is secreted by periodontal ligament tissue-derived (PDL) cells during orthodontic force loading and that the secreted sclerostin contributes to bone metabolism. However, the detailed mechanism is poorly understood. The aim of this study was to determine how PDL cells affect bone formation. MATERIALS AND METHODS: Rat periodontal ligament tissue was immunohistochemically stained for sclerostin. Cultured primary PDL cells, osteoblasts, and skin fibroblasts (Sfbs) isolated from rat periodontal ligament tissue, calvaria, and skin, respectively, were examined. Osteoblasts were cultured with control conditioned medium (Cont-CDM) and PDL cell culture conditioned medium (PDL-CDM) for up to 21 days. Cultured osteoblasts were then stained with alkaline phosphatase and von Kossa stain. Osteoblasts cultured in each conditioned medium were analyzed by real-time quantitative PCR for bone Gla protein (Bgp), Axin2, and Ki67 expression. PDL cells used to obtain conditioned medium were analyzed for Sost, Ectodin and Wnt1 expression and compared with expression in Sfbs. RESULTS: Expression of sclerostin was observed in periodontal ligament tissue by immunohistochemical staining. The formation of mineralization nodules was inhibited in PDL-CDM compared with Cont-CDM in osteoblast culture. In PDL-CDM, the expression levels of Bgp and Axin2 in osteoblasts were decreased compared with Cont-CDM. In PDL cells, expression levels of Sost and Ectodin were much higher than in Sfbs; however, expression of Wnt1 was lower in PDL cells compared with Sfbs. CONCLUSION: PDL cells secrete various proteins, including sclerostin and suppress osteogenesis in osteoblasts through the canonical Wnt pathway.


Asunto(s)
Osteoblastos , Osteogénesis , Ligamento Periodontal , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Animales , Osteoblastos/metabolismo , Osteoblastos/citología , Ratas , Medios de Cultivo Condicionados/farmacología , Células Cultivadas , Masculino , Fibroblastos/metabolismo , Diferenciación Celular , Inmunohistoquímica , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Marcadores Genéticos
9.
Life Sci ; 351: 122764, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838817

RESUMEN

The discovery of SARS-CoV-2 RNA in the periodontal tissues of patients who tested positive for COVID-19, 24 days post the initial symptom onset, indicates the oral cavity could serve as a viral reservoir. This research aims to investigate the antiviral capabilities of Ovatodiolide, introducing a novel periodontal ligament organoid model for the study of SARS-CoV-2. We have successfully established a reliable and expandable organoid culture from the human periodontal ligament, showcasing characteristics typical of epithelial stem cells. This organoid model enables us to delve into the lesser-known aspects of dental epithelial stem cell biology and their interactions with viruses and oral tissues. We conducted a series of in vitro and ex vivo studies to examine the inhibitory impacts of Ova on SARS-CoV-2. Our findings indicate that Ovatodiolide molecules can bind effectively to the NRP1 active domain. Our study identifies potential interaction sites for Ovatodiolide (OVA) within the b1 domain of the NRP1 receptor. We generated point mutations at this site, resulting in three variants: Y25A, T44A, and a double mutation Y25A/T44A. While these mutations did not alter the binding activity of the spike protein, they did impact the concentration of OVA required for inhibition. The inhibitory concentrations for these variants are 15 µM for Y25A, 15.2 µM for T44A, and 25 µM for the double mutant Y25A/T44A. In addition, in vitro inhibition experiments demonstrate that the EC50 of Ova against the main protease (Mpro) of the SARS-CoV-2 virus is 7.316 µM. Our in vitro studies and the use of the periodontal ligament organoid model highlight Ovatodiolide's potential as a small molecule therapeutic agent that impedes the virus's ability to bind to the Neuropilin-1 receptor on host cells. The research uncovers various pathways and biochemical strategies through which Ovatodiolide may function as an effective antiviral small molecule drug.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Neuropilina-1 , Organoides , Ligamento Periodontal , SARS-CoV-2 , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Ligamento Periodontal/virología , Humanos , Organoides/virología , Organoides/metabolismo , Organoides/efectos de los fármacos , Neuropilina-1/metabolismo , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , COVID-19/metabolismo , COVID-19/virología , Diterpenos/farmacología
10.
BMC Oral Health ; 24(1): 733, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926705

RESUMEN

BACKGROUND: Human periodontal ligament stem cells (hPDLSCs) are important candidate seed cells for periodontal tissue engineering, but the presence of lipopolysaccharide(LPS) in periodontal tissues inhibits the self-renewal and osteogenic differentiation of hPDLSCs. Our previous studies demonstrated that TAZ is a positive regulator of osteogenic differentiation of hPDLSCs, but whether TAZ can protect hPDLSCs from LPS is still unknown. The present study aimed to explore the regulatory effect of TAZ on the osteogenic differentiation of hPDLSCs in an LPS-induced inflammatory model, and to preliminarily reveal the molecular mechanisms related to the NF-κB signaling pathway. METHODS: LPS was added to the culture medium of hPDLSCs. The influence of LPS on hPDLSC proliferation was analyzed by CCK-8 assays. The effects of LPS on hPDLSC osteogenic differentiation were detected by Alizarin Red staining, ALP staining, Western Blot and qRT-PCR analysis of osteogenesis-related genes. The effects of LPS on the osteogenic differentiation of hPDLSCs with TAZ overexpressed or knocked down via lentivirus were analyzed. NF-κB signaling in hPDLSCs was analyzed by Western Blot and immunofluorescence. RESULTS: LPS inhibited the osteogenic differentiation of hPDLSCs, inhibited TAZ expression, and activated the NF-κB signaling pathway. Overexpressing TAZ in hPDLSCs partly reversed the negative effects of LPS on osteogenic differentiation and inhibited the activation of the NF-κB pathway by LPS. TAZ knockdown enhanced the inhibitory effects of LPS on osteogenesis. CONCLUSION: Overexpressing TAZ could partly reverse the inhibitory effects of LPS on the osteogenic differentiation of hPDLSCs, possibly through inhibiting the NF-κB signaling pathway. TAZ is a potential target for improving hPDLSC-based periodontal tissue regeneration in inflammatory environments.


Asunto(s)
Diferenciación Celular , Lipopolisacáridos , FN-kappa B , Osteogénesis , Ligamento Periodontal , Transducción de Señal , Células Madre , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Lipopolisacáridos/farmacología , Osteogénesis/efectos de los fármacos , FN-kappa B/metabolismo , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Factores de Transcripción/metabolismo , Células Cultivadas , Proliferación Celular/efectos de los fármacos , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Western Blotting
11.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891804

RESUMEN

The periodontium comprising periodontal ligament (PDL), gingiva, and epithelium play crucial roles in maintaining tooth integrity and function. Understanding tissue cellular composition and gene expression is crucial for illuminating periodontal pathophysiology. This study aimed to identify tissue-specific markers via scRNA-Seq. Primary human PDL, gingiva, and epithelium tissues (n = 7) were subjected to cell hashing and sorting. scRNA-Seq library preparation using 10× Genomics protocol and Illumina sequencing was conducted. The analysis was performed using Cellranger (v3.1.0), with downstream analysis via R packages Seurat (v5.0.1) and SCORPIUS (v1.0.9). Investigations identified eight distinct cellular clusters, revealing the ubiquitous presence of epithelial and gingival cells. PDL cells evolved in two clusters with numerical superiority. The other clusters showed varied predominance regarding gingival and epithelial cells or an equitable distribution of both. The cluster harboring most cells mainly consisted of PDL cells and was present in all donors. Some of the other clusters were also tissue-inherent, while the presence of others was environmentally influenced, revealing variability across donors. Two clusters exhibited genetic profiles associated with tissue development and cellular integrity, respectively, while all other clusters were distinguished by genes characteristic of immune responses. Developmental trajectory analysis uncovered that PDL cells may develop after epithelial and gingival cells, suggesting the inherent PDL cell-dominated cluster as a final developmental stage. This single-cell RNA sequencing study delineates the hierarchical organization of periodontal tissue development, identifies tissue-specific markers, and reveals the influence of environmental factors on cellular composition, advancing our understanding of periodontal biology and offering potential insights for therapeutic interventions.


Asunto(s)
Encía , Ligamento Periodontal , Análisis de la Célula Individual , Transcriptoma , Humanos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Encía/metabolismo , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica , Epitelio/metabolismo , Células Epiteliales/metabolismo , Femenino , Masculino
12.
Cell Biochem Funct ; 42(5): e4069, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38940455

RESUMEN

Stem cells demonstrate differentiation and regulatory functions. In this discussion, we will explore the impacts of cell culture density on stem cell proliferation, adipogenesis, and regulatory abilities. This study aimed to investigate the impact of the initial culture density of human periodontal ligament stem cells (hPDLSCs) on the adipogenic differentiation of autologous cells. Our findings indicate that the proliferation rate of hPDLSCs increased with increasing initial cell density (0.5-8 × 104 cells/cm2). After adipogenic differentiation induced by different initial cell densities of hPDLSC, we found that the mean adipose concentration and the expression levels of lipoprotein lipase (LPL), CCAAT/enhancer binding protein α (CEBPα), and peroxisome proliferator-activated receptor γ (PPAR-γ) genes all increased with increasing cell density. To investigate the regulatory role of hPDLSCs in the adipogenic differentiation of other cells, we used secreted exocrine vesicles derived from hPDLSCs cultivated at different initial cell densities of 50 µg/mL to induce the adipogenic differentiation of human bone marrow stromal cells. We also found that the mean adipose concentration and expression of LPL, CEBPα, and PPARγ genes increased with increasing cell density, with an optimal culture density of 8 × 104 cells/cm2. This study provides a foundation for the application of adipogenic differentiation in stem cells.


Asunto(s)
Adipogénesis , Diferenciación Celular , Ligamento Periodontal , Células Madre , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Células Madre/citología , Células Madre/metabolismo , PPAR gamma/metabolismo , PPAR gamma/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Cultivadas , Lipoproteína Lipasa/metabolismo , Lipoproteína Lipasa/genética , Proliferación Celular , Recuento de Células , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética
13.
Braz Oral Res ; 38: e037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747824

RESUMEN

Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) can differentiate into osteoblasts, indicating that both are potential candidates for bone tissue engineering. Osteogenesis is influenced by many environmental factors, one of which is lipopolysaccharide (LPS). LPS-induced NF-κB activity affects the osteogenic potencies of different types of MSCs differently. This study evaluated the effect of LPS-induced NF-κB activity and its inhibition in DPSCs and PDLSCs. DPSCs and PDLSCs were cultured in an osteogenic medium, pretreated with/without NF-κB inhibitor Bay 11-7082, and treated with/without LPS. Alizarin red staining was performed to assess bone nodule formation, which was observed under an inverted light microscope. NF-κB and alkaline phosphatase (ALP) activities were measured to examine the effect of Bay 11-7082 pretreatment and LPS supplementation on osteogenic differentiation of DPSCs and PDLSCs. LPS significantly induced NF-κB activity (p = 0.000) and reduced ALP activity (p = 0.000), which inhibited bone nodule formation in DPSCs and PDLSCs. Bay 11-7082 inhibited LPS-induced NF-κB activity, and partially maintained ALP activity and osteogenic potency of LPS-supplemented DPSCs and PDLSCs. Thus, inhibition of LPS-induced NF-κB activity can maintain the osteogenic potency of DPSCs and PDLSCs.


Asunto(s)
Fosfatasa Alcalina , Diferenciación Celular , Pulpa Dental , Lipopolisacáridos , FN-kappa B , Nitrilos , Osteogénesis , Ligamento Periodontal , Células Madre , Humanos , Lipopolisacáridos/farmacología , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , FN-kappa B/metabolismo , Fosfatasa Alcalina/análisis , Diferenciación Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/fisiología , Células Cultivadas , Nitrilos/farmacología , Sulfonas/farmacología , Reproducibilidad de los Resultados , Factores de Tiempo , Adulto Joven , Adolescente
14.
Clin Oral Investig ; 28(5): 294, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698252

RESUMEN

OBJECTIVES: To compare ultrasonic scaler prototypes based on a planar piezoelectric transducer with different working frequencies featuring a titanium (Ti-20, Ti-28, and Ti-40) or stainless steel (SS-28) instrument, with a commercially available scaler (com-29) in terms of biofilm removal and reformation, dentine surface roughness and adhesion of periodontal fibroblasts. MATERIALS AND METHODS: A periodontal multi-species biofilm was formed on specimens with dentine slices. Thereafter specimens were instrumented with scalers in a periodontal pocket model or left untreated (control). The remaining biofilms were quantified and allowed to reform on instrumented dentine slices. In addition, fibroblasts were seeded for attachment evaluation after 72 h of incubation. Dentine surface roughness was analyzed before and after instrumentation. RESULTS: All tested instruments reduced the colony-forming unit (cfu) counts by about 3 to 4 log10 and the biofilm quantity (each p < 0.01 vs. control), but with no statistically significant difference between the instrumented groups. After 24-hour biofilm reformation, no differences in cfu counts were observed between any groups, but the biofilm quantity was about 50% in all instrumented groups compared to the control. The attachment of fibroblasts on instrumented dentine was significantly higher than on untreated dentine (p < 0.05), with the exception of Ti-20. The dentine surface roughness was not affected by any instrumentation. CONCLUSIONS: The planar piezoelectric scaler prototypes are able to efficiently remove biofilm without dentine surface alterations, regardless of the operating frequency or instrument material. CLINICAL RELEVANCE: Ultrasonic scalers based on a planar piezoelectric transducer might be an alternative to currently available ultrasonic scalers.


Asunto(s)
Biopelículas , Raspado Dental , Dentina , Fibroblastos , Ligamento Periodontal , Propiedades de Superficie , Titanio , Humanos , Raspado Dental/instrumentación , Técnicas In Vitro , Dentina/microbiología , Ligamento Periodontal/citología , Transductores , Adhesión Celular , Acero Inoxidable , Diseño de Equipo , Terapia por Ultrasonido/instrumentación
15.
Cell Biochem Funct ; 42(4): e4058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38783647

RESUMEN

We aimed to evaluate the materials based on 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate tri-n-butylborane (Super-bond [SB]) and nano hydroxyapatite (naHAp) for the repair of perforation at pulp chamber floor (PPF) in vitro and in vivo models. SB and naHAp were mixed in the mass ratio of 10% or 30% to produce naHAp/SB. Human periodontal ligament stem cells (HPDLSCs) were cultured on resin discs of SB or naHAp/SB to analyze the effects of naHAp/SB on cell adhesion, proliferation, and cementoblastic differentiation. A rat PPF model was treated with SB or naHAp/SB to examine the effects of naHAp/SB on the healing of defected cementum and periodontal ligament (PDL) at the site of PPF. HPDLSCs were spindle-shaped and adhered to all resin discs. Changing the resin from SB to naHAp/SB did not significantly alter cell proliferation. Both 10% and 30% naHAp/SB were more effective than SB in promoting cementoblastic differentiation of HPDLSCs. In the rat PPF model, 30% naHAp/SB was more effective than SB in promoting the formation Sharpey's fiber-like structures with expression of the PDL-related marker and cementum-like structures with expression of cementum-related markers. In conclusion, 30% naHAp/SB can be the new restorative material for PPF because it exhibited the abilities of adhering to dentin and healing of defected periodontal tissue.


Asunto(s)
Compuestos de Boro , Durapatita , Metacrilatos , Ligamento Periodontal , Animales , Ratas , Humanos , Durapatita/química , Durapatita/farmacología , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Compuestos de Boro/farmacología , Compuestos de Boro/química , Metacrilatos/química , Metacrilatos/farmacología , Diferenciación Celular/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Masculino , Proliferación Celular/efectos de los fármacos , Cavidad Pulpar/metabolismo , Cavidad Pulpar/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Células Cultivadas , Ratas Sprague-Dawley , Metilmetacrilatos/química , Metilmetacrilatos/farmacología , Adhesión Celular/efectos de los fármacos
16.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731950

RESUMEN

The periodontal ligament (PDL) is a highly specialized fibrous tissue comprising heterogeneous cell populations of an intricate nature. These complexities, along with challenges due to cell culture, impede a comprehensive understanding of periodontal pathophysiology. This study aims to address this gap, employing single-cell RNA sequencing (scRNA-seq) technology to analyze the genetic intricacies of PDL both in vivo and in vitro. Primary human PDL samples (n = 7) were split for direct in vivo analysis and cell culture under serum-containing and serum-free conditions. Cell hashing and sorting, scRNA-seq library preparation using the 10x Genomics protocol, and Illumina sequencing were conducted. Primary analysis was performed using Cellranger, with downstream analysis via the R packages Seurat and SCORPIUS. Seven distinct PDL cell clusters were identified comprising different cellular subsets, each characterized by unique genetic profiles, with some showing donor-specific patterns in representation and distribution. Formation of these cellular clusters was influenced by culture conditions, particularly serum presence. Furthermore, certain cell populations were found to be inherent to the PDL tissue, while others exhibited variability across donors. This study elucidates specific genes and cell clusters within the PDL, revealing both inherent and context-driven subpopulations. The impact of culture conditions-notably the presence of serum-on cell cluster formation highlights the critical need for refining culture protocols, as comprehending these influences can drive the creation of superior culture systems vital for advancing research in PDL biology and regenerative therapies. These discoveries not only deepen our comprehension of PDL biology but also open avenues for future investigations into uncovering underlying mechanisms.


Asunto(s)
Ligamento Periodontal , Análisis de la Célula Individual , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Análisis de la Célula Individual/métodos , Células Cultivadas , RNA-Seq/métodos , Análisis de Secuencia de ARN/métodos , Masculino , Femenino , Perfilación de la Expresión Génica/métodos , Adulto , Transcriptoma , Análisis de Expresión Génica de una Sola Célula
17.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727958

RESUMEN

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Asunto(s)
Fosfatasas de Especificidad Dual , Inflamación , Lipopolisacáridos , MicroARNs , Ligamento Periodontal , Células Madre , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Supervivencia Celular/genética , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Periodontitis/genética , Periodontitis/metabolismo , Periodontitis/patología , Transducción de Señal/genética , Células Madre/metabolismo
18.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 40-47, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814236

RESUMEN

Periodontal ligament stem cells (PDLSCs) show plasticity towards the adipogenic lineage; however, little has been done on the participation of epigenetic mechanisms. Histone acetylation is a dynamic process, though balanced by histone acetyltransferases (HATs) and histone deacetylases (HDACs) activities. This process can be halted by HDACs inhibitors, such as trichostatin A (TSA) and valproic acid (VPA). This study aimed to determine the role of HDACs class I in adipogenic differentiation of PDL cells. PDLSCs were treated with TSA at concentrations of 100, 200, and 250 nM, or VPA at 1, 4 and 8 mM. Cell viability was assessed using MTT assays. Gene expression of pluripotency markers (NANOG, OCT4, SOX2), HAT genes (p300, GCN5), and HDACs genes (HDAC1-3) was analyzed by RT-qPCR. Adipogenic differentiation was evaluated via oil red O staining, and acetylation of histone H3 lysine 9 (H3K9ac) was examined by Western blot. VPA treatment resulted in a 60% reduction in cell proliferation, compared to a 50% when using TSA. Cell viability was not affected by either inhibitor. Furthermore, both TSA and VPA induced adipogenic differentiation, through an increase in the deposition of lipid droplets and in GCN5 and p300 expression were observed. Western blot analysis showed that TSA increased H3K9ac levels on adipogenic differentiation of PDLSCs. These findings highlight the potential of HDAC inhibitors as a tool for modulating H3K9 acetylation status and thus influencing adipogenic differentiation of PDLCs.


Asunto(s)
Adipogénesis , Diferenciación Celular , Supervivencia Celular , Inhibidores de Histona Desacetilasas , Ligamento Periodontal , Ácido Valproico , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Ácido Valproico/farmacología , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Acetilación/efectos de los fármacos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Ácidos Hidroxámicos/farmacología , Células Cultivadas , Histonas/metabolismo , Proliferación Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo
19.
Int J Biol Macromol ; 270(Pt 2): 132416, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754653

RESUMEN

Inflammation-related bone defects often lead to poor osteogenesis. Therefore, it is crucial to reduce the inflammation response and promote the osteogenic differentiation of stem/progenitor cells to revitalize bone physiology. Here, a kind of hybrid nano-hydroxyapatite was prepared using the confined phosphate ion release method with the participation of fucoidan, a marine-sourced polysaccharide with anti-inflammation property. The physicochemical analyses confirmed that the fucoidan hybrid nano-hydroxyapatite (FC/n-HA) showed fine needle-like architectures. With a higher amount of fucoidan, the crystal size and crystallinity of the FC/n-HA reduced while the liquid dispersibility was improved. Cell experiences showed that FC/n-HA had an optimal cytocompatibility at concentration of 50 µg/mL. Moreover, the lipopolysaccharide-induced cellular inflammatory model with PDLSCs was established and used to evaluate the anti-inflammatory and osteogenic properties. For the 1%FC/n-HA group, the expression levels of TNF-α and IL-1ß were significantly reduced at 24 h, while the expression of alkaline phosphatase of PDLSCs was significantly promoted at days 3 and 7, and calcium precipitates was enhanced at 21 days. In this study, the FC/n-HA particles showed effective anti-inflammatory properties and facilitated osteogenic differentiation of PDLSCs, indicating which has potential application in treating bone defects associated with inflammation, such as periodontitis.


Asunto(s)
Diferenciación Celular , Durapatita , Nanopartículas , Osteogénesis , Ligamento Periodontal , Polisacáridos , Células Madre , Humanos , Osteogénesis/efectos de los fármacos , Polisacáridos/farmacología , Polisacáridos/química , Durapatita/química , Durapatita/farmacología , Diferenciación Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Nanopartículas/química , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/patología , Células Cultivadas
20.
Arch Oral Biol ; 163: 105980, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692246

RESUMEN

OBJECTIVE: To determine the effect of hyaluronic acid (HA) degradation by hyaluronidase (HYAL) in inhibiting collagen fiber production by rat periodontal ligament cells (rPDLCs). DESIGN: Primary rPDLCs were isolated from the euthanized rats and used for in vitro experiments. The appropriate HYAL concentration was determined through CCK-8 testing for cytotoxicity detection and Alizarin red staining for mineralization detection. RT-qPCR and western blot assays were conducted to assess the effect of HYAL, with or without TGF-ß, on generation of collagen fiber constituents and expression of actin alpha 2, smooth muscle (ACTA2) of rPDLCs. RESULTS: Neither cell proliferation nor mineralization were significantly affected by treatment with 4 U/mL HYAL. HYAL (4 U/mL) alone downregulated type I collagen fiber (Col1a1 and Col1a2) and Acta2 mRNA expression; however, ACTA2 and COL1 protein levels were only downregulated by HYAL treatment after TGF-ß induction. CONCLUSIONS: Treatment of rPDLCs with HYAL can inhibit TGF-ß-induced collagen matrix formation and myofibroblast transformation.


Asunto(s)
Proliferación Celular , Colágeno , Fibroblastos , Hialuronoglucosaminidasa , Miofibroblastos , Ligamento Periodontal , Factor de Crecimiento Transformador beta , Animales , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/metabolismo , Hialuronoglucosaminidasa/farmacología , Ratas , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Colágeno/metabolismo , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Ácido Hialurónico/farmacología , Células Cultivadas , Ratas Sprague-Dawley , Actinas/metabolismo , Western Blotting , Técnicas In Vitro , Colágeno Tipo I/metabolismo , Biomarcadores/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Masculino , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA