Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124590, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850827

RESUMEN

A data fusion strategy based on near-infrared (NIR) and mid-infrared (MIR) spectroscopy techniques were developed for rapid origin identification and quality evaluation of Lonicerae japonicae flos (LJF). A high-level data fusion for origin identification was formed using the soft voting method. This data fusion model achieved accuracy, log-loss value and Kappa value of 95.5%, 0.347 and 0.910 on the prediction set. The spectral data were converted to liquid chromatography data using a data fusion model constructed by the weighted average algorithm. The Euclidean distance and adjusted cosine similarity were used to evaluate the similarity between the converted and the real chromatographic data, with results of 247.990 and 0.996, respectively. The data fusion models all performed better than the models constructed using single data. This indicates that multispectral data fusion techniques have a wide range of application prospects and practical value in the quality control of natural products such as LJF.


Asunto(s)
Lonicera , Espectroscopía Infrarroja Corta , Lonicera/química , Espectroscopía Infrarroja Corta/métodos , Espectrofotometría Infrarroja/métodos , Control de Calidad , Algoritmos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Extractos Vegetales
2.
Molecules ; 29(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893434

RESUMEN

Lonicera macranthoides, the main source of traditional Chinese medicine Lonicerae Flos, is extensively cultivated in Southwest China. However, the quality of L. macranthoides produced in this region significantly varies due to its wide distribution and various cultivation breeds. Herein, 50 Lonicerae Flos samples derived from different breeds of L. macranthoides cultivated in Southwest China were collected for quality evaluation. Six organic acids and three saponin compounds were quantitatively analyzed using HPLC. Furthermore, the antioxidant activity of a portion of samples was conducted with 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging experiments. According to the quantitative results, all samples met the quality standards outlined in the Chinese Pharmacopoeia. The samples from Guizhou, whether derived from unopened or open wild-type breeds, exhibited high quality, while the wild-type samples showed relatively significant fluctuation in quality. The samples from Chongqing and Hunan demonstrated similar quality, whereas those from Sichuan exhibited relatively lower quality. These samples demonstrated significant abilities in clearing ABTS and DPPH radicals. The relationship between HPLC chromatograms and antioxidant activity, as elucidated by multivariate analysis, indicated that chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, and isochlorogenic acid C are active components and can serve as Q-markers for quality evaluation.


Asunto(s)
Antioxidantes , Lonicera , Cromatografía Líquida de Alta Presión/métodos , Lonicera/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/análisis , China , Picratos/química , Picratos/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Ácidos Sulfónicos/química , Ácidos Sulfónicos/antagonistas & inhibidores , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/normas , Control de Calidad , Benzotiazoles/química , Saponinas/química , Saponinas/análisis , Extractos Vegetales
3.
J Ethnopharmacol ; 331: 118333, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750986

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Various components of Lonicera japonica Thunb. (LJT) exhibit pharmacological activities, including anti-inflammatory and antioxidant effects. Nevertheless, the relationship between LJT and ferroptosis remains largely unexplored. AIM OF THE STUDY: The purpose of this research was to look into the role of LJT in regulating LPS-induced ferroptosis in ALI and to compare the effects of different parts of LJT. MATERIALS AND METHODS: We established a mice ALI model by treating with LPS. Administered mice with different doses of Lonicerae Japonicae Flos (LJF), Lonicera Japonica Leaves (LJL) and Lonicerae Caulis (LRC) extracts, respectively. The levels of IL-6, IL-1ß, TNF-α, IL-4, IL-10, and PGE2 in bronchoalveolar lavage fluid (BALF) were measured using enzyme-linked immunosorbent assay. Furthermore, the concentrations of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), and total ferrous ions (Fe2+) in lung tissues were evaluated. Hematoxylin and eosin staining was conducted to examine the morphological structure of lung tissues. Transmission electron microscopy was used to investigate the ultrastructural morphology of mitochondria. Furthermore, the effects of LJT were evaluated via immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction analyses. Finally, employing molecular docking and molecular dynamics research techniques, we aimed to identify crucial components in LJT that might inhibit ferroptosis by targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4). RESULTS: We observed that pretreatment with LJT significantly mitigated LPS-induced lung injury and suppressed ferroptosis. This was supported by reduced accumulation of pro-inflammatory cytokines, ROS, MDA, and Fe2+, along with increased levels of anti-inflammatory cytokines, SOD, GSH, Nrf2, and GPX4 in the lung tissues of ALI mice. Luteolin-7-O-rutinoside, apigenin-7-O-rutinoside, and amentoflavone in LJT exhibit excellent docking effects with key targets of ferroptosis, Nrf2 and GPX4. CONCLUSIONS: Pretreatment with LJT may alleviate LPS-induced ALI, possibly by suppressing ferroptosis. Our initial results indicate that LJT activates the Nrf2/GPX4 axis, providing protection against ferroptosis in ALI. This finding offers a promising therapeutic candidate for ALI treatment.


Asunto(s)
Lesión Pulmonar Aguda , Ferroptosis , Lipopolisacáridos , Lonicera , Estrés Oxidativo , Extractos Vegetales , Animales , Lonicera/química , Lipopolisacáridos/toxicidad , Ferroptosis/efectos de los fármacos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Ratones , Masculino , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/inducido químicamente , Hojas de la Planta/química , Citocinas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo
4.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731465

RESUMEN

Chrysoeriol is an active ingredient derived from the Chinese medicinal herb (CMH) "Lonicerae japonicae flos" in the dried flower bud or bloomed flower of Lonicera japonica Thunberg. Dermatoses are the most common diseases in humans, including eczema, acne, psoriasis, moles, and fungal infections, which are temporary or permanent and may be painless or painful. Topical corticosteroids are widely used in Western medicine, but there are some side effects when it is continuously and regularly utilized in a large dosage. Chrysoeriol is a natural active ingredient, nontoxic, and without any adverse reactions in the treatment of dermatological conditions. METHODS: Nine electronic databases were searched, including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. The pharmacological activities of chrysoeriol from Lonicerae japonicae flos to fight against skin diseases were explained and evaluated through the literature review of either in vitro or in vivo studies. RESULTS: Chrysoeriol decreased the mRNA levels of proinflammatory cytokines IL-6, IL-1ß, and TNF-α. These were transcriptionally regulated by NF-κB and STAT3 to combat skin inflammation. It also showed promising actions in treating many skin ailments including wound healing, depigmentation, photoprotection, and antiaging. CONCLUSION: The cutaneous route is the best delivery approach to chrysoeriol across the skin barrier. However, toxicity, dosage, and safety assessments of chrysoeriol in a formulation or nanochrysoeriol on the human epidermis for application in skin diseases must be further investigated.


Asunto(s)
Lonicera , Enfermedades de la Piel , Lonicera/química , Humanos , Enfermedades de la Piel/tratamiento farmacológico , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Flores/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
5.
J Chromatogr A ; 1728: 464986, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38797137

RESUMEN

In this study, a novel at-line nanofractionation platform was established for screening SARS-CoV-2 fusion inhibitors from natural products for the first time by combining HPLC-MS/MS with high-throughput fluorescence polarization (FP) bioassay. A time-course FP bioassay in 384 well-plates was conducted in parallel with MS/MS to simultaneously obtain chemical and biological information of potential fusion inhibitors in Lonicerae Japonicae Flos (LJF) and Lianhua Qingwen capsules (LHQW). Semi-preparative liquid chromatography and orthogonal HPLC separation were employed to enrich and better identify the co-eluted components. After comprehensive evaluation and validation, 28 potential SARS-CoV-2 fusion inhibitors were screened out and identified. Several compounds at low micromolar activity were validated by in vitro inhibitory assay, molecular docking, cytotoxicity test, and pseudovirus assay. Moreover, four potential dual-target inhibitors against influenza and COVID-19 were discovered from LJF using this method, offering novel insights for the development of future pharmaceuticals targeting epidemic respiratory diseases.


Asunto(s)
Antivirales , Polarización de Fluorescencia , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , SARS-CoV-2/efectos de los fármacos , Espectrometría de Masas en Tándem/métodos , Antivirales/farmacología , Antivirales/química , Antivirales/análisis , Humanos , Polarización de Fluorescencia/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Lonicera/química , COVID-19/virología , Cromatografía Líquida con Espectrometría de Masas
6.
Poult Sci ; 103(7): 103718, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692178

RESUMEN

In this study, we aimed to investigate the effect of Scutellaria baicalensis and Lonicerae Flos (SL) extract on the growth performance and intestinal health of yellow-feather broilers following a Clostridium perfringens challenge. In total, 600 one-day-old yellow-feather broilers were divided into five treatments (6 replicate pens of 20 birds per treatment), including a control (Con) group fed a basal diet and the infected group (iCon) fed a basal diet and infected with Clostridium perfringens, the other 3 groups receiving different doses of SL (150, 300, and 450 mg/kg) and infected with Clostridium perfringens. The total experimental period was 80 d. When the birds were 24-days-old, a subclinical necrotizing enteritis model was induced by orally inoculating the birds with 11,000 oocysts of mixed Eimeria species on d 24, followed by C. perfringens (108 CFU/mL) from d 28 to 30. The birds were evaluated for parameters such as average weight gain (AWG), average daily feed intake (ADFI), mortality, feed conversion ration (FCR), intestinal lesion score, intestinal C. perfringens counts, and villus histomorphometry. Results indicated that C. perfringens infection led to reduced AWG and the levels of tight junction proteins, increased the FCR, ileum E. coli load, and intestinal permeability, causing damage to the intestinal mucosal barrier (P < 0.05). Compared with the infected group, supplementing 300 mg/kg of SL significantly increased AWG at 43 to 80 d, the ratio of villus height to crypt depth in the jejunum and ileum at 35 d, and the activity of superoxide dismutase (SOD) in serum. It also significantly reduced the FCR at 22 to 42 d, intestinal lesion score, and the amount of C. perfringens in the ileum (P < 0.05). Additionally, compared with the infected group, the addition of 300 mg/kg SL significantly increased mRNA levels of claudin-2, claudin-3, mucin-2, and toll-like receptor 2 (TLR-2) in the ileum of infected birds at 35 d of age. In conclusion, supplementation with SL extract could effectively mitigate the negative effects of C. perfringens challenge by improving intestinal barrier function and histomorphology, positively influencing the growth performance of challenged birds.


Asunto(s)
Alimentación Animal , Antioxidantes , Pollos , Infecciones por Clostridium , Clostridium perfringens , Dieta , Lonicera , Extractos Vegetales , Enfermedades de las Aves de Corral , Scutellaria baicalensis , Animales , Pollos/crecimiento & desarrollo , Clostridium perfringens/fisiología , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/microbiología , Enfermedades de las Aves de Corral/microbiología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alimentación Animal/análisis , Dieta/veterinaria , Antioxidantes/metabolismo , Scutellaria baicalensis/química , Lonicera/química , Intestinos/efectos de los fármacos , Suplementos Dietéticos/análisis , Distribución Aleatoria , Masculino
7.
J Food Sci ; 89(6): 3829-3846, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38745368

RESUMEN

Lonicera japonica Thunb. (LJT) is known for its valuable medicinal properties that highlight its potential application in the pharmaceutical and health food industry. We predict that LJT polyphenols by network pharmacology may be involved in immunomodulation, and the study of LJT polyphenols regulating immunity is still insufficient; therefore, we experimentally found that LJT enhances immunity by promoting the proliferation and phagocytic activity of RAW246.7 cells. A model of an immunosuppressed mouse was constructed using cyclophosphamide-induced, and LJT was extracted for the intervention. We found that LJT restored immune homeostasis in immune deficiency mice by inhibiting the abnormal apoptosis in lymphocytes, enhancing natural killer cell cytotoxicity, promoting T lymphocyte proliferation, and increasing the CD4+ and CD8+ T lymphocytes in quantity. Moreover, LJT treatment modulates immunity by significantly downregulating lipopolysaccharide-induced inflammation and oxidative stress levels. We verified the immunomodulatory function of LJT through both cell and animal experiments. The combination of potential-protein interactions and molecular docking later revealed that LJT polyphenols were associated with immunomodulatory effects on MAPK1; together, LJT intervention significantly modulates the immune, with the activation of MAPK1 as the underlying mechanism of action, which provided evidence for the utilization of LJT as a nutraceutical in immune function.


Asunto(s)
Inmunomodulación , Lonicera , Farmacología en Red , Extractos Vegetales , Lonicera/química , Animales , Ratones , Extractos Vegetales/farmacología , Farmacología en Red/métodos , Inmunomodulación/efectos de los fármacos , Células RAW 264.7 , Simulación del Acoplamiento Molecular , Polifenoles/farmacología , Proliferación Celular/efectos de los fármacos , Masculino , Apoptosis/efectos de los fármacos , Ratones Endogámicos BALB C
8.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2654-2665, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812166

RESUMEN

This study established an ultrasound-assisted extraction-high performance liquid chromatography method for simulta-neously determinining the content of 11 bioactive compounds including iridoids, phenolic acids, and flavonoids in Lonicera japonica flowers. The flowers at six stages from the rice bud stage(ML) to the golden flower stage(JH) of L. japonica varieties 'Sijuhua' and 'Beihua No.1' in two planting bases in Shandong province were collected. The established method was employed to determine the content of 11 target compounds, on the basis of which the dynamics of active components in L. japonica sampels during different development stages was investigated. The correlation analysis was carried out to reveal the correlations of the content of iridoids, phenolic acids, and flavonoids. Furthermore, the antioxidant activities of samples at different developmental stages were determined, and the relationship between antioxidant activity and chemical components was analyzed by the correlation analysis. The results showed that the total content of the 11 components in 'Sijihua' changed in a "W" pattern from the ML to JH, being the highest at the ML and the second at the slight white stage(EB). The total content of 11 compounds in 'Beihua No.1' was the highest at the ML and decreased gra-dually from the ML to JH. The samples of 'Sijihua' had higher content of iridoids and lower content of phenolic acids than those of 'Beihua No.1'. The content of flavonoids and phenolic acids showed a positive correlation(R~2=0.90, P<0.05) in 'Sijihua' but no obvious correlation in 'Beihua No.1'. The antioxidant activity and phenolic acid content showed positive correlations, with the determination coefficients(R~2) of 0.84(P<0.05) in 'Beihua No.1' and 0.73(P<0.05) in 'Sijihua'. The antioxidant activity of both varieties was the strongest at the ML and the second at the EB. This study revealed that the content dynamics of iridoids, phenolic acids, and flavonoids in 'Sijihua' and 'Beihua No.1' cultivated in Shandong province during different developmental stages. The results indicated that the antioxidant activity of L. japonica flowers was significantly correlated with the content of phenolic acids at different deve-lopmental stages, which provided a basis for determining the optimum harvest time of L. japonica flowers.


Asunto(s)
Antioxidantes , Flavonoides , Flores , Lonicera , Lonicera/química , Lonicera/crecimiento & desarrollo , Lonicera/metabolismo , Flores/química , Flores/crecimiento & desarrollo , Flores/metabolismo , Antioxidantes/metabolismo , Antioxidantes/análisis , Antioxidantes/química , China , Flavonoides/análisis , Flavonoides/química , Flavonoides/metabolismo , Hidroxibenzoatos/análisis , Hidroxibenzoatos/metabolismo , Metabolismo Secundario , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Iridoides/metabolismo , Iridoides/análisis , Iridoides/química
9.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2666-2679, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812167

RESUMEN

This study aims to explore the molecular regulatory mechanism of the differential accumulation of flavonoids between 'Xianglei' and the wild type of Lonicera macranthoides. The flowers, stems, and leaves of the two varieties of L. macranthoides were collected. Ultra-performance liquid chromatography-mass spectrometry(UPLC-MS) and high-throughput sequencing(RNA-seq) were employed to screen out the differential flavonoids, key differentially expressed genes(DEGs) and transcription factors(TFs). Fourteen DEGs were randomly selected for verification by qRT-PCR. The results showed that a total of 17 differential flavonoids were obtained, including naringin chalcone, apigenin, and quercetin. The transcriptomic analysis predicted 19 DEGs associated with flavonoids, including 2 genes encoding chitin synthase(CHS) and 3 genes encoding chalcone isomerase(CHI). The regulatory network analysis and weighted gene co-expression network analysis(WGCNA) screen out the key enzyme genes CHS1, FLS1, and HCT regulating the accumulation of flavonoids. MYB12 and LBD4 may be involved in the biosynthesis of flavonoids by regulating the expression of key enzyme genes CHS1, FLS1, and HCT. The qRT-PCR and RNA-seq results were similar regarding the expression patterns of the 14 randomly selected DEGs. This study preliminarily analyzed the transcriptional regulatory mechanism for the differential accumulation of flavonoids in the two varieties of L. macranthoides and laid a foundation for further elucidating the regulatory effects of key enzyme genes and TFs on the accumulation of flavonoids.


Asunto(s)
Flavonoides , Regulación de la Expresión Génica de las Plantas , Lonicera , Metabolómica , Transcriptoma , Lonicera/genética , Lonicera/metabolismo , Lonicera/química , Flavonoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Phytochem Anal ; 35(4): 647-663, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38185766

RESUMEN

INTRODUCTION: Lonicerae Japonicae Flos (LJF) is widely used in food and traditional Chinese medicine. To meet demand, Lonicera japonica Thunb. is widely cultivated in many provinces of China. However, reported studies on the quality evaluation of LJF only used a single or a few active components as indicators, which could not fully reflect the quality of LJF. OBJECTIVES: In the present study, we aimed to develop a methodology for comprehensively evaluating the quality of LJF from different origins based on high-performance liquid chromatography (HPLC) fingerprinting and multicomponent quantitative analysis combined with chemical pattern recognition. MATERIALS AND METHODS: The HPLC method was developed for fingerprint analysis and was used to determine the contents of 19 components of LJF. To distinguish between samples and identify differential components, similarity analysis, hierarchical cluster analysis, principal component analysis, and orthogonal partial least squares discriminant analysis were performed. RESULTS: The HPLC fingerprint was established. Using the developed method, the contents of 19 components recognized in the fingerprint analysis were determined. Samples from different origins could be effectively distinguished. CONCLUSIONS: HPLC fingerprinting and multicomponent quantitative analysis combined with chemical pattern recognition is an efficient method for evaluating LJF.


Asunto(s)
Lonicera , Análisis de Componente Principal , Cromatografía Líquida de Alta Presión/métodos , Lonicera/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Análisis por Conglomerados , Control de Calidad , Análisis de los Mínimos Cuadrados , Flores/química , Análisis Discriminante , Extractos Vegetales
11.
Food Chem ; 443: 138513, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277933

RESUMEN

Quantitative analysis of the quality constituents of Lonicera japonica (Jinyinhua [JYH]) using a feasible method provides important information on its evaluation and applications. Limitations of sample pretreatment, experimental site, and analysis time should be considered when identifying new methods. In response to these considerations, Raman spectroscopy combined with deep learning was used to establish a quantitative analysis model to determine the quality of JYH. Chlorogenic acid and total flavonoids were identified as analysis targets via network pharmacology. High performance liquid chromatograph and ultraviolet spectroscopy were used to construct standard curves for quantitative analysis. Raman spectra of JYH extracts (1200) were collected. Subsequently, models were built using partial least squares regression, Support Vector Machine, Back Propagation Neural Network, and One-dimensional Convolutional Neural Network (1D-CNN). Among these, the 1D-CNN model showed superior prediction capability and had higher accuracy (R2 = 0.971), and lower root mean square error, indicating its suitability for rapid quantitative analysis.


Asunto(s)
Medicamentos Herbarios Chinos , Lonicera , Lonicera/química , Espectrometría Raman , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Ácido Clorogénico/análisis
12.
J Ethnopharmacol ; 323: 117697, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38185261

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) were once used as the same herb in China, but they were distinguished by Chinese Pharmacopoeia in 2005 in terms of their medicinal history, plant morphology, medicinal properties and chemical constituents. However, their functions, flavor, and meridian tropism are the same according to the Chinese pharmacopoeia 2020 edition, making researchers and customers confused. AIM OF THE REVIEW: This review aimed to provide a comparative analysis of LJF and LF in order to provide a rational application in future research. MATERIALS AND METHODS: The information was gathered from China National Knowledge Infrastructure (CNKI), SciFinder, Google Scholar, PubMed, Web of Science, and Chinese Masters and Doctoral Dissertations (all chosen articles were reviewed attentively from 1980.1 to 2023.8). RESULTS: Till now, 507 chemical compounds have been isolated and identified in LJF, while 223 ones (79 overlapped compounds) are found in LF, including organic acids and derivatives, flavonoids, triterpenoids, iridoids, and essential oil components, etc. In addition, the pharmacological activities of LJF and LF, especially for their anti-influenza efficacy and mechanism, and their difference in terms of pharmacokinetic parameters, toxicology, and clinical applications were also summarized. CONCLUSION: The current work offers comparative information between LJF and LF in terms of botany, traditional uses, phytochemistry, ethnopharmacology, pharmacokinetics, toxicology, and pharmacology, especially their anti-influenza activities. Despite the same clinical applications and similar chemical components in LJF and LF, differentiated components were still existed, resulting in differentiated pharmacological activities and pharmacokinetics parameters. Moreover, the research about anti-influenza mechanism and functional substances of LJF and LF is dramatically limited, restricting their clinical applications. In addition, few studies have investigated the metabolism feature of LF in vivo, which is one of the important bases for revealing the pharmacological mechanism of LF. At the same time, the toxicity of LJF and LF is not fully studied, and the toxic compounds of LJF and LF need to be screened out in order to standardize the drug use and improve their rational applications.


Asunto(s)
Medicamentos Herbarios Chinos , Lonicera , Aceites Volátiles , Extractos Vegetales/farmacología , Lonicera/química , Etnofarmacología , Aceites Volátiles/farmacología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión
13.
J Ethnopharmacol ; 322: 117278, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37972908

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lonicerae japonicae flos (LJF) and Lonicerae flos (LF) belong to different genera of Caprifoliaceae with analogous appearances and functions. Historically, they have been used as herbal medicines to treat various diseases with confirmed wind-heat evacuation, heat-clearing, and detoxification effects. However, the Chinese Pharmacopoeia (2005 Edition) lists LJF and LF under different categories. AIM OF THE STUDY: Few studies have systematically compared the similarities and dissimilarities of LJF and LF concerning their research achievements. This systematic review and comparison of the traditional use, identification, and phytochemical and pharmacological properties of LJF and LF provides valuable insights for their further application and clinical safety. MATERIALS AND METHODS: Related document information was collected from databases that included Web of Science, X-MOL, Science Direct, PubMed, and the China National Knowledge Infrastructure. RESULTS: The chemical constituents and pharmacological effects of LJF and LF were similar. A total of 337 and 242 chemical constituents were isolated and identified in LJF and LF, respectively. These included volatile oils, cyclic ether terpenes, flavonoids, phenolic acids, triterpenoids, and their saponins. Additionally, LJF plants contain more iridoids and flavonoids than LF plants. The latter have a variety of triterpenoid saponins and significantly higher chlorogenic acid content than LJF plants. Pharmacological studies have shown that LJF and LF have various anti-inflammatory, antiviral, antibacterial, anti-endotoxic, antioxidant, anti-tumor, anti-platelet, myocardial protective, and hepatoprotective effects. CONCLUSIONS: This review was undertaken to explore whether LJF and LF should be listed separately in the Chinese Pharmacopoeia in terms of their disease prevention and treatment strategies. Although LJF and LF showed promising effects, their action mechanisms remains unclear. Specifically, their impact on gut microbiota, gastrointestinal tract, and blood parameters requires further investigation. These studies will provide the foundation for scientific utilization and clinical/non-clinical applications of LJF and LF, and the maximum benefits from their mutual use.


Asunto(s)
Botánica , Medicamentos Herbarios Chinos , Lonicera , Extractos Vegetales , Saponinas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Flavonoides , Lonicera/química
14.
Sci Rep ; 13(1): 20883, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016995

RESUMEN

The phenolic compounds in Lonicera japonica & Chenpi distillation extract (LCDE) were thoroughly examined for their antioxidant and anti-inflammatory properties. Phenolic compounds in LCDE were analyzed for five peaks using high-performance liquid chromatography (HPLC) combined with mass spectrometry (MS) and determined. Five phenolic compounds were identified from the samples and MS data. Ultrafiltration with LC analysis was used to investigate the ability of bioactive compounds to target DPPH. As a result, it was confirmed that the major compounds exhibited a high binding affinity to DPPH and could be regarded as antioxidant-active compounds. In addition, the anti-inflammatory effect of LCDE was confirmed in vitro, and signal inhibition of anti-inflammation cytokines, MAPK and NF-kB pathways was confirmed. Finally, Molecular docking analysis supplements the anti-inflammatory effect through the binding affinity of selected compounds and inflammatory factors. In conclusion, the phenolic compounds of the LCDE were identified and potential active compounds for antioxidant and anti-inflammatory activities were identified. Additionally, this study will be utilized to provide basic information for the application of LCDE in the pharmaceutical and pharmaceutical cosmetics industries along with information on efficient screening techniques for other medicinal plants.


Asunto(s)
Medicamentos Herbarios Chinos , Lonicera , Antioxidantes/farmacología , Antioxidantes/química , Lonicera/química , Simulación del Acoplamiento Molecular , Fenoles/análisis , Queratinocitos , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química
15.
Molecules ; 28(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836702

RESUMEN

Lonicerae japonicae flos and Lonicerae flos are increasingly widely used in food and traditional medicine products around the world. Due to their high demand and similar appearance, they are often used in a confused or adulterated way; therefore, a rapid and comprehensive analytical method is highly required. In this case, the comparative analysis of a total of 100 samples with different species, growth modes, and processing methods was carried out by nuclear magnetic resonance (1H-NMR) spectroscopy and chemical pattern recognition analysis. The obtained 1H-NMR spectrums were employed by principal component analysis (PCA), partial least-squares discriminant analysis (PLS-DA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and linear discriminant analysis (LDA). Specifically, after the dimensionality reduction of data, linear discriminant analysis (LDA) exhibited good classification abilities for the species, growth modes, and processing methods. It is worth noting that the sample prediction accuracy from the testing set and the cross-validation predictions of the LDA models were higher than 95.65% and 98.1%, respectively. In addition, the results showed that macranthoidin A, macranthoidin B, and dipsacoside B could be considered as the main differential components of Lonicerae japonicae flos and Lonicerae Flos, while secoxyloganin, secologanoside, and sweroside could be responsible for distinguishing cultivated and wild Lonicerae japonicae Flos. Accordingly, 1H-NMR spectroscopy combined with chemical pattern recognition gives a comprehensive overview and provides new insight into the quality control and evaluation of Lonicerae japonicae flos.


Asunto(s)
Medicamentos Herbarios Chinos , Lonicera , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales , Lonicera/química , Espectroscopía de Resonancia Magnética
16.
Biomed Pharmacother ; 165: 115038, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37418981

RESUMEN

The transforming growth factor-ß-activated kinase 1 (TAK1) phosphorylation promotes inflammation occurrence. Meanwhile, TAK1 directly interacts with KEAP1 and strenghtenes NRF2/HO-1 pathway downregulated-inflammation. Recently, we found that caffeoylquinic acids not only possessed powderful anti-inflammation function, but also attenuated oxidative damage through KEAP1/NRF2 pathway. Whereas it's rarely understood whether the anti-inflammatory activity were regulated by their interaction between TAK1 and NRF2. Herein, 34 caffeoylquinic acids including five new (2, 4-7) were systematically isolated and identified on the basis of spectroscopic evidence from Lonicera japonica Thunb. flower buds. Their inhibitory effects on inflammation induced by LPS plus IFN-γ were exerted substantial NO scavenging activity, and inhibited massive production of inflammatory cytokines and related proteins. Compound 3 (4F5C-QAME) exhibited the best anti-inflammation activity. 4F5C-QAME down-regulated the phosphorylation of TAK1, JNK, and c-JUN, thereby alleviated inflammation stimulated by LPS plus IFN-γ. Meanwhile, 4F5C-QAME could alleviate the interaction between TAK1 and KEAP1, inhibit the ubiquitination degradation of NRF2, activate NRF2/HO-1 signaling pathway, result in the increase in ROS elimination. Furthermore, 4F5C-QAME effectively protected against inflammation through direct inhibition of TAK1 phosphorylation. Based on these findings, 4F5C-QAME directly targeting TAK1 could be represented as a potential drug candidate for preventing/treating inflammatory diseases that regulated NRF2 activation through alleviating the interaction between TAK1 and KEAP1. Moreover, the regulatory mechanism of TAK1 on NRF2 activation under exogenous oxidative stress was revealed for the first time.


Asunto(s)
Lipopolisacáridos , Lonicera , Humanos , Lipopolisacáridos/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Lonicera/química , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Antiinflamatorios/efectos adversos , Estrés Oxidativo , Interferón gamma/farmacología , Interferón gamma/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2713-2724, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282931

RESUMEN

The grey correlation-TOPSIS method was used to evaluate the quality of the origin herbs of Lonicerae Japonicae Flos, and the Fourier transform near-infrared(NIR) and mid-infrared(MIR) spectroscopy was applied to establish the identification model of origin herbs of Lonicerae Japonicae Flos by combining chemometrics and spectral fusion strategies. The content of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, secoxyloganin, isoquercitrin, isochlorogenic acid B, isochlorogenic acid A, and isochlorogenic acid C in six origin herbs of Lonicerae Japonicae Flos was determined by high-performance liquid chromatography(HPLC), and their quality was evaluated by the grey correlation-TOPSIS method. The Fourier transform NIR and MIR spectra of six origin herbs of Lonicerae Japonicae Flos(Lonicera japonica, L. macranthoides, L. hypoglauca, L. fulvotomentosa, L. confuse, and L. similis) were collected. At the same time, principal component analysis(PCA), support vector machine(SVM), and spectral data fusion technology were combined to determine the optimal identification method for the origin herbs of Lonicerae Japonicae Flos. There were differences in the quality of the origin herbs of Lonicerae Japonicae Flos. Specifically, there were significant differences between L. japonica and the other five origin herbs(P<0.01). The quality of L. similis was significantly different from that of L. fulvotomentosa, L. macranthoides, and L. hypoglauca(P=0.008, 0.027, 0.01), and there were also significant differences in the quality of L. hypoglauca and L. confuse(P=0.001). The PCA and SVM 2D models based on a single spectrum could not be used for the effective identification of the origin herbs of Lonicerae Japonicae Flos. The data fusion combined with the SVM model further improved the identification accuracy, and the identification accuracy of the mid-level data fusion reached 100%. Therefore, the grey correlation-TOPSIS method can be used to evaluate the quality of the origin herbs of Lonicerae Japonicae Flos. Based on the infrared spectral data fusion strategy and SVM chemometric model, it can accurately identify the origin herbs of Lonicerae Japonicae Flos, which can provide a new method for the origin identification of medicinal materials of Lonicerae Japonicae Flos.


Asunto(s)
Medicamentos Herbarios Chinos , Lonicera , Medicamentos Herbarios Chinos/química , Flores/química , Control de Calidad , Lonicera/química , Cromatografía Líquida de Alta Presión/métodos
18.
Molecules ; 28(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37375383

RESUMEN

Lonicera japonica Thunb. is a widely distributed plant with ornamental, economic, edible, and medicinal values. L. japonica is a phytoantibiotic with broad-spectrum antibacterial activity and a potent therapeutic effect on various infectious diseases. The anti-diabetic, anti-Alzheimer's disease, anti-depression, antioxidative, immunoregulatory, anti-tumor, anti-inflammatory, anti-allergic, anti-gout, and anti-alcohol-addiction effects of L. japonica can also be explained by bioactive polysaccharides isolated from this plant. Several researchers have determined the molecular weight, chemical structure, and monosaccharide composition and ratio of L. japonica polysaccharides by water extraction and alcohol precipitation, enzyme-assisted extraction (EAE) and chromatography. This article searched in the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, and CNKI databases within the last 12 years, using "Lonicera. japonica polysaccharides", "Lonicera. japonica Thunb. polysaccharides", and "Honeysuckle polysaccharides" as the key word, systematically reviewed the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of L. japonica polysaccharides to provide insights for future studies. Further, we elaborated on the potential applications of L. japonica polysaccharides in the food, medicine, and daily chemical industry, such as using L. japonica as raw material to make lozenges, soy sauce and toothpaste, etc. This review will be a useful reference for the further optimization of functional products developed from L. japonica polysaccharides.


Asunto(s)
Enfermedad de Alzheimer , Lonicera , Humanos , Lonicera/química , Polisacáridos/farmacología , Antiinflamatorios , China
19.
Food Chem ; 421: 136148, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37087994

RESUMEN

The polyphenols extracted from 20 blue honeysuckle cultivars were comprehensively characterized and quantified by HPLC-DAD and HPLC-ESI-QTOF-MS2 analyses and evaluated for antioxidant capacity (ABTS, DPPH, FRAP) and α-amylase inhibitory activity. The 17 anthocyanins and 59 non-anthocyanin phenolics were characterized. Among them, cyanidin-3-glucoside, quercetin-3-galactoside, myricetin-3-galactoside, and 3-caffeoylquinic acid were the major polyphenols. These polyphenols not only contributed to the antioxidant capacity, but were also good α-amylase inhibitors. 'Lanjingling' showed the strongest antioxidant capacity evaluated by FRAP, while 'CBS-2' and '14-13-1' showed the strongest antioxidant capacity evaluated by ABTS and DPPH. All the twenty cultivars showed α-amylase inhibitory activity, and the IC50 values ranged from 0.12 ± 0.01 to 0.69 ± 0.02 mg/mL. 'Lanjingling' showed the most potent α-amylase inhibitory activity. Additionally, principal component analysis indicated that Lonicera. caerulea subsp. emkuyedao bred in Japan differed markedly in phenolics and bioactivity compared to the other four subspecies bred in China and Russia.


Asunto(s)
Lonicera , Polifenoles , Polifenoles/farmacología , Polifenoles/análisis , Antioxidantes/química , Antocianinas/análisis , Lonicera/química , Frutas/química , Fitomejoramiento , Fenoles/análisis , alfa-Amilasas/análisis , Extractos Vegetales/química
20.
Molecules ; 28(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36985495

RESUMEN

Lonicera caerulea fruits are a rich source of vitamins, organic acids, and phenolic compounds, which are characterised by their health-promoting properties. The content of bioactive compounds in this fruit may vary depending on the cultivar and the harvest date. The fruits of the L. caerulea var. kamtschatica cultivars 'Duet' and 'Aurora' and the L. caerulea var. emphyllocalyx cultivars 'Lori', 'Colin' and 'Willa' were used in this study. L. emphyllocalyx fruit, especially the cultivar 'Willa', was characterised as having a higher acidity by an average of 29.96% compared to L. kamtschatica. The average ascorbic acid content of the L. kamtschatica fruit was 53.5 mg·100 g-1 f.w., while L. emphyllocalyx fruit had an average content that was 14.14% lower. The antioxidant activity (determined by DPPH, FRAP, and ABTS) varied according to the cultivar and the species of fruit analysed. The total polyphenol content differed significantly depending on the cultivar analysed; fruits of the L. emphyllocalyx cultivar 'Willa' were characterised by the lowest content of total polyphenols-416.94 mg GAE·100 g-1 f.w.-while the highest content of total polyphenols-747.85 GAE·100 g-1 f.w.-was found in the fruits of the L. emphyllocalyx cultivar 'Lori'. Lonicera caerulea fruits contained 26 different phenolic compounds in their compositions, of which the highest content was characterised by cyanidin 3-O-glucoside (average: 347.37 mg·100 g-1). On the basis of this study, it appears that both L. kamtschatica fruits and L. emphyllocalyx fruits, especially of the cultivars 'Lori' and 'Willa', can be used in food processing.


Asunto(s)
Lonicera , Extractos Vegetales , Extractos Vegetales/química , Polifenoles/análisis , Fenoles/análisis , Antioxidantes/farmacología , Antioxidantes/análisis , Vitaminas/análisis , Frutas/química , Lonicera/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA