Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Pestic Biochem Physiol ; 200: 105845, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582577

RESUMEN

7-dehydrocholesterol (7-DHC) is a key intermediate product used for biosynthesis of molting hormone. This is achieved through a series of hydroxylation reactions catalyzed by the Halloween family of cytochrome P450s. Neverland is an enzyme catalyzes the first reaction of the ecdysteroidogenic pathway, which converts dietary cholesterol into 7-DHC. However, research on the physiological function of neverland in orthopteran insects is lacking. In this study, neverland from Locusta migratoria (LmNvd) was cloned and analyzed. LmNvd was mainly expressed in the prothoracic gland and highly expressed on days 6 and 7 of fifth instar nymphs. RNAi-mediated silencing of LmNvd resulted in serious molting delays and abnormal phenotypes, which could be rescued by 7-DHC and 20-hydroxyecdysone supplementation. Hematoxylin and eosin staining results showed that RNAi-mediated silencing of LmNvd disturbed the molting process by both promoting the synthesis of new cuticle and suppressing the degradation of the old cuticle. Quantitative real-time PCR results suggested that the mRNA expression of E75 early gene and chitinase 5 gene decreased and that of chitin synthase 1 gene was markedly upregulated after knockdown of LmNvd. Our results suggest that LmNvd participates in the biosynthesis process of molting hormone, which is involved in regulating chitin synthesis and degradation in molting cycles.


Asunto(s)
Locusta migratoria , Muda , Animales , Muda/genética , Ecdisona/metabolismo , Locusta migratoria/genética , Locusta migratoria/metabolismo , Interferencia de ARN , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
2.
Pestic Biochem Physiol ; 201: 105860, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685214

RESUMEN

The Osiris gene family is believed to play important roles in insect biology. Previous studies mainly focused on the roles of Osiris in Drorophila, how Osiris operates during the development of other species remains largely unknown. Here, we investigated the role of LmOsi17 in development of the hemimetabolous insect Locusta migratoria. LmOsi17 was highly expressed in the intestinal tract of nymphs. Knockdown of LmOsi17 by RNA interference (RNAi) in nymphs resulted in growth defects. The dsLmOsi17-injected nymphs did not increase in body weight or size and eventually died. Immunohistochemical analysis showed that LmOsi17 was localized to the epithelial cells of the foregut and the gastric caecum. Histological observation and hematoxylin-eosin staining indicate that the foregut and gastric caecum are deformed in dsLmOsi17 treated nymphs, suggesting that LmOsi17 is involved in morphogenesis of foregut and gastric caecum. In addition, we observed a significant reduction in the thickness of the new cuticle in dsLmOsi17-injected nymphs compared to control nymphs. Taken together, these results suggest that LmOsi17 contributes to morphogenesis of intestinal tract that affects growth and development of nymphs in locusts.


Asunto(s)
Proteínas de Insectos , Locusta migratoria , Morfogénesis , Ninfa , Animales , Locusta migratoria/crecimiento & desarrollo , Locusta migratoria/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Ninfa/crecimiento & desarrollo , Interferencia de ARN , Intestinos
3.
Int J Biol Macromol ; 266(Pt 2): 131137, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537854

RESUMEN

The coat protein II (COPII) complex consists of five primary soluble proteins, namely the small GTP-binding protein Sar1, the inner coat Sec23/Sec24 heterodimers, and the outer coat Sec13/Sec31 heterotetramers. COPII is essential for cellular protein and lipid trafficking through cargo sorting and vesicle formation at the endoplasmic reticulum. However, the roles of COPII assembly genes remain unknown in insects. In present study, we identified five COPII assembly genes (LmSar1, LmSec23, LmSec24, LmSec13 and LmSec31) in Locusta migratoria. RT-qPCR results revealed that these genes showed different expression patterns in multiple tissues and developmental days of fifth-instar nymphs. Injection of double-stranded RNA against each LmCOPII gene induced a high RNAi efficiency, and considerably suppressed feeding, and increased mortality to 100 %. Results from the micro-sectioning and hematoxylin-eosin staining of midguts showed that the brush border was severely damaged and the number of columnar cells was significantly reduced in dsLmCOPII-injected nymphs, as compared with the control. The dilated endoplasmic reticulum phenotype of columnar cells was observed by transmission electron microscopy. RT-qPCR results further indicated that silencing any of the five genes responsible for COPII complex assembly repressed the expression of genes involved in insulin/mTOR-associated nutritional pathway. Therefore, COPII assembly genes could be promising RNAi targets for insect pest management by disrupting gut and cuticle development.


Asunto(s)
Locusta migratoria , Interferencia de ARN , Animales , Locusta migratoria/genética , Locusta migratoria/crecimiento & desarrollo , Homeostasis , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Tracto Gastrointestinal/metabolismo
4.
Insect Sci ; 31(2): 435-447, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37489033

RESUMEN

Locust (Locusta migratoria) has a single striated muscle myosin heavy chain (Mhc) gene, which contains 5 clusters of alternative exclusive exons and 1 differently included penultimate exon. The alternative exons of Mhc gene encode 4 distinct regions in the myosin motor domain, that is, the N-terminal SH3-like domain, one lip of the nucleotide-binding pocket, the relay, and the converter. Here, we investigated the role of the alternative regions on the motor function of locust muscle myosin. Using Sf9-baculovirus protein expression system, we expressed and purified 5 isoforms of the locust muscle myosin heavy meromyosin (HMM), including the major isoform in the thorax dorsal longitudinal flight muscle (FL1) and 4 isoforms expressed in the abdominal intersegmental muscle (AB1 to AB4). Among these 5 HMMs, FL1-HMM displayed the highest level of actin-activated adenosine triphosphatase (ATPase) activity (hereafter referred as ATPase activity). To identify the alternative region(s) responsible for the elevated ATPase activity of FL1-HMM, we produced a number of chimeras of FL1-HMM and AB4-HMM. Substitution with the relay of AB4-HMM (encoded by exon-14c) substantially decreased the ATPase activity of FL1-HMM, and conversely, the relay of FL1-HMM (encoded by exon-14a) enhanced the ATPase activity of AB4-HMM. Mutagenesis showed that the exon-14a-encoded residues Gly474 and Asn509 are responsible for the elevated ATPase activity of FL1-HMM. Those results indicate that the alternative relay encoded by exon-14a/c play a key role in regulating the ATPase activity of FL1-HMM and AB4-HMM.


Asunto(s)
Locusta migratoria , Músculo Estriado , Animales , Locusta migratoria/genética , Locusta migratoria/metabolismo , Secuencia de Aminoácidos , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas/genética , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Músculo Estriado/metabolismo
5.
Pestic Biochem Physiol ; 196: 105620, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945256

RESUMEN

Cytochrome P450 monooxygenases (P450s) are a superfamily of multifunctional heme-containing proteins and could function as odorant-degrading enzymes (ODEs) in insect olfactory systems. In our previous study, we identified a P450 gene from the antennal transcriptome of Locusta migratoria, LmCYP6MU1, which could be induced by a variety of volatiles. However, the regulatory mechanisms of this gene in response to volatiles remain unknown. In current study, we investigated the tissues and development stages expression patterns of LmCYP6MU1 and determined its olfactory function in the recognition of the main host plant volatiles which induced LmCYP6MU1 expression. The results showed that LmCYP6MU1 was antenna-rich and highly expressed throughout the antennal developmental stages of locusts. LmCYP6MU1 played important roles in the recognition of trans-2-hexen-1-al and nonanal. Insect CncC regulates the expression of P450 genes. We tested whether LmCncC regulates LmCYP6MU1 expression. It was found that LmCncC knockdown in the antennae resulted in the downregulation of LmCYP6MU1 and repressed the volatiles-mediated induction of LmCYP6MU1. LmCncC knockdown reduced the electroantennogram (EAG) and behavioral responses of locusts to volatiles. These results suggested that LmCncC could regulate the basal and volatiles-mediated inducible expression of LmCYP6MU1 responsible for the recognition of trans-2-hexen-1-al and nonanal. These findings provide an original basis for understanding the regulation mechanisms of LmCncC on LmCYP6MU1 expression and help us better understand the LmCncC-mediated olfactory plasticity.


Asunto(s)
Locusta migratoria , Animales , Locusta migratoria/genética , Locusta migratoria/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Antenas de Artrópodos/metabolismo
6.
Pestic Biochem Physiol ; 196: 105627, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945261

RESUMEN

BACKGROUND: The cap 'n' collar (Cnc) belongs to the Basic Leucine Zipper (bZIP) transcription factor super family. Cap 'n' collar isoform C (CncC) is highly conserved in the animal kingdom. CncC contributes to the regulation of growth, development, and aging and takes part in the maintenance of homeostasis and the defense against endogenous and environmental stress. Insect CncC participates in the regulation of various kinds of stress-responsive genes and is involved in the development of insecticide resistance. RESULTS: In this study, one full-length CncC sequence of Locusta migratoria was identified and characterized. Upon RNAi silencing of LmCncC, insecticide bioassays showed that LmCncC played an essential role in deltamethrin and imidacloprid susceptibility. To fully investigate the downstream genes regulated by LmCncC and further identify the LmCncC-regulated genes involved in deltamethrin and imidacloprid susceptibility, a comparative transcriptome was constructed. Thirty-five up-regulated genes and 73 down-regulated genes were screened from dsLmCncC-knockdown individuals. We selected 22 LmCncC-regulated genes and verified their gene expression levels using RT-qPCR. Finally, six LmCYP450 genes belonging to the CYP6 family were selected as candidate detoxification genes, and LmCYP6FD1 and LmCYP6FE1 were further validated as detoxification genes of insecticides via RNAi, insecticide bioassays, and metabolite identification. CONCLUSIONS: Our data suggest that the locust CncC gene is associated with deltamethrin and imidacloprid susceptibility via the regulation of LmCYP6FD1 and LmCYP6FE1, respectively.


Asunto(s)
Insecticidas , Locusta migratoria , Humanos , Animales , Insecticidas/farmacología , Insecticidas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Locusta migratoria/genética , Locusta migratoria/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
7.
Arch Insect Biochem Physiol ; 114(4): e22055, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37786392

RESUMEN

Paranosema locustae is an entomopathogenic microsporidia with promising potential for controlling agricultural pests, including Locusta migratoria manilensis. However, it has the disadvantage of having a slow insecticidal rate, and how P. locustae infection impacts the host immune response is currently unknown. The present study investigated the effect of P. locustae on the natural immune response of L. migratoria and the activities of enzymes that protect against oxidative stress. Infection with P. locustae increased the hemocytes and nodulation number of L. migratoria at the initial stage of infection. The hemocyte-mediated modulation of immune response was also affected by a decrease in the number of hemocytes 12 days postinfection. Superoxide dismutase activity in locusts increased in the early stages of infection but decreased in the later stages, whereas the activities of peroxidase (POD) and catalase (CAT) showed opposite trends may be due to their different mechanisms of action. Furthermore, the transcription levels of mRNA of antimicrobial peptide-related genes and phenoloxidase activity in hemolymph in L. migratoria were suppressed within 15 days of P. locustae infection. Overall, our data suggest that P. locustae create a conducive environment for its own proliferation in the host by disrupting the immune defense against it. These findings provide useful information for the potential application of P. locustae as a biocontrol agent.


Asunto(s)
Locusta migratoria , Microsporidios , Animales , Locusta migratoria/genética , Microsporidios/fisiología , Peroxidasa
8.
Int J Biol Macromol ; 253(Pt 6): 127389, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37827395

RESUMEN

Locusts (Locusta migratoria) are one of the most destructive insect pests worldwide. Entomopathogenic fungi can infect and kill locusts, with Metarhizium acridum having evolved as a specialized acridid pathogen. However, locusts have evolved countermeasures to limit or avoid microbial pathogens, although the underlying molecular mechanisms behind these defenses remain obscure. Here, we demonstrate that L. migratoria exhibit avoidance behaviors towards M. acridum contaminated food via recognition of fungal volatiles, with locust perception of the volatile mediated by the LmigCSP60 chemosensory protein. RNAi-knockdown of LmigCSP60 lowered locust M. acridum avoidance behavior and increased infection and mortality. The fungal volatile, 2-phenylethanol (PEA), was identified to participate in locust behavioral avoidance. RNAi-knockdown of LmigCSP60 reduced antennal electrophysiological responses to PEA and impaired locust avoidance to the compound. Purified LmigCSP60 was able to bind a set of fungal volatiles including PEA. Furthermore, reduction of PEA emission by M. acridum via construction of a targeted gene knockout mutant of the alcohol dehydrogenase gene (ΔMaAdh strain) that contributes to PEA production reduced locust avoidance behavior towards the pathogen. These findings identify an olfactory circuit used by locusts to detect and avoid potential microbial pathogens before they are capable of initiating infection and highlight behavioral and olfactory adaptations affecting the co-evolution of host-pathogen interactions.


Asunto(s)
Saltamontes , Locusta migratoria , Animales , Saltamontes/genética , Proteínas de Insectos/genética , Locusta migratoria/genética , Olfato , Alimentos
9.
Genes (Basel) ; 14(7)2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37510331

RESUMEN

The TRP channel superfamily was widely found in multiple species. They were involved in many extrasensory perceptions and were important for adapting to the environment. The migratory locust was one of the worldwide agricultural pests due to huge damage. In this study, we identified 13 TRP superfamily genes in the locust genome. The number of LmTRP superfamily genes was consistent with most insects. The phylogenetic tree showed that LmTRP superfamily genes could be divided into seven subfamilies. The conserved motifs and domains analysis documented that LmTRP superfamily genes contained unique characteristics of the TRP superfamily. The expression profiles in different organs identified LmTRP superfamily genes in the head and antennae, which were involved in sensory function. The expression pattern of different life phases also demonstrated that LmTRP superfamily genes were mainly expressed in third-instar nymphs and male adults. Our findings could contribute to a better understanding of the TRP channel superfamily gene and provide potential targets for insect control.


Asunto(s)
Locusta migratoria , Animales , Locusta migratoria/genética , Locusta migratoria/metabolismo , Filogenia , Perfilación de la Expresión Génica , Insectos/genética
10.
RNA Biol ; 20(1): 323-333, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37310197

RESUMEN

RNA interference (RNAi) is a specific post-transcriptional gene-silencing phenomenon, which plays an important role in the regulation of gene expression and the protection from transposable elements in eukaryotic organisms. In Drosophila melanogaster, RNAi can be induced by microRNA (miRNA), endogenous small interfering RNA (siRNA), or exogenous siRNA. However, the biogenesis of miRNA and siRNA in these RNAi pathways is aided by the double-stranded RNA binding proteins (dsRBPs) Loquacious (Loqs)-PB, Loqs-PD or R2D2. In this study, we identified three alternative splicing variants of Loqs, namely Loqs-PA, -PB, and -PC in the orthopteran Locusta migratoria. We performed in vitro and in vivo experiments to study the roles of the three Loqs variants in the miRNA- and siRNA-mediated RNAi pathways. Our results show that Loqs-PB assists the binding of pre-miRNA to Dicer-1 to lead to the cleavage of pre-miRNA to yield matured miRNA in the miRNA-mediated RNAi pathway. In contrast, different Loqs proteins participate in different siRNA-mediated RNAi pathways. In exogenous siRNA-mediated RNAi pathway, binding of Loqs-PA or LmLoqs-PB to exogenous dsRNA facilitates the cleavage of dsRNA by Dicer-2, whereas in endogenous siRNA-mediated RNAi pathway, binding of Loqs-PB or Loqs-PC to endogenous dsRNA facilitates the cleavage of dsRNA by Dicer-2. Our findings provide new insights into the functional importance of different Loqs proteins derived from alternative splicing variants of Loqs in achieving high RNAi efficiency in different RNAi pathways in insects.


Asunto(s)
Empalme Alternativo , Locusta migratoria , MicroARNs , ARN Interferente Pequeño , Animales , Locusta migratoria/genética , MicroARNs/genética , Interferencia de ARN , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN
11.
Int J Radiat Biol ; 99(12): 1978-1989, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37382969

RESUMEN

PURPOSE: Irradiation of food is promising for control of pests to minimize postharvest losses of yields and thus improvement of food safety, shelf life of produce. It is a method of choice that induces a series of lethal biochemical and molecular changes culminating into the engagement of a downstream cascade to cause abnormalities in irradiated pests. In this study, the effects of iodine-131 (131I) isotope radiation on the male gonad development of the migratory locust, Locusta migratoria, were evaluated. MATERIALS AND METHODS: Newly emerged adult male locusts, less than one-day-old, were divided into two groups, control and irradiated. Locusts in the control group (n = 20 insects) didn't drink irradiated water and were reared under normal environmental conditions for one week. Locusts in the irradiated group (n = 20 insects) were exposed to irradiated water at a dose of 30 mCi and they were subsequently observed until they drank the whole quantity. RESULTS: At the end of the experiment, scanning and electron microscopic examination of testes obtained from irradiated locusts revealed several major abnormalities, including malformed nuclei of spermatozoa, irregular plasma membranes, shrinkage of testicular follicles, vacuolated cytoplasm, disintegrated nebenkern and agglutinations of spermatids. Flow cytometry analysis revealed that 131I radiation induced both early and late apoptosis, but not necrosis, in testicular tissues. Testes of irradiated insects also exhibited a burst in reactive oxygen species (ROS), as indicated by significant elevation in amounts of malondialdehyde (MDA), a marker for peroxidation of lipids. In contrast, irradiation coincided with significant reductions in activities of enzymatic antioxidant biomarkers. Relative to controls, a three-fold upregulation of expression of mRNA of heat shock protein, Hsp90, was observed in testicular tissue of irradiated locusts. 131I-irradiated insects exhibited genotoxicity, as indicated by significant increases in various indicators of DNA damage by the comet assay, including tail length (7.80 ± 0.80 µm; p < .01), olive tail moment (40.37 ± 8.08; p < .01) and tail DNA intensity % (5.1 ± 0.51; p < .01), in testicular cells compared to the controls. CONCLUSION: This is the first report on elucidation of I131-irradiation-mediated histopathological, biochemical and molecular mechanisms in gonads of male L. migratoria. Herein, the findings underscore the utility of 131I radiation as an eco-friendly postharvest strategy for management of insect pests and in particular for control of populations of L. migratoria.


Asunto(s)
Locusta migratoria , Animales , Masculino , Locusta migratoria/química , Locusta migratoria/genética , Conservación de los Recursos Naturales , Agua
12.
Dev Comp Immunol ; 145: 104711, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37062456

RESUMEN

Locusta migratoria manilensis is a major agricultural pest that causes severe direct and indirect damage to several crops. Thus, to provide a theoretical foundation for pest control, the role of CrebA in the reproduction and immune regulation of L. migratoria was investigated. CrebA is a bZIP transcription factor that critically regulates intracellular protein secretion. In this study, CrebA was widely expressed in the brain, fat body, integument, midgut, and reproductive tissues of different maturity stages of adult locusts, especially in the female fat body. RNA interfering (RNAi)-mediated silencing of CrebA inhibited locusts ovarian development, and key reproduction gene expressions, Vgs, VgRs, Chico, and JHAMT were downregulated. After the locusts were injected with Micrococcus luteus or Escherichia coli, M. luteus activated lysozyme expression, while the E. coli activated both phenol oxidase cascade and lysozyme expression. Furthermore, both bacteria stimulated the upregulation of the antimicrobial peptide genes DEF3 and DEF4. However, CrebA silencing is fatal to locusts infection with E. coli, with a mortality rate of up to 96.3%, and resulted in a significant decrease in the expression of DEF3 and DEF4 and changes in the activities of phenol oxidase and lysozyme of locusts infected by bacteria. Collectively, CrebA may be involved in diverse biological processes, including reproduction and immunity. CrebA inhibited locusts reproduction by regulating JH signaling pathway and inhibits the expression of immune genes TLR6, IMD, and AMPs. These results demonstrate CrebA seems to play a crucial role in reproduction and innate immunity.


Asunto(s)
Locusta migratoria , ARN , Femenino , Animales , ARN/metabolismo , Locusta migratoria/genética , Interferencia de ARN , Muramidasa/metabolismo , Escherichia coli/metabolismo , Monofenol Monooxigenasa/metabolismo , Reproducción , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
13.
Sci Rep ; 13(1): 4048, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899085

RESUMEN

FK506 binding proteins (FKBPs) are a highly-conserved group of proteins known to bind to FK506, an immunosuppressive drug. They play different physiological roles, including transcription regulation, protein folding, signal transduction and immunosuppression. A number of FKBP genes have been identified in eukaryotes; however, very little information about these genes has been reported in Locusta migratoria. Here, we identified and characterized 10 FKBP genes from L. migratoria. Phylogenetic analysis and comparison of domain architectures indicated that the LmFKBP family can be divided into two subfamilies and five subclasses. Developmental and tissue expression pattern analysis revealed that all LmFKBPs transcripts, including LmFKBP46, LmFKBP12, LmFKBP47, LmFKBP79, LmFKBP16, LmFKBP24, LmFKBP44b, LmFKBP53, were periodically expressed during different developmental stages and mainly expressed in the fat body, hemolymph, testis, and ovary. In brief, our work depicts a outline but panoramic picture of LmFKBP family in L. migratoria, and provides a solid foundation to further investigate the molecular functions of LmFKBPs.


Asunto(s)
Locusta migratoria , Proteínas de Unión a Tacrolimus , Masculino , Animales , Femenino , Proteínas de Unión a Tacrolimus/genética , Locusta migratoria/genética , Filogenia , Pliegue de Proteína , Tacrolimus
14.
Pestic Biochem Physiol ; 190: 105337, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36740331

RESUMEN

Precocene I is a juvenile hormone antagonist that needs to be activated via oxidative biotransformation catalyzed by cytochrome P450 (CYP). NADPH-cytochrome P450 reductase (CPR) supplies CYP with electrons in the oxidation-reduction process; however, its functional role in the activation of precocene I remains unexplored. Here, the representative characteristics of CPRs were analyzed in the CPR gene of Locusta migratoria (LmCPR), the result of model docking indicated that the hydrogen bonds were formed between reduced nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) and NADPH-, FAD-, FMN-domains of LmCPR, respectively. Treating the fourth-instar nymphs with precocene I decreased the juvenile hormone titers of nymphs to 0.55-fold of that in acetone-treated controls, and extended the interval time between fourth- and fifth-instar nymphs. 68.75% of the treated fourth-instar nymphs developed into precocious adults in the fifth-instar. LmCPR knockdown decreased the response to precocene I in the nymphs, the occurrence rate of precocious adults induced by precocene I treatment reduced by 23.11%. Therefore, LmCPR may be involved in the activation of precocene I in L. migratoria. In addition, we generated an active recombinant LmCPR protein using a prokaryotic expression system, its activity in reducing cytochrome c was 33.13 ± 11.50 nmol CytCred/min/µg protein. This study lays the foundation for further research on the role of LmCPR in precocene I activation.


Asunto(s)
Locusta migratoria , NADPH-Ferrihemoproteína Reductasa , Animales , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Locusta migratoria/genética , Locusta migratoria/metabolismo , NADP/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
15.
Int J Biol Macromol ; 236: 123746, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36806776

RESUMEN

Lipophorin is the most abundant lipoprotein particle in insect hemolymph. Lipophorin receptor (LPR) is a glycoprotein that binds to the lipophorin and mediates cellular uptake and metabolism of lipids by endocytosis. However, the roles of LPR in uptake of lipids in the integument and ovary remain unknown in the migratory locust (Locusta migratoria). In present study, we characterized the molecular properties and biological roles of LmLPR in L. migratoria. The LmLPR transcript level was high in the first 2 days of the adults after eclosion, then gradually declined. LmLPR was predominately expressed in fat body, ovary and integument. Using immuno-detection methods, we revealed that LmLPR was mainly localized in the membrane of oenocytes, epidermal cells, fat body cells and follicular cells. RNAi-mediated silencing of LmLPR led to a slight decrease of the cuticle hydrocarbon contents but with little effect on the cuticular permeability. However, the neutral lipid content was significantly decreased in the ovary after RNAi against LmLPR, which led to a retarded ovarian development. Taken together, our results indicated that LmLPR is involved in the uptake and accumulation of lipids in the ovary and plays a crucial role in ovarian development in L. migratoria. Therefore, LmLPR could be a promising RNAi target for insect pest management by disrupting insect ovarian development.


Asunto(s)
Locusta migratoria , Animales , Femenino , Locusta migratoria/genética , Locusta migratoria/metabolismo , Ovario/metabolismo , Hidrocarburos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Interferencia de ARN
16.
Insect Sci ; 30(3): 867-879, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36325760

RESUMEN

Hypoxia challenges aerobic organisms in numerous environments, and hypoxic conditions may become more severe under future climate-change scenarios. The impact of hypoxia on the development of terrestrial insect embryos is not well understood. Here, to address this gap, embryonic life-history traits of migratory locust Locusta migratoria from low-altitude and high-altitude regions were compared under 2 oxygen levels: normoxia (i.e., 21 kPa oxygen partial pressure and mild hypoxia (i.e., 10 kPa oxygen partial pressure). Our results demonstrated that, whether reared under normoxia or mild hypoxia, L. migratoria from high-altitude populations had longer developmental times, reduced weight, and lower mean relative growth rate as compared with those from low-altitude populations. When transferred from normoxia to mild hypoxia, nearly all the tested life-history traits presented significant negative changes in the low-altitude populations, but not in the high-altitude populations. The factor 'strain' alone explained 18.26%-54.59% of the total variation for traits, suggesting that the phenotypic differences between L. migratoria populations from the 2 altitudes could be driven by genetic variation. Significant genetic correlations were found between life-history traits, and most of these showed differentiation between the 2 altitudinal gradients. G-matrix comparisons showed significant structural differences between L. migratoria from the 2 regions, as well as several negative covariances (i.e., trade-offs) between traits in the low-altitude populations. Overall, our study provides clear evidence that evolutionary divergence of embryonic traits between L. migratoria populations from different altitudes has occurred.


Asunto(s)
Locusta migratoria , Animales , Locusta migratoria/genética , Altitud , Hipoxia , Oxígeno , Evolución Biológica
17.
Pestic Biochem Physiol ; 188: 105255, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464360

RESUMEN

Cytochrome P450 monooxygenases (P450s) are a large superfamily of heme-thiolate proteins and play a vital role in the biosynthesis and inactivation of endogenous substances as well as the detoxification of exogenous substances. They also function as odor-degrading enzymes (ODEs) in insect olfactory sensory systems. In the present study, a P450 gene was obtained from the antennae of Locusta migratoria and named as CYP6FD5. Multiple alignment of P450 proteins revealed that LmCYP6FD5 contained five conserved motifs, including the helix C motif, an oxygen-binding site, helix K motif, a meander region, and the haem-binding motif. The expression of LmCYP6FD5 in various tissues and antennal development stages was determined by using RT-qPCR. Our results showed that LmCYP6FD5 was antenna-specific and highly expressed throughout the antennal developmental stages of female and male locusts. Furthermore, the role of LmCYP6FD5 in the perception of host plant volatiles was assessed using RNAi in combination with electroantennogram (EAG) and behavioral responses. Our findings showed that after silencing LmCYP6FD5, the EAG responses of female and male locusts to the main volatiles of gramineous plants, including trans-2-Hexen-1-al, cis-3-Hexenyl acetate, and decanal, were significantly diminished. Moreover, a significant decrease in EAG response of male antennae to benzaldehyde was also observed. In addition, behavioral assay showed that the locust response to single volatile from host plant or wheat remained unchanged after the silencing of LmCYP6FD5. Antenna-specific expression and EAG responses of locusts to host plant volatiles still suggested that LmCYP6FD5 was potentially involved in host plant recognition, although no behavioral changes were observed.


Asunto(s)
Locusta migratoria , Animales , Locusta migratoria/genética , Sitios de Unión , Bioensayo
18.
Insect Biochem Mol Biol ; 151: 103865, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36336194

RESUMEN

Dicers belong to a class of large RNase III multidomain ribonucleases and are central components of the RNA interference (RNAi) pathways. In insects, Dicer-2 has been known to cleave long double-stranded RNA (dsRNA) in small interfering RNA (siRNA)-mediated-RNAi pathway. However, Dicer-1 is responsible for cleaving precursor microRNAs (pre28 miRNAs) in miRNA-mediated RNAi pathway. In this study, we identified one LmDicer-1 and two LmDicer-2 (LmDicer-2a and LmDicer-2b) genes in Locusta migratoria. The RNAi of RNAi assay showed that knockdown of each of the Dicer genes reduced RNAi efficiency against a target gene (Lmß-Tubulin), suggesting that all these genes participated in the siRNA-mediated RNAi pathway. Sequence analyses of the siRNAs generated from dsLmß-Tubulin after silencing each LmDicer gene showed no significant difference in the pattern of siRNAs mapped to dsLmß-Tubulin. This result indicated that all the three LmDicers are capable of generating siRNAs from the dsRNA. We then generated recombinant proteins consisting of different domains using Escherichia coli expression system and incubated each recombinant protein with dsLmß-Tubulin. We found that the recombinant Dicer proteins successfully cleaved dsLmß-Tubulin. However, LmDicer-2a-R lacking dsRBD domain lost activity, suggesting that dsRBD domain is critical for Dicer function. Furthermore, overexpression of these proteins in Drosophila S2 cells improved RNAi efficiency. Our siRNA affinity chromatography and LC-MS/MS analysis identified LmDicer-2a, LmDicer-2b, LmR2D2, LmAgo2a, LmAgo1, LmStaufen and LmTARBP2 as constituents of RNA-induced silencing complex. Taken together, these data show that both LmDicer-1 and two LmDicer-2s all participate in siRNA-mediated RNAi pathway and likely contribute to high RNAi efficiency in L. migratoria.


Asunto(s)
Locusta migratoria , MicroARNs , Animales , ARN Interferente Pequeño/genética , ARN Bicatenario/genética , Interferencia de ARN , Locusta migratoria/genética , Locusta migratoria/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , MicroARNs/metabolismo
19.
Front Immunol ; 13: 848267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935997

RESUMEN

Locusta migratoria manilensis is one of the most important agricultural pests in China. The locust has high fecundity and consumes large quantities of food, causing severe damage to diverse crops such as corn, sorghum, and rice. Immunity against pathogens and reproductive success are two important components of individual fitness, and many insects have a trade-off between reproduction and immunity when resources are limited, which may be an important target for pest control. In this study, adult females L. migratoria manilensis were treated with different concentrations (5 × 106 spores/mL or 2 × 107 spores/mL) of the entomopathogenic fungus Paranosema locustae. Effects of input to immunity on reproduction were studied by measuring feeding amount, enzyme activity, vitellogenin (Vg) and vitellogenin receptor (VgR) production, ovary development, and oviposition amount. When infected by P. locustae, feeding rate and phenol oxidase and lysozyme activities increased, mRNA expression of Vg and VgR genes decreased, and yolk deposition was blocked. Weight of ovaries decreased, with significant decreases in egg, length and weight.Thus, locusts used nutritive input required for reproduction to resist invasion by microsporidia. This leads to a decrease in expression of Vg and VgR genes inhibited ovarian development, and greatly decreased total fecundity. P. locustae at 2 × 107 spores/mL had a more obvious inhibitory effect on the ovarian development in migratory locusts. This study provides a detailed trade-off between reproduction and immune input of the female, which provides a reliable basis to find pest targets for biological control from those trade-off processes.


Asunto(s)
Locusta migratoria , Microsporidios , Animales , Femenino , Locusta migratoria/genética , Locusta migratoria/microbiología , Oviposición , Reproducción
20.
J Agric Food Chem ; 70(35): 10762-10770, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36000580

RESUMEN

The low efficiency of RNA interference (RNAi) in insects via the oral administration of double-stranded RNA (dsRNA) is a considerable obstacle preventing its application in insect pest control. The instability of dsRNA and insufficient dsRNA uptake are known to limit the RNAi efficiency. To overcome these limitations, the block copolymer poly(ethylene glycol)-polylysine(thiol) [PEG-PLys(SH)] was designed in this study to form well-defined, core-shell nanoparticles to protect dsRNA from premature degradation and to facilitate its movement through various physiological barriers. The developed material had excellent structural stability and dsRNA-protecting capacity, thereby enabling the prolonged survival of dsRNA in the digestive tract for endocytosis into the midgut cells of the migratory locust, Locusta migratoria. After encapsulation of a dsLmCHS2 payload (a midgut gene), a 60% down-regulation of LmCHS2, accompanied with observations of amorphous and discontinuous linings of the peritrophic matrix and abnormal phenotypes, was observed. In addition, the elaborated nanoscale dsRNA condensates appeared to readily extravasate through the narrow fenestrations in the linings of midgut epithelial cells into the hemolymph and be distributed throughout the body. After encapsulation of a dsLmCHS1 payload (a cuticle gene), a distinctive lethal phenotype with molting failure was observed as a result of a 50% down-regulation in LmCHS1. The persistent leaf adherence of these dsRNA constructs was also capable of resisting continuous rinsing. Therefore, these dsRNA constructs represent a robust type of RNAi pesticide, which has potential as a versatile pesticide against a variety of molecular targets for the control of destructive insects and insects resistant to conventional pesticides.


Asunto(s)
Locusta migratoria , Plaguicidas , Animales , Hemolinfa , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos/metabolismo , Locusta migratoria/genética , Locusta migratoria/metabolismo , Plaguicidas/metabolismo , Interferencia de ARN , ARN Bicatenario/genética , ARN Bicatenario/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA