Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
1.
BMC Plant Biol ; 24(1): 740, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095701

RESUMEN

BACKGROUND: The Agricultural Research Centre of Mabegondo (Xunta de Galicia, A Coruña, Spain) conserves one of the most important collections of phytogenetic resources of ecotypes and natural populations of grassland species from northwestern Spain, among them populations of ryegrass (Lolium spp.), one of the most cultivated forage grasses in the world. The objective of the present study was to evaluate the diversity among commercial cultivars and natural ryegrass populations with phenotypic traits and molecular markers. RESULTS: Eleven polymorphic microsatellites loci were used to analyze 58 ecotypes and 10 cultivars (680 DNA samples in total) differentiating 673 genotypes. Two main groups were detected by the Structure analysis, one related to Lolium perenne and a second to Lolium multiflorum. The first group showed two subgroups and the second three. The cluster of L. multiflorum showed two subgroups not related with the third cluster including commercial varieties, one from the Canary Islands (with Lolium rigidum included) and a second one from northwestern Spain, which presented specific agromorphological characteristics, such as lower FES (number of days from 1 January, when three heads per plant were flowering per plot), CRE (growth in flowering, in g of dry matter), and AIN (number of inflorescences per plant). CONCLUSIONS: This is the first time that a large amount of data on ryegrass from the Iberian Peninsula has been analyzed, obtaining a clear genetic differentiation of the autochthonous varieties from the commercial varieties analyzed. In addition, the genetic structure found in the ecotypes was related to the phenotypic variation analyzed. Being of interest in the conservation of biodiversity and in obtaining better adapted varieties of ryegrasses, due to their specific phenotypic traits, such as a lower FES, CRE and AIN.


Asunto(s)
Ecotipo , Variación Genética , Lolium , Repeticiones de Microsatélite , Fenotipo , Lolium/genética , España , Genotipo
2.
J Hazard Mater ; 477: 135440, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39111179

RESUMEN

Biochar amendment is a promising strategy for mitigating antibiotic resistance genes (ARGs) in soil and plants, but its effects on ARGs at field scale are not fully understood. Here, field trials were executed utilizing two plant varieties, Brassica juncea and Lolium multiflorum, with four types of biochar to investigate changes in ARGs and microbiome in soil, rhizosphere, root endophytes, and leaf endophytes. Results showed that biochar altered ARG distribution in soil and plant, and restrained their transmission from soil and rhizosphere to endophytes. A reduction of 1.2-2.2 orders of magnitude in the quantity of ARGs was observed in root and leaf endophytes following biochar addition, while no significant changes were observed in soil and rhizosphere samples. Procrustes and network analyses revealed significant correlations between microbial communities and mobile genetic elements with ARGs (P < 0.05). Besides, redundancy and variation partitioning analysis indicated that bacterial communities may play a dominant role in shaping the ARGs profile, contributing to 43 % of the variation observed in ARGs. These field results suggest that biochar amendment alone may not fully alleviate ARGs in soil, but it has a significant beneficial impact on food safety and human health by effectively reducing ARGs in plant endophytes.


Asunto(s)
Carbón Orgánico , Farmacorresistencia Microbiana , Microbiota , Rizosfera , Microbiología del Suelo , Microbiota/efectos de los fármacos , Microbiota/genética , Farmacorresistencia Microbiana/genética , Lolium/microbiología , Lolium/genética , Lolium/efectos de los fármacos , Suelo/química , Planta de la Mostaza/genética , Planta de la Mostaza/microbiología , Bacterias/genética , Bacterias/efectos de los fármacos , Raíces de Plantas/microbiología , Endófitos/genética , Endófitos/efectos de los fármacos , Genes Bacterianos , Hojas de la Planta/microbiología
3.
J Agric Food Chem ; 72(33): 18520-18527, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39105744

RESUMEN

Genome mining in association with the OSMAC (one strain, many compounds) approach provides a feasible strategy to extend the chemical diversity and novelty of natural products. In this study, we identified the biosynthetic gene cluster (BGC) of restricticin, a promising antifungal agent featuring a reactive primary amine, from the fungus Aspergillus sclerotiorum LZDX-33-4 by genome mining. Combining heterologous expression and the OSMAC strategy resulted in the production of a new hybrid product (1), along with N-acetyl-restricticin (2) and restricticinol (3). The structure of 1 was determined by spectroscopic data, including optical rotation and electronic circular dichroism (ECD) calculations, for configurational assignment. Compound 1 represents a fusion of restricticin and phytotoxic cichorin. The biosynthetic pathway of 1 was proposed, in which the condensation of a primary amine of restricticin with a precursor of cichorine was postulated. Compound 1 at 5 mM concentration inhibited the growth of the shoots and roots of Lolium perenne, Festuca arundinacea, and Lactuca sativa with inhibitory rates of 71.3 and 88.7% for L. perenne, 79.4 and 73.0% for F. arundinacea, and 58.2 and 52.9% for L. sativa. In addition, compound 1 at 25 µg/mL showed moderate antifungal activity against Fusarium fujikuroi and Trichoderma harzianum with inhibition rates of 22.6 and 31.6%, respectively. These results suggest that heterologous expression in conjunction with the OSMAC approach provides a promising strategy to extend the metabolite novelty due to the incorporation of endogenous metabolites from the host strain with exogenous compounds, leading to the production of more complex compounds and the acquisition of new physiological functions.


Asunto(s)
Lactuca , Lolium , Lolium/genética , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Lolium/metabolismo , Lactuca/efectos de los fármacos , Lactuca/genética , Lactuca/crecimiento & desarrollo , Familia de Multigenes , Festuca/genética , Festuca/metabolismo , Festuca/microbiología , Festuca/efectos de los fármacos , Festuca/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Vías Biosintéticas , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Estructura Molecular , Genoma Fúngico , Ascomicetos/genética , Ascomicetos/efectos de los fármacos , Ascomicetos/metabolismo , Fusarium/efectos de los fármacos , Fusarium/genética , Fusarium/crecimiento & desarrollo
4.
Physiol Plant ; 176(4): e14427, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005156

RESUMEN

The perennity of grassland species such as Lolium perenne greatly depends on their ability to regrow after cutting or grazing. Refoliation largely relies on the mobilization of fructans in the remaining tissues and on the associated sucrose synthesis and transport towards the basal leaf meristems. However, nothing is known yet about the sucrose synthesis pathway. Sucrose Phosphate Synthase (SPS) and Sucrose Synthase (SuS) activities, together with their transcripts, were monitored during the first hours after defoliation along the leaf axis of mature leaf sheaths and elongating leaf bases (ELB) where the leaf meristems are located. In leaf sheaths, which undergo a sink-source transition, fructan and sucrose contents declined while SPS and SuS activities increased, along with the expression of LpSPSA, LpSPSD.2, LpSuS1, LpSuS2, and LpSuS4. In ELB, which continue to act as a strong carbon sink, SPS and SuS activities increased to varying degrees while the expression of all the LpSPS and LpSuS genes decreased after defoliation. SPS and SuS both contribute to refoliation but are regulated differently depending on the source or sink status of the tissues. Together with fructan metabolism, they represent key determinants of ryegrass perennity and, more generally, of grassland sustainability.


Asunto(s)
Fructanos , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas , Pradera , Lolium , Hojas de la Planta , Proteínas de Plantas , Sacarosa , Lolium/enzimología , Lolium/genética , Lolium/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Fructanos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sacarosa/metabolismo
5.
Environ Sci Pollut Res Int ; 31(34): 47132-47143, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38985425

RESUMEN

Antimicrobial resistance (AMR) is one of the main global health challenges. Anaerobic digestion (AD) can significantly reduce the burden of antibiotic resistance genes (ARGs) in animal manures. However, the reduction is often incomplete. The agronomic use of digestates requires assessments of their effects on soil ARGs. The objective of this study was to assess the effect of digestate on the abundance of ARGs and mobile genetic elements (MGEs) in the rhizosphere of ryegrass (Lolium perenne L.) and to determine whether half-dose replacement of digestate with urea (combined fertilizer) can be implemented as a safer approach while maintaining a similar biomass production. A greenhouse assay was conducted during 190 days under a completely randomized design with two experimental factors: fertilizer type (unfertilized control and fertilized treatments with equal N dose: digestate, urea and combined fertilizer) and sampling date (16 and 148 days after the last application). The results indicated that the digestate significantly increased the abundance of clinical class 1 integrons (intI1 gene) relative to the unfertilized control at both sampling dates (P < 0.05), while the combined fertilizer only increased them at the first sampling. Sixteen days after completing the fertilization scheme only the combined fertilizer and urea significantly increased the biomass production relative to the control (P < 0.05). Additionally, by the end of the assay, the combined fertilizer showed significantly lower levels of the macrolide-resistance gene ermB than digestate and a cumulative biomass similar to urea or digestate. Overall, the combined fertilizer can alleviate the burden of integrons and ermB while simultaneously improving biomass production.


Asunto(s)
Biomasa , Fertilizantes , Lolium , Rizosfera , Lolium/genética , Microbiología del Suelo , Integrones
6.
BMC Plant Biol ; 24(1): 577, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890560

RESUMEN

BACKGROUND: Seed retention is the basic prerequisite for seed harvest. However, only little breeding progress has been achieved for this trait in the major forage grasses. The aim of this study was to evaluate the potential of plant genetic resources of the important fodder grasses Festuca pratensis Huds. and Lolium perenne L. as source for seed retention in the breeding process. Furthermore, the morphology of the abscission zone, where shattering occurs, was studied on the cell tissue level in different developmental stages of contrasting accessions. RESULTS: 150 and 286 accessions of Festuca pratensis and Lolium perenne were screened for seed retention, respectively. Contrasting accessions were selected to be tested in a second year. We found a great variation in seed retention in Festuca pratensis and Lolium perenne, ranging from 13 to 71% (average: 35%) and 12 to 94% (average: 49%), respectively, in the first year. Seed retention was generally lower in the second year. Cultivars were within the accessions with highest seed retention in Festuca pratensis, but had lower seed retention than ecotypes in Lolium perenne. Field-shattered seeds had a lower thousand grain weight than retained seeds. Cell layers of the abscission zone appeared already in early seed stages and were nested within each other in accessions with high seed retention, while there were two to three superimposed layers in accessions with low seed retention. CONCLUSIONS: Plant genetic resources of Lolium perenne might be a valuable source for breeding varieties with high seed retention. However, simultaneous selection for high seed weight is necessary for developing successful commercial cultivars.


Asunto(s)
Festuca , Lolium , Fenotipo , Semillas , Lolium/crecimiento & desarrollo , Lolium/genética , Lolium/anatomía & histología , Festuca/genética , Festuca/crecimiento & desarrollo , Festuca/anatomía & histología , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/anatomía & histología
7.
J Hazard Mater ; 470: 134228, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626683

RESUMEN

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Asunto(s)
Arsénico , Cadmio , Regulación de la Expresión Génica de las Plantas , Lolium , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico , Cadmio/toxicidad , Lolium/efectos de los fármacos , Lolium/metabolismo , Lolium/genética , Arsénico/toxicidad , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
8.
Environ Res ; 251(Pt 1): 118389, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460661

RESUMEN

Phytoremediation has emerged as a common technique for remediating Cd pollution in farmland soil. Moreover, phosphorus, an essential element for plants, can alter the pectin content of plant cell walls and facilitate the accumulation of Cd in plant tissues, thereby enhancing phytoremediation efficiency. Therefore, pot experiments were conducted in order to investigate the effect of phosphorus levels on Cd extraction, phosphorus transformation and phosphorus-related genes during phytoremediation. The results revealed that an optimal application of suitable phosphate fertilizers elevated the soil's pH and electrical conductivity (EC), facilitated the conversion of soil from insoluble phosphorus into available forms, augmented the release of pertinent enzyme activity, and induced the expression of phosphorus cycling-related genes. These enhancements in soil conditions significantly promoted the growth of ryegrass. When applying phosphorus at a rate of 600 mg/kg, ryegrass exhibited plant height, dry weight, and chlorophyll relative content that were 1.27, 1.26, and 1.18 times higher than those in the control group (P0), while the Cd content was 1.12 times greater than that of P0. The potentially toxic elements decline ratio and bioconcentration factor were 42.86% and 1.17 times higher than those of P0, respectively. Consequently, ryegrass demonstrated the highest Cd removal efficiency under these conditions. Results from redundancy analysis (RDA) revealed a significant correlation among pH, total phosphorus, heavy metal content, phosphorus forms, soil enzyme activity, and phosphorus-related genes. In conclusion, this study suggests applying an optimal amount of suitable phosphate fertilizers can enhance restoration efficiency, leading to a reduction in soil Cd content and ultimately improving the safety of crop production in farmlands.


Asunto(s)
Biodegradación Ambiental , Cadmio , Lolium , Fósforo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Cadmio/metabolismo , Fósforo/metabolismo , Fósforo/análisis , Lolium/metabolismo , Lolium/genética , Lolium/crecimiento & desarrollo , Fertilizantes/análisis , Suelo/química
9.
Sci Rep ; 14(1): 5767, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459164

RESUMEN

Genotype by environment interactions (G × E) are frequently observed in herbage production. Understanding the underlying biological mechanisms is important for achieving stable and predictive outputs across production environments. The microbiome is gaining increasing attention as a significant contributing factor to G × E. Here, we focused on the soil microbiome of perennial ryegrass (Lolium perenne L.) grown under field conditions and investigated the soil microbiome variation across different ryegrass varieties to assess whether environmental factors, such as seasonality and nitrogen levels, affect the microbial community. We identified bacteria, archaea, and fungi operational taxonomic units (OTUs) and showed that seasonality and ryegrass variety were the two factors explaining the largest fraction of the soil microbiome diversity. The strong and significant variety-by-treatment-by-seasonal cut interaction for ryegrass dry matter was associated with the number of unique OTUs within each sample. We identified seven OTUs associated with ryegrass dry matter variation. An OTU belonging to the Solirubrobacterales (Thermoleophilales) order was associated with increased plant biomass, supporting the possibility of developing engineered microbiomes for increased plant yield. Our results indicate the importance of incorporating different layers of biological data, such as genomic and soil microbiome data to improve the prediction accuracy of plant phenotypes grown across heterogeneous environments.


Asunto(s)
Lolium , Suelo , Lolium/genética , Estaciones del Año , Nitrógeno , Genotipo
10.
Plant J ; 118(5): 1516-1527, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38412295

RESUMEN

Bacterial wilt, caused by Xanthomonas translucens pv. graminis (Xtg), is a serious disease of economically important forage grasses, including Italian ryegrass (Lolium multiflorum Lam.). A major QTL for resistance to Xtg was previously identified, but the precise location as well as the genetic factors underlying the resistance are yet to be determined. To this end, we applied a bulked segregant analysis (BSA) approach, using whole-genome deep sequencing of pools of the most resistant and most susceptible individuals of a large (n = 7484) biparental F2 population segregating for resistance to Xtg. Using chromosome-level genome assemblies as references, we were able to define a ~300 kb region highly associated with resistance on pseudo-chromosome 4. Further investigation of this region revealed multiple genes with a known role in disease resistance, including genes encoding for Pik2-like disease resistance proteins, cysteine-rich kinases, and RGA4- and RGA5-like disease resistance proteins. Investigation of allele frequencies in the pools and comparative genome analysis in the grandparents of the F2 population revealed that some of these genes contain variants with allele frequencies that correspond to the expected heterozygosity in the resistant grandparent. This study emphasizes the efficacy of combining BSA studies in very large populations with whole genome deep sequencing and high-quality genome assemblies to pinpoint regions associated with a binary trait of interest and accurately define a small set of candidate genes. Furthermore, markers identified in this region hold significant potential for marker-assisted breeding strategies to breed resistance to Xtg in Italian ryegrass cultivars more efficiently.


Asunto(s)
Resistencia a la Enfermedad , Lolium , Enfermedades de las Plantas , Xanthomonas , Lolium/genética , Lolium/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Xanthomonas/fisiología , Sitios de Carácter Cuantitativo/genética , Genes de Plantas/genética , Mapeo Cromosómico
11.
Plant J ; 118(4): 1102-1118, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38323852

RESUMEN

Restoring cytonuclear stoichiometry is necessary after whole-genome duplication (WGD) and interspecific/intergeneric hybridization in plants. We investigated this phenomenon in auto- and allopolyploids of the Festuca-Lolium complex providing insights into the mechanisms governing cytonuclear interactions in early polyploid and hybrid generations. Our study examined the main processes potentially involved in restoring the cytonuclear balance after WGD comparing diploids and new and well-established autopolyploids. We uncovered that both the number of chloroplasts and the number of chloroplast genome copies were significantly higher in the newly established autopolyploids and grew further in more established autopolyploids. The increase in the copy number of the chloroplast genome exceeded the rise in the number of chloroplasts and fully compensated for the doubling of the nuclear genome. In addition, changes in nuclear and organelle gene expression were insignificant. Allopolyploid Festuca × Lolium hybrids displayed potential structural conflicts in parental protein variants within the cytonuclear complexes. While biased maternal allele expression has been observed in numerous hybrids, our results suggest that its role in cytonuclear stabilization in the Festuca × Lolium hybrids is limited. This study provides insights into the restoration of the cytonuclear stoichiometry, yet it emphasizes the need for future research to explore post-transcriptional regulation and its impact on cytonuclear gene expression stoichiometry. Our findings may enhance the understanding of polyploid plant evolution, with broader implications for the study of cytonuclear interactions in diverse biological contexts.


Asunto(s)
Núcleo Celular , Festuca , Lolium , Poliploidía , Festuca/genética , Lolium/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Genoma de Planta/genética , Genoma del Cloroplasto , Cloroplastos/genética , Cloroplastos/metabolismo , Hibridación Genética , Regulación de la Expresión Génica de las Plantas
12.
Physiol Plant ; 176(1): e14210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380683

RESUMEN

Perennial ryegrass (Lolium perenne L.) is an outstanding turfgrass and forage cultivated in temperate regions worldwide. However, poor tolerance to extreme cold, heat, or drought limits wide extension and cultivation. DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR1s (DREB1s) play a vital role in enhancing plant tolerance to abiotic stress, specifically for low-temperature stress. In this study, a total of 24 LpDREB1 family members were identified from the released genome of perennial ryegrass. Phylogenetic analysis showed that the LpDREB1 genes are divided into 7 groups that have close relationships with rice homologues. Conserved motif analysis revealed that members within the same group have similar conserved motif compositions. All LpDREB1s lack introns, and the promoter sequences of LpDREB1 genes contain multiple cis-acting elements associated with stress response, phytohormone signal transduction and plant growth and development. The majority of LpDREB1 genes were upregulated by drought, submergence, heat and cold stress treatments, including LpDREB1H2. Further investigation showed that LpDREB1H2 is localized in the nucleus. Overexpression of LpDREB1H2 in Arabidopsis induced the expression of cold-responsive (COR) genes, increased the levels of osmotic adjusting substances, and enhanced antioxidant enzyme activities, thus improving the cold tolerance of Arabidopsis. This study lays a foundation for further understanding the function of LpDREB1 genes in perennial ryegrass and provides insights for plant stress tolerance breeding.


Asunto(s)
Arabidopsis , Lolium , Factores de Transcripción/metabolismo , Respuesta al Choque por Frío/genética , Lolium/genética , Lolium/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Plantas/metabolismo , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
13.
Pestic Biochem Physiol ; 198: 105737, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225083

RESUMEN

Italian ryegrass (Lolium multiflorum L.) is an invasive species widely spread in croplands worldwide. The intensive use of glyphosate has resulted in the selection of resistance to this herbicide in Italian ryegrass. This work characterized the response to glyphosate of Italian ryegrass populations from the South and Southwest regions of Paraná, Brazil. A total of 44 Italian ryegrass populations were collected in farming areas, and were classified for glyphosate resistance with 75% of populations resistant to gloyphosate. Of these, 3 resistant (VT05AR, MR20AR and RN01AR) and three susceptible (VT07AS, MR05AS and RN01AS) of these populations were selected to determine the resistance level and the involvement of the target site mechanisms for glyphosate resistance. Susceptible populations GR50 ranged from 165.66 to 218.17 g.e.a. ha-1 and resistant populations from 569.37 to 925.94, providing RI ranging from 2.88 and 4.70. No mutation in EPSPS was observed in the populations, however, in two (MR20AR and RN02AR) of the three resistant populations, an increase in the number of copies of the EPSPs gene (11 to 57×) was detected. The number of copies showed a positive correlation with the gene expression (R2 = 0.86) and with the GR50 of the populations (R2 = 0.81). The increase in EPSPS gene copies contributes to glyphosate resistance in Italian ryegrass populations from Brazil.


Asunto(s)
Herbicidas , Lolium , Glifosato , Lolium/genética , Lolium/metabolismo , Glicina/farmacología , Glicina/metabolismo , Brasil , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Herbicidas/metabolismo , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética
14.
BMC Plant Biol ; 23(1): 636, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38072924

RESUMEN

BACKGROUND: Commercial cultivars of perennial ryegrass infected with selected Epichloë fungal endophytes are highly desirable in certain pastures as the resulting mutualistic association has the capacity to confer agronomic benefits (such as invertebrate pest deterrence) largely due to fungal produced secondary metabolites (e.g., alkaloids). In this study, we investigated T2 segregating populations derived from two independent transformation events expressing diacylglycerol acyltransferase (DGAT) and cysteine oleosin (CO) genes designed to increase foliar lipid and biomass accumulation. These populations were either infected with Epichloë festucae var. lolii strain AR1 or Epichloë sp. LpTG-3 strain AR37 to examine relationships between the introduced trait and the endophytic association. Here we report on experiments designed to investigate if expression of the DGAT + CO trait in foliar tissues of perennial ryegrass could negatively impact the grass-endophyte association and vice versa. Both endophyte and plant characters were measured under controlled environment and field conditions. RESULTS: Expected relative increases in total fatty acids of 17-58% accrued as a result of DGAT + CO expression with no significant difference between the endophyte-infected and non-infected progeny. Hyphal growth in association with DGAT + CO expression appeared normal when compared to control plants in a growth chamber. There was no significant difference in mycelial biomass for both strains AR1 and AR37, however, Epichloë-derived alkaloid concentrations were significantly lower on some occasions in the DGAT + CO plants compared to the corresponding null-segregant progenies, although these remained within the reported range for bioactivity. CONCLUSIONS: These results suggest that the mutualistic association formed between perennial ryegrass and selected Epichloë strains does not influence expression of the host DGAT + CO technology, but that endophyte performance may be reduced under some circumstances. Further investigation will now be required to determine the preferred genetic backgrounds for introgression of the DGAT + CO trait in combination with selected endophyte strains, as grass host genetics is a major determinant to the success of the grass-endophyte association in this species.


Asunto(s)
Alcaloides , Epichloe , Lolium , Endófitos/metabolismo , Lolium/genética , Epichloe/genética , Epichloe/metabolismo , Simbiosis , Poaceae/metabolismo , Alcaloides/metabolismo , Lípidos
15.
PLoS One ; 18(12): e0287278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38051715

RESUMEN

Ryegrass mottle virus (RGMoV; genus: Sobemovirus) is a single-stranded positive RNA virus with a 30 nm viral particle size. It exhibits T = 3 symmetry with 180 coat protein (CP) subunits forming a viral structure. The RGMoV genome comprises five open reading frames that encode P1, Px, a membrane-anchored 3C-like serine protease, a viral genome-linked protein, P16, an RNA-dependent RNA polymerase, and CP. The RGMoV genome size varies, ranging from 4175 nt (MW411579.1) to 4253 nt (MW411579.1) in the deposited sequences. An earlier deposited RGMoV complete genome sequence of 4212 nt length (EF091714.1) was used to develop an infectious complementary DNA (icDNA) construct for in vitro gRNA transcription from the T7 promoter. However, viral infection was not induced when the transcribed gRNA was introduced into oat plants, indicating the potential absence of certain sequences in either the 5' or 3' untranslated regions (UTR) or both. The complete sequence of the 3' UTR was determined through 3' end RACE, while the 5' UTR was identified using high-throughput sequencing (HTS)-RNA-Seq to resolve the potential absences. Only the icDNA vector containing the newly identified UTR sequences proved infectious, resulting in typical viral infection symptoms and subsequent propagation of progeny viruses, exhibiting the ability to cause repeated infections in oat plants after at least one passage. The successful generation of icDNA highlighted the synergistic potential of utilizing both methods when a single approach failed. Furthermore, this study demonstrated the reliability of HTS as a method for determining the complete genome sequence of viral genomes.


Asunto(s)
Lolium , Virus ARN , Virus , ADN Complementario/genética , Lolium/genética , RNA-Seq , Reproducibilidad de los Resultados , ARN Guía de Sistemas CRISPR-Cas , Virus ARN/genética , Genoma Viral , Virus/genética , ARN Viral/genética , Sistemas de Lectura Abierta/genética
16.
BMC Genomics ; 24(1): 586, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789301

RESUMEN

BACKGROUND: Tall fescue (Festuca arundinacea Schreb.) is an important cool-season perennial grass species. Hexaploid tall fescue has three distinct morphotypes used either as forage or turf purposes. Its chloroplast genome is conserved due to it being maternally inherited to the next generation progenies. To identify morphotype-specific DNA markers and the genetic variations, plastid genomes of all three tall fescue morphotypes, i.e., Continental cv. Texoma MaxQ II, Rhizomatous cv. Torpedo, and Mediterranean cv. Resolute, have been sequenced using Illumina MiSeq sequencing platform. RESULTS: The plastid genomes of Continental-, Rhizomatous-, and Mediterranean tall fescue were assembled into circular master molecules of 135,283 bp, 135,336 bp, and 135,324 bp, respectively. The tall fescue plastid genome of all morphotypes contained 77 protein-coding, 20 tRNAs, four rRNAs, two pseudo protein-coding, and three hypothetical protein-coding genes. We identified 630 SNPs and 124 InDels between Continental and Mediterranean, 62 SNPs and 20 InDels between Continental and Rhizomatous, and 635 SNPs and 123 InDels between Rhizomatous and Mediterranean tall fescue. Only four InDels in four genes (ccsA, rps18, accD, and ndhH-p) were identified, which discriminated Continental and Rhizomatous plastid genomes from the Mediterranean plastid genome. Here, we identified and reported eight InDel markers (NRITCHL18, NRITCHL35, NRITCHL43, NRITCHL65, NRITCHL72, NRITCHL101, NRITCHL104, and NRITCHL110) from the intergenic regions that can successfully discriminate tall fescue morphotypes. Divergence time estimation revealed that Mediterranean tall fescue evolved approximately 7.09 Mya, whereas the divergence between Continental- and Rhizomatous tall fescue occurred about 0.6 Mya. CONCLUSIONS: To our knowledge, this is the first report of the assembled plastid genomes of Rhizomatous and Mediterranean tall fescue. Our results will help to identify tall fescue morphotypes at the time of pre-breeding and will contribute to the development of lawn and forage types of commercial varieties.


Asunto(s)
Festuca , Genoma de Plastidios , Lolium , Festuca/genética , Fitomejoramiento , Poaceae/genética , Lolium/genética , ADN de Plantas/genética
17.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894960

RESUMEN

Lolium multiflorum is one of the world-famous forage grasses with rich biomass, fast growth rate and good nutritional quality. However, its growth and forage yield are often affected by drought, which is a major natural disaster all over the world. MYB transcription factors have some specific roles in response to drought stress, such as regulation of stomatal development and density, control of cell wall and root development. However, the biological function of MYB in L. multiflorum remains unclear. Previously, we elucidated the role of LmMYB1 in enhancing osmotic stress resistance in Saccharomyces cerevisiae. Here, this study elucidates the biological function of LmMYB1 in enhancing plant drought tolerance through an ABA-dependent pathway involving the regulation of cell wall development and stomatal density. After drought stress and ABA stress, the expression of LmMYB1 in L. multiflorum was significantly increased. Overexpression of LmMYB1 increased the survival rate of Arabidopsis thaliana under drought stress. Under drought conditions, expression levels of drought-responsive genes such as AtRD22, AtRAB and AtAREB were up-regulated in OE compared with those in WT. Further observation showed that the stomatal density of OE was reduced, which was associated with the up-regulated expression of cell wall-related pathway genes in the RNA-Seq results. In conclusion, this study confirmed the biological function of LmMYB1 in improving drought tolerance by mediating cell wall development through the ABA-dependent pathway and thereby affecting stomatal density.


Asunto(s)
Arabidopsis , Lolium , Arabidopsis/metabolismo , Lolium/genética , Resistencia a la Sequía , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Huan Jing Ke Xue ; 44(10): 5746-5756, 2023 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-37827790

RESUMEN

The application of exogenous growth-regulating substances is an effective technique to enhance plant stress tolerance. Here, a hydroponic experiment was conducted to investigate the effects of exogenous basal application of 0.1 mmol·L-1 spermidine (Spd) on both the physiology and molecular biology of ryegrass root systems under varying degrees (0, 5, and 10 mg·L-1) of cadmium (Cd) stress using ryegrass as the test plants. The results of physiological studies revealed that Cd stress significantly reduced the physiological functions of the ryegrass root system, whereas the addition of Spd effectively alleviated the negative effects caused by Cd. The most significant effect was on the root soluble protein content, which increased by 90.91% and 158.35% compared with 5 mg·L-1and 10 mg·L-1 Cd alone. Spd also inhibited the accumulation of oxidative stress products malondialdehyde (MDA) and hydrogen peroxide (H2O2) by increasing the ascorbic acid (ASA) and glutathione (GSH) content and peroxidase (POD) activity, whereas the effects on root activity and superoxide dismutase (SOD) activity were not significant. The results of molecular biology studies demonstrated that 10 mg·L-1 Cd stress caused differential expression of a large number of genes in ryegrass roots, and the number of differentially expressed genes, differential significance, and differential multiplicity were significantly reduced after the application of exogenous Spd. The most significant part of the GO enrichment analysis shifted from responding to organic cyclic compounds and aldehyde/ketone group transferase activity to responding to trivalent iron ions and 2'-deoxymugineic-acid 2'-dioxygenase activity. Single gene expression heat map analysis revealed that exogenous Spd upregulated the expression of genes encoding zinc-iron transporter protein and 2'-deoxymugineic-acid 2'-dioxygenase, which improved the uptake and utilization of iron by the root system. In conclusion, the application of certain concentrations of Spd could effectively regulate the response of ryegrass roots to Cd stress, enhance its tolerance physiology, and mitigate the toxic effects of Cd.


Asunto(s)
Dioxigenasas , Lolium , Espermidina/farmacología , Espermidina/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Lolium/genética , Lolium/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Perfilación de la Expresión Génica , Dioxigenasas/metabolismo , Dioxigenasas/farmacología , Hierro
19.
BMC Plant Biol ; 23(1): 451, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37749497

RESUMEN

BACKGROUND: Drought resistance is a complex characteristic closely related to the severity and duration of stress. Perennial ryegrass (Lolium perenne L.) has no distinct drought tolerance but often encounters drought stress seasonally. Although the response of perennial ryegrass to either extreme or moderate drought stress has been investigated, a comprehensive understanding of perennial ryegrass response to both conditions of drought stress is currently lacking. RESULTS: In this study, we investigated the genetic variation in drought resistance in 18 perennial ryegrass varieties under both extreme and moderate drought conditions. The performance of these varieties exhibited obvious diversity, and the survival of perennial ryegrass under severe stress was not equal to good growth under moderate drought stress. 'Sopin', with superior performance under both stress conditions, was the best-performing variety. Transcriptome, physiological, and molecular analyses revealed that 'Sopin' adapted to drought stress through multiple sophisticated mechanisms. Under stress conditions, starch and sugar metabolic enzymes were highly expressed, while CslA was expressed at low levels in 'Sopin', promoting starch degradation and soluble sugar accumulation. The expression and activity of superoxide dismutase were significantly higher in 'Sopin', while the activity of peroxidase was lower, allowing for 'Sopin' to maintain a better balance between maintaining ROS signal transduction and alleviating oxidative damage. Furthermore, drought stress-related transcriptional and posttranscriptional regulatory mechanisms, including the upregulation of transcription factors, kinases, and E3 ubiquitin ligases, facilitate abscisic acid and stress signal transduction. CONCLUSION: Our study provides insights into the resistance of perennial ryegrass to both extreme and moderate droughts and the underlying mechanisms by which perennial ryegrass adapts to drought conditions.


Asunto(s)
Resistencia a la Sequía , Lolium , Lolium/genética , Sequías , Azúcares , Variación Genética
20.
Microb Ecol ; 86(4): 2618-2626, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37470815

RESUMEN

Tall fescue (Lolium arundinaceum (Schreb.) Darbysh.) is a cool-season perennial grass widely grown for forage and turf. Tall fescue lives in association with a fungal endophyte that helps the grass overcome abiotic and biotic stressors. The endophyte is asexual and transmits vertically from the tall fescue plant to the next generation through the seed. Producers of endophyte-infected tall fescue must have endophyte infection in at least 70% of their seed. Therefore, endophyte seed transmission is vital in breeding and seed production. Transfer of endophytes from their native host to different backgrounds of elite tall fescue cultivars can lead to a low seed transmission of the endophyte to the seed. This study screened 23 previously uncharacterized endophyte strains for transmissibility when artificially inoculated into continental and Mediterranean-type host tall fescue. We found no correlation between the rate of successful inoculation and the seed transmission rate of the endophyte in the new host. Nor did the seed transmission rate of the endophyte strains in their native host correlate with the seed transmission rate of the endophyte in the new host. Five strains exhibited seed transmission above 70% in both Mediterranean and Continental host backgrounds and will be characterized further for potential use in cultivar development.


Asunto(s)
Epichloe , Festuca , Lolium , Endófitos/genética , Lolium/genética , Lolium/microbiología , Epichloe/genética , Poaceae , Semillas/microbiología , Festuca/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA