Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 910
Filtrar
1.
Sci Rep ; 14(1): 21680, 2024 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289451

RESUMEN

Metastasis is the major cause of treatment failure in patients with prostate adenocarcinoma (PRAD). Diverse programmed cell death (PCD) patterns play an important role in tumor metastasis and hold promise as predictive indicators for PRAD metastasis. Using the LASSO Cox regression method, we developed PCD score (PCDS) based on differentially expressed genes (DEGs) associated with PCD. Clinical correlation, external validation, functional enrichment analysis, mutation landscape analysis, tumor immune environment analysis, and immunotherapy analysis were conducted. The role of Prostaglandin D2 Synthase (PTGDS) in PRAD was examined through in vitro experiments, single-cell, and Mendelian randomization (MR) analysis. PCDS is elevated in patients with higher Gleason scores, higher T stage, biochemical recurrence (BCR), and higher prostate-specific antigen (PSA) levels. Individuals with higher PCDS are prone to metastasis, metastasis after BCR, BCR, and castration resistance. Moreover, PRAD patients with low PCDS responded positively to immunotherapy. Random forest analysis and Mendelian randomization analysis identified PTGDS as the top gene associated with PRAD metastasis and in vitro experiments revealed that PTGDS was considerably downregulated in PRAD cells against normal prostate cells. Furthermore, the overexpression of PTGDS was found to suppress the migration, invasion, proliferationof DU145 and LNCaP cells. To sum up, PCDS may be a useful biomarker for forecasting the possibility of metastasis, recurrence, castration resistance, and the efficacy of immunotherapy in PRAD patients. Additionally, PTGDS was identified as a viable therapeutic target for the management of PRAD.


Asunto(s)
Adenocarcinoma , Oxidorreductasas Intramoleculares , Lipocalinas , Metástasis de la Neoplasia , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Análisis de la Aleatorización Mendeliana , Clasificación del Tumor , Muerte Celular , Inmunoterapia/métodos
2.
Methods Mol Biol ; 2780: 345-359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38987477

RESUMEN

Chemical protein knockdown technology using proteolysis-targeting chimeras (PROTACs) to hijack the endogenous ubiquitin-proteasome system is a powerful strategy to degrade disease-related proteins. This chapter describes in silico design of a hematopoietic prostaglandin D synthase (H-PGDS) degrader, PROTAC(H-PGDS), using a docking simulation of the ternary complex of H-PGDS/PROTAC/E3 ligase as well as the synthesis of the designed PROTAC(H-PGDS)s and evaluation of their H-PGDS degradation activity.


Asunto(s)
Oxidorreductasas Intramoleculares , Lipocalinas , Simulación del Acoplamiento Molecular , Proteolisis , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Humanos , Lipocalinas/metabolismo , Lipocalinas/química , Simulación por Computador , Diseño de Fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química
3.
Curr Biol ; 34(14): R670-R672, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39043135

RESUMEN

Marques and Gallazzini introduce the lipocalin family of small extracellular proteins, discussing their structure, functions, and roles in disease.


Asunto(s)
Lipocalinas , Lipocalinas/metabolismo , Humanos , Animales
4.
Parasites Hosts Dis ; 62(2): 205-216, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38835261

RESUMEN

Sigma-class glutathione transferase (GST) proteins with dual GST and prostaglandin synthase (PGS) activities play a crucial role in the establishment of Clonorchis sinensis infection. Herein, we analyzed the structural and enzymatic properties of sigma-class GST (CsGST-σ) proteins to obtain insight into their antioxidant and immunomodulatory functions in comparison with mu-class GST (CsGST-µ) proteins. CsGST-σ proteins conserved characteristic structures, which had been described in mammalian hematopoietic prostaglandin D2 synthases. Recombinant forms of these CsGST-σ and CsGST-µ proteins expressed in Escherichia coli exhibited considerable degrees of GST and PGS activities with substantially different specific activities. All recombinant proteins displayed higher affinities toward prostaglandin H2 (PGS substrate; average Km of 30.7 and 3.0 µm for prostaglandin D2 [PGDS] and E2 synthase [PGES], respectively) than those toward CDNB (GST substrate; average Km of 1,205.1 µm). Furthermore, the catalytic efficiency (Kcat/Km) of the PGDS/PGES activity was higher than that of GST activity (average Kcat/Km of 3.1, 0.7, and 7.0×10-3 s-1µm-1 for PGDS, PGES, and GST, respectively). Our data strongly suggest that the C. sinensis sigma- and mu-class GST proteins are deeply involved in regulating host immune responses by generating PGD2 and PGE2 in addition to their roles in general detoxification.


Asunto(s)
Clonorchis sinensis , Glutatión Transferasa , Oxidorreductasas Intramoleculares , Glutatión Transferasa/metabolismo , Glutatión Transferasa/química , Glutatión Transferasa/genética , Clonorchis sinensis/enzimología , Clonorchis sinensis/genética , Animales , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Lipocalinas/metabolismo , Lipocalinas/genética , Lipocalinas/química , Lipocalinas/inmunología , Escherichia coli/genética , Prostaglandina H2/metabolismo , Prostaglandina H2/química , Cinética
5.
Biochem Cell Biol ; 102(4): 342-345, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696838

RESUMEN

Lipocalin-2 (LCN2), an effector molecule of the innate immune system that is small enough to be tagged as a reporter molecule, can be coupled with the ferric ion through a siderophore such as enterobactin (Ent). Mintbody (modification-specific intracellular antibody) can track a posttranslational protein modification in epigenetics. We constructed plasmids expressing the LCN2 hybrid of mintbody to examine the potential of LCN2 as a novel reporter for magnetic resonance imaging (MRI). Cells expressing the LCN2 hybrid of mintbody showed proper expression and localization of the hybrid and responded reasonably to Ent, suggesting their potential for in vivo study by MRI.


Asunto(s)
Lipocalina 2 , Lipocalinas , Lipocalina 2/metabolismo , Lipocalina 2/genética , Humanos , Lipocalinas/metabolismo , Lipocalinas/genética , Imagen por Resonancia Magnética , Genes Reporteros , Proteínas de Fase Aguda/metabolismo , Proteínas de Fase Aguda/genética , Enterobactina/metabolismo , Animales , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética
6.
J Affect Disord ; 359: 241-252, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38768820

RESUMEN

BACKGROUND: Postpartum depression (PPD) is a serious psychiatric disorder that has significantly adverse impacts on maternal health. Metabolic abnormalities in the brain are associated with numerous neurological disorders, yet the specific metabolic signaling pathways and brain regions involved in PPD remain unelucidated. METHODS: We performed behavioral test in the virgin and postpartum mice. We used mass spectrometry imaging (MSI) and targeted metabolomics analyses to investigate the metabolic alternation in the brain of GABAAR Delta-subunit-deficient (Gabrd-/-) postpartum mice, a specific preclinical animal model of PPD. Next, we performed mechanism studies including qPCR, Western blot, immunofluorescence staining, electron microscopy and primary astrocyte culture. In the specific knockdown and rescue experiments, we injected the adeno-associated virus into the central amygdala (CeA) of female mice. RESULTS: We identified that prostaglandin D2 (PGD2) downregulation in the CeA was the most outstanding alternation in PPD, and then validated that lipocalin-type prostaglandin D synthase (L-PGDS)/PGD2 downregulation plays a causal role in depressive behaviors derived from PPD in both wild-type and Gabrd-/- mice. Furthermore, we verified that L-PGDS/PGD2 signaling dysfunction-induced astrocytes atrophy is mediated by Src phosphorylation both in vitro and in vivo. LIMITATIONS: L-PGDS/PGD2 signaling dysfunction may be only responsible for the depressive behavior rather than maternal behaviors in the PPD, and it remains to be seen whether this mechanism is applicable to all depression types. CONCLUSION: Our study identified abnormalities in the L-PGDS/PGD2 signaling in the CeA, which inhibited Src phosphorylation and induced astrocyte atrophy, ultimately resulting in the development of PPD in mice.


Asunto(s)
Astrocitos , Atrofia , Depresión Posparto , Modelos Animales de Enfermedad , Prostaglandina D2 , Transducción de Señal , Animales , Astrocitos/patología , Astrocitos/metabolismo , Femenino , Depresión Posparto/patología , Depresión Posparto/metabolismo , Ratones , Transducción de Señal/fisiología , Prostaglandina D2/metabolismo , Núcleo Amigdalino Central/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Familia-src Quinasas/metabolismo , Ratones Noqueados
7.
Transplantation ; 108(7): 1551-1557, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557650

RESUMEN

BACKGROUND: Machine perfusion is the preferred preservation method for deceased donor kidneys. Perfusate fluid, which contains a complex mixture of components, offers potential insight into the organ's viability and function. This study explored immune cell release, particularly tissue-resident lymphocytes (TRLs), during donor kidney machine perfusion and its correlation with injury markers. METHODS: Perfusate samples from hypothermic machine perfusion (HMP; n = 26) and normothermic machine perfusion (NMP; n = 16) of human donor kidneys were analyzed for TRLs using flow cytometry. Residency was defined by expressions of CD69, CD103, and CD49as. TRL release was quantified exclusively in NMP. Additionally, levels of cell-free DNA, neutrophil gelatinase-associated lipocalin, and soluble E-cadherin (sE-cadherin) were measured in NMP supernatants with quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS: Both HMP and NMP samples contained a heterogeneous population of TRLs, including CD4 + tissue-resident memory T cells, CD8 + tissue-resident memory T cells, tissue-resident natural killer cells, tissue-resident natural killer T cells, and helper-like innate lymphoid cells. Median TRL proportions among total CD45 + lymphocytes were 0.89% (NMP) and 0.84% (HMP). TRL quantities in NMP did not correlate with donor characteristics, perfusion parameters, posttransplant outcomes, or cell-free DNA and neutrophil gelatinase-associated lipocalin concentrations. However, CD103 + TRL release positively correlated with the release of sE-cadherin, the ligand for the CD103 integrin. CONCLUSIONS: Human donor kidneys release TRLs during both HMP and NMP. The release of CD103 + TRLs was associated with the loss of their ligand sE-cadherin but not with general transplant injury biomarkers.


Asunto(s)
Antígenos CD , Trasplante de Riñón , Riñón , Lipocalina 2 , Preservación de Órganos , Perfusión , Humanos , Trasplante de Riñón/métodos , Perfusión/métodos , Masculino , Persona de Mediana Edad , Femenino , Lipocalina 2/metabolismo , Lipocalina 2/análisis , Adulto , Preservación de Órganos/métodos , Antígenos CD/metabolismo , Riñón/inmunología , Riñón/irrigación sanguínea , Donantes de Tejidos , Linfocitos/inmunología , Linfocitos/metabolismo , Biomarcadores/metabolismo , Cadherinas/metabolismo , Anciano , Cadenas alfa de Integrinas/metabolismo , Citometría de Flujo , Lipocalinas/metabolismo , Hipotermia Inducida
8.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673873

RESUMEN

The lipocalin proteins are a large family of small extracellular proteins that demonstrate significant heterogeneity in sequence similarity and have highly conserved crystal structures. They have a variety of functions, including acting as carrier proteins, transporting retinol, participating in olfaction, and synthesizing prostaglandins. Importantly, they also play a critical role in human diseases, including cancer. Additionally, they are involved in regulating cellular homeostasis and immune response and dispensing various compounds. This comprehensive review provides information on the lipocalin family, including their structure, functions, and implications in various diseases. It focuses on selective important human lipocalin proteins, such as lipocalin 2 (LCN2), retinol binding protein 4 (RBP4), prostaglandin D2 synthase (PTGDS), and α1-microglobulin (A1M).


Asunto(s)
Oxidorreductasas Intramoleculares , Lipocalinas , Humanos , Lipocalinas/metabolismo , Lipocalinas/química , Lipocalinas/genética , Neoplasias/metabolismo , Relación Estructura-Actividad , Animales
9.
Int Immunopharmacol ; 131: 111812, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38493698

RESUMEN

BACKGROUND: Lipocalin 13 (LCN13) is a member of the lipocalin family that consists of numerous secretory proteins. LCN13 high-expression has been reported to possess anti-obesity and anti-diabetic effects. Although metabolic dysfunction-associated steatotic liver diseases (MASLD) including metabolic dysfunction-associated steatohepatitis (MASH) are frequently associated with obesity and insulin resistance, the functional role of endogenous LCN13 and the therapeutic effect of LCN13 in MASH and related metabolic deterioration have not been evaluated. METHODS: We employed a methionine-choline deficient diet model and MASH cell models to investigate the role of LCN13 in MASH development. We sought to explore the effects of LCN13 on lipid metabolism and inflammation in hepatocytes under PA/OA exposure using Western blotting, real-time RT-PCR, enzyme-linked immunosorbent assay, hematoxylin and eosin staining, oil red O staining. Using RNA sequencing, chromatin immunoprecipitation assay, and luciferase reporter assays to elucidate whether farnesoid X receptor (FXR) regulates human LCN13 transcription as a transcription factor. RESULTS: Our study found that LCN13 was down-regulated in MASH patients, MASH mouse and cell models. LCN13 overexpression in hepatocyte cells significantly inhibited lipid accumulation and inflammation in vitro. Conversely, LCN13 downregulation significantly exacerbated lipid accumulation and inflammatory responses in vivo and in vitro. Mechanistically, we provided the first evidence that LCN13 was transcriptionally activated by FXR, representing a novel direct target gene of FXR. And the key promoter region of LCN13 binds to FXR was also elucidated. We further revealed that LCN13 overexpression via FXR activation ameliorates hepatocellular lipid accumulation and inflammation in vivo and in vitro. Furthermore, LCN13-down-regulated mice exhibited aggravated MASH phenotypes, including increased hepatic lipid accumulation and inflammation. CONCLUSION: Our findings provide new insight regarding the protective role of LCN13 in MASH development and suggest an innovative therapeutic strategy for treating MASH or related metabolic disorders.


Asunto(s)
Carcinoma Hepatocelular , Hígado Graso , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Hígado Graso/metabolismo , Inflamación/metabolismo , Lípidos , Lipocalinas/metabolismo , Hígado , Neoplasias Hepáticas/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo
10.
J Med Chem ; 67(7): 5144-5167, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38525852

RESUMEN

Lipid transfer proteins (LTPs) are crucial players in nonvesicular lipid trafficking. LTPs sharing a lipocalin lipid transfer domain (lipocalin-like proteins) have a wide range of biological functions, such as regulating immune responses and cell proliferation, differentiation, and death as well as participating in the pathogenesis of inflammatory, metabolic, and neurological disorders and cancer. Therefore, the development of small-molecule inhibitors targeting these LTPs is important and has potential clinical applications. Herein, we summarize the structure and function of lipocalin-like proteins, mainly including retinol-binding proteins, lipocalins, and fatty acid-binding proteins and discuss the recent advances on small-molecule inhibitors for these protein families and their applications in disease treatment. The findings of our Perspective can provide guidance for the development of inhibitors of these LTPs and highlight the challenges that might be faced during the procedures.


Asunto(s)
Lipocalinas , Proteínas , Lipocalinas/metabolismo , Proteínas/metabolismo , Proteínas de Unión a Ácidos Grasos , Lípidos
11.
Sci Signal ; 17(824): eadg9256, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377179

RESUMEN

High-density lipoprotein (HDL) nanoparticles promote endothelial cell (EC) function and suppress inflammation, but their utility in treating EC dysfunction has not been fully explored. Here, we describe a fusion protein named ApoA1-ApoM (A1M) consisting of apolipoprotein A1 (ApoA1), the principal structural protein of HDL that forms lipid nanoparticles, and ApoM, a chaperone for the bioactive lipid sphingosine 1-phosphate (S1P). A1M forms HDL-like particles, binds to S1P, and is signaling competent. Molecular dynamics simulations showed that the S1P-bound ApoM moiety in A1M efficiently activated EC surface receptors. Treatment of human umbilical vein ECs with A1M-S1P stimulated barrier function either alone or cooperatively with other barrier-enhancing molecules, including the stable prostacyclin analog iloprost, and suppressed cytokine-induced inflammation. A1M-S1P injection into mice during sterile inflammation suppressed neutrophil influx and inflammatory mediator secretion. Moreover, systemic A1M administration led to a sustained increase in circulating HDL-bound S1P and suppressed inflammation in a murine model of LPS-induced endotoxemia. We propose that A1M administration may enhance vascular endothelial barrier function, suppress cytokine storm, and promote resilience of the vascular endothelium.


Asunto(s)
Apolipoproteínas , Lipocalinas , Humanos , Ratones , Animales , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacología , Lipocalinas/metabolismo , Lipocalinas/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Apolipoproteínas M , Inflamación , Lipoproteínas HDL/farmacología , Lipoproteínas HDL/metabolismo , Lisofosfolípidos/farmacología , Lisofosfolípidos/metabolismo , Esfingosina
12.
Biomed Pharmacother ; 171: 116091, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171248

RESUMEN

Lipocalin 2 (LCN2) is a secreted glycoprotein that is produced by immune cells, including neutrophils and macrophages. It serves various functions such as transporting hydrophobic ligands across the cellular membrane, regulating immune responses, keeping iron balance, and fostering epithelial cell differentiation. LCN2 plays a crucial role in several physiological processes. LCN2 expression is upregulated in a variety of human diseases and cancers. High levels of LCN2 are specifically linked to breast cancer (BC) cell proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, chemotherapy resistance, and prognosis. As a result, LCN2 has gained attention as a potential therapeutic target for BC. This article offered an in-depth review of the advancement of LCN2 in the context of BC occurrence and development.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Lipocalina 2/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas de Fase Aguda/metabolismo , Lipocalinas/metabolismo , Macrófagos/metabolismo
13.
Blood Purif ; 53(4): 316-324, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37992697

RESUMEN

INTRODUCTION: The present study aimed to monitor peritoneal neutrophil gelatinase-associated lipocalin (pNGAL) during peritonitis episodes and to enhance its diagnostic value by evaluating pNGAL at scheduled times in parallel with white blood cell (WBC) count. In addition, we investigated possible correlations between pNGAL and the etiology of peritonitis, evaluating it as a possible marker of the clinical outcome. METHODS: Twenty-two patients with peritoneal dialysis (PD)-related peritonitis were enrolled. Peritonitis was divided into Gram-positive, Gram-negative, polymicrobial, and sterile. WBC count and neutrophil gelatinase-associated lipocalin (NGAL) in PD effluent were measured at different times (days 0, 1, 5, 10, 15, and/or 20 and 10 days after antibiotic therapy discontinuation). NGAL was measured by standard quantitative laboratory-based immunoassay and by colorimetric NGAL dipstick (NGALds) (dipstick test). RESULTS: We found strong correlations between peritoneal WBC, laboratory-based NGAL, and NGALds values, both overall and separated at each time point. On day 1, we observed no significant difference in WBC, both NGALds (p = 0.3, 0.9, and 0.2) between Gram-positive, Gram-negative, polymicrobial, and sterile peritonitis. No significant difference has been found between de novo versus relapsing peritonitis for all markers (p > 0.05). We observed a parallel decrease of WBC and both NGAL in patients with favorable outcomes. WBC count and both pNGAL resulted higher in patients with negative outcomes (defined as relapsing peritonitis, peritonitis-associated catheter removal, peritonitis-associated hemodialysis transfer, peritonitis-associated death) at day 10 (p = 0.04, p = 0.03, and p = 0.05, respectively) and day 15 (p = 0.01, p = 0.04, and tendency for p = 0.005). There was a tendency toward higher levels of WBC and NGAL in patients with a negative outcome at day 5. No significant difference in all parameters was proven at day 1 (p = 0.3, p = 0.9, p = 0.2) between groups. CONCLUSION: This study confirms pNGAL as a valid and reliable biomarker for the diagnosis of PD-peritonitis and its monitoring. Its trend is parallel to WBC count during peritonitis episodes, in particular, patients with unfavorable outcomes.


Asunto(s)
Diálisis Peritoneal , Peritonitis , Humanos , Lipocalina 2 , Proteínas de Fase Aguda/metabolismo , Proteínas de Fase Aguda/uso terapéutico , Lipocalinas/metabolismo , Lipocalinas/uso terapéutico , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/uso terapéutico , Diálisis Peritoneal/efectos adversos , Peritonitis/diagnóstico , Peritonitis/etiología , Peritonitis/tratamiento farmacológico , Biomarcadores/metabolismo , Leucocitos/metabolismo
14.
Glycobiology ; 34(2)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38015986

RESUMEN

The unique viviparous Pacific Beetle cockroaches provide nutrition to their embryo by secreting milk proteins Lili-Mip, a lipid-binding glycoprotein that crystallises in-vivo. The resolved in-vivo crystal structure of variably glycosylated Lili-Mip shows a classical Lipocalin fold with an eight-stranded antiparallel beta-barrel enclosing a fatty acid. The availability of physiologically unaltered glycoprotein structure makes Lili-Mip a very attractive model system to investigate the role of glycans on protein structure, dynamics, and function. Towards that end, we have employed all-atom molecular dynamics simulations on various glycosylated stages of a bound and free Lili-Mip protein and characterised the impact of glycans and the bound lipid on the dynamics of this glycoconjugate. Our work provides important molecular-level mechanistic insights into the role of glycans in the nutrient storage function of the Lili-Mip protein. Our analyses show that the glycans stabilise spatially proximal residues and regulate the low amplitude opening motions of the residues at the entrance of the binding pocket. Glycans also preserve the native orientation and conformational flexibility of the ligand. However, we find that either deglycosylation or glycosylation with high-mannose and paucimannose on the core glycans, which better mimic the natural insect glycosylation state, significantly affects the conformation and dynamics. A simple but effective distance- and correlation-based network analysis of the protein also reveals the key residues regulating the barrel's architecture and ligand binding characteristics in response to glycosylation.


Asunto(s)
Glicoproteínas , Lipocalinas , Lipocalinas/química , Lipocalinas/metabolismo , Ligandos , Glicoproteínas/metabolismo , Polisacáridos/química , Lípidos , Unión Proteica
15.
Exp Mol Med ; 55(10): 2138-2146, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37779143

RESUMEN

Glial cell activation precedes neuronal cell death during brain aging and the progression of neurodegenerative diseases. Under neuroinflammatory stress conditions, lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin or 24p3, is produced and secreted by activated microglia and reactive astrocytes. Lcn2 expression levels are known to be increased in various cells, including reactive astrocytes, through the activation of the NF-κB signaling pathway. In the central nervous system, as LCN2 exerts neurotoxicity when secreted from reactive astrocytes, many researchers have attempted to identify various strategies to inhibit LCN2 production, secretion, and function to minimize neuroinflammation and neuronal cell death. These strategies include regulation at the transcriptional, posttranscriptional, and posttranslational levels, as well as blocking its functions using neutralizing antibodies or antagonists of its receptor. The suppression of NF-κB signaling is a strategy to inhibit LCN2 production, but it may also affect other cellular activities, raising questions about its effectiveness and feasibility. Recently, LCN2 was found to be a target of the autophagy‒lysosome pathway. Therefore, autophagy activation may be a promising therapeutic strategy to reduce the levels of secreted LCN2 and overcome neurodegenerative diseases. In this review, we focused on research progress on astrocyte-derived LCN2 in the central nervous system.


Asunto(s)
Lipocalinas , Enfermedades Neurodegenerativas , Humanos , Lipocalina 2/genética , Lipocalina 2/metabolismo , Lipocalinas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Gliosis , FN-kappa B/metabolismo , Inflamación
16.
Physiol Plant ; 175(5): e13994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882277

RESUMEN

Plant lipocalins perform diverse functions. Recently, allene oxide cyclase, a lipocalin family member, has been shown to co-express with vindoline pathway genes in Catharanthus roseus under various biotic/abiotic stresses. This brought focus to another family member, a temperature-induced lipocalin (CrTIL), which was selected for full-length cloning, tissue-specific expression profiling, in silico characterization, and upstream genomic region analysis for cis-regulatory elements. Stress-mediated variations in CrTIL expression were reflected as disturbances in cell membrane integrity, assayed through measurement of electrolyte leakage and lipid peroxidation product, MDA, which implicated the role of CrTIL in maintaining cell membrane integrity. For ascertaining the function of CrTIL in maintaining membrane stability and elucidating the relationship between CrTIL expression and vindoline content, if any, a direct approach was adopted, whereby CrTIL was transiently silenced and overexpressed in C. roseus. CrTIL silencing and overexpression confirmed its role in the maintenance of membrane integrity and indicated an inverse relationship of its expression with vindoline content. GFP fusion-based subcellular localization indicated membrane localization of CrTIL, which was in agreement with its role in maintaining membrane integrity. Altogether, the role of CrTIL in maintaining membrane structure has possible implications for the intracellular sequestration, storage, and viability of vindoline.


Asunto(s)
Catharanthus , Catharanthus/genética , Catharanthus/metabolismo , Temperatura , Vinblastina/química , Vinblastina/metabolismo , Lipocalinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
17.
Neurosci Lett ; 815: 137497, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37748675

RESUMEN

Roles for lipocalin-2 (LCN2, also referred to as neutrophil gelatinase associated lipocalin, NGAL) in the progression of disease in multiple sclerosis and its animal models have been reported; however, the importance of astrocyte-derived LCN2, a major source of LCN2, have not been defined. We found that clinical scores in experimental autoimmune encephalomyelitis (EAE) were modestly delayed in mice with conditional knockout of LCN2 from astrocytes, associated with a small decrease in astrocyte GFAP expression. Immunostaining and qPCR of spinal cord samples showed decreased oligodendrocyte proteolipid protein and transcription factor Olig2 expression, but no changes in PDGFRα expression. These results suggest astrocyte LCN2 contributes to early events in EAE and reduces damage to mature oligodendrocytes at later times.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Lipocalina 2/genética , Lipocalina 2/metabolismo , Esclerosis Múltiple/metabolismo , Astrocitos/metabolismo , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Modelos Animales de Enfermedad , Oligodendroglía/metabolismo , ARN Mensajero/metabolismo , Ratones Endogámicos C57BL
18.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 9): 231-239, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584182

RESUMEN

Using Anticalin technology, a lipocalin protein dubbed Colchicalin, with the ability to bind the toxic plant alkaloid colchicine with picomolar affinity, has previously been engineered, thus offering a potential antidote in vivo and also allowing its sensitive detection in biological samples. To further analyze the mode of ligand recognition, the crystal structure of Colchicalin is now reported in its unliganded form and is compared with the colchicine complex. A superposition of the protein structures revealed major rearrangements in the four structurally variable loops of the engineered lipocalin. Notably, the binding pocket in the unbound protein is largely occupied by the inward-bent loop #3, in particular Ile97, as well as by the phenylalanine side chain at position 71 in loop #2. Upon binding of colchicine, a dramatic shift of loop #3 by up to 11.1 Šoccurs, in combination with a side-chain flip of Phe71, thus liberating the necessary space within the ligand pocket. Interestingly, the proline residue at the neighboring position 72, which arose during the combinatorial engineering of Colchicalin, remained in a cis configuration in both structures. These findings provide a striking example of a conformational adaptation mechanism, which is a long-known phenomenon for antibodies in immunochemistry, during the recognition of a small ligand by an engineered lipocalin, thus illustrating the general similarity between the mode of antigen/ligand binding by immunoglobulins and lipocalins.


Asunto(s)
Colchicina , Lipocalinas , Lipocalinas/genética , Lipocalinas/química , Lipocalinas/metabolismo , Ingeniería de Proteínas , Ligandos , Cristalografía por Rayos X
19.
Ticks Tick Borne Dis ; 14(6): 102209, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37327738

RESUMEN

Tick saliva helps blood feeding by its antihemostatic and immunomodulatory activities. Tick salivary gland transcriptomes (sialotranscriptomes) revealed thousands of transcripts coding for putative secreted polypeptides. Hundreds of these transcripts code for groups of similar proteins, constituting protein families, such as the lipocalins and metalloproteases. However, while many of these transcriptome-derived protein sequences matches sequences predicted by tick genome assemblies, the majority are not represented in these proteomes. The diversity of these transcriptome-derived transcripts could derive from artifacts generated during assembly of short Illumina reads or derive from polymorphisms of the genes coding for these proteins. To investigate this discrepancy, we collected salivary glands from blood-feeding ticks and, from the same homogenate, made and sequenced libraries following Illumina and PacBio protocols, with the assumption that the longer PacBio reads would reveal the sequences generated by the assembly of Illumina reads. Using both Rhipicephalus zambeziensis and Ixodes scapularis ticks, we have obtained more lipocalin transcripts from the Illumina library than the PacBio library. To verify whether these unique Illumina transcripts were real, we selected 9 uniquely Illumina-derived lipocalin transcripts from I. scapularis and attempted to obtain PCR products. These were obtained and their sequences confirmed the presence of these transcripts in the I. scapularis salivary homogenate. We further compared the predicted salivary lipocalins and metalloproteases from I. scapularis sialotranscriptomes with those found in the predicted proteomes of 3 publicly available genomes of I. scapularis. Results indicate that the discrepancy between the genome and transcriptome sequences for these salivary protein families is due to a high degree of polymorphism within these genes.


Asunto(s)
Ixodes , Rhipicephalus , Animales , Transcriptoma , Proteoma/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Glándulas Salivales , Rhipicephalus/genética , Ixodes/genética , Proteínas y Péptidos Salivales/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-37207740

RESUMEN

Tributyltin (TBT)-binding protein type 1 in Japanese medaka (Oryzias latipes) (O.latTBT-bp1) is a fish lipocalin implicated in TBT binding and detoxification. We purified recombinant O.latTBT-bp1 (rO.latTBT-bp1; ca. 30 kDa) by using a baculovirus expression system and His- and Strep-tag chromatography process. Then, we examined O.latTBT-bp1 binding to several endo/exogenous steroid hormones by means of competitive binding assay. The dissociation constants for the binding of rO.latTBT-bp1 to DAUDA and ANS, two fluorescent ligands of lipocalin, were 7.06 and 13.6 µM, respectively. Multiple model validations indicated that a single-binding-site model was the most appropriate for evaluating rO.latTBT-bp1 binding. In the competitive binding assay, testosterone, 11-ketotestosterone, and 17ß-estradiol were each bound by rO.latTBT-bp1; rO.latTBT-bp1 showed the strongest affinity for testosterone (inhibition constant, Ki = 3.47 µM). Endocrine-disrupting chemical (synthetic steroid) also bound to rO.latTBT-bp1; the affinity for ethinylestradiol (Ki = 9.29 µM) was stronger than that for 17ß-estradiol (Ki = 30.0 µM). To determine the function of O.latTBT-bp1, we produced TBT-bp1 knockout medaka (TBT-bp1 KO), which we exposed to ethinylestradiol for 28 days. After exposure, the number of papillary processes in TBT-bp1 KO genotypic male medaka was significantly fewer (3.5), compared to that in wild-type male medaka (22). Thus, TBT-bp1 KO medaka were more sensitive to the anti-androgenic effects of ethinylestradiol than wild-type medaka. These results indicate that O.latTBT-bp1 may bind to steroids and act as a gatekeeper of ethinylestradiol action by regulating the androgen-estrogen balance.


Asunto(s)
Etinilestradiol , Oryzias , Animales , Masculino , Etinilestradiol/toxicidad , Etinilestradiol/metabolismo , Peces/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo , Estradiol/metabolismo , Testosterona/metabolismo , Oryzias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA