RESUMEN
Introduction: Despite being a bacterial pathogen with devastating consequences, Tenacibaculum maritimum's pathogenesis is not fully understood. The aim of the present study was to elucidate if different inoculation routes (intraperitoneal - i.p - injection and bath challenge - known to induce mortality) can induce tenacibaculosis (i.e., using the same T. maritimum inoculum), as well as evaluate the short-term immune response of European sea bass (D. labrax). Additionally, the host response against i.p. injection of extracellular products (ECPs) was also studied. Methods: Fish were i.p. challenged with 5.5 × 105 CFU mL-1 of T. maritimum cells with or without ECPs (BECPs and BWO, respectively), ECPs alone or marine broth (mock). Another group of fish was bath-challenged with 5.5 × 105 CFU mL-1 to confirm the virulence of the bacterial inoculum. Undisturbed specimens were used as controls. The severity of both challenges was determined by following percentage survival. Blood, liver and head-kidney samples were collected at 0, 3, 6, 24 and 48 h post-challenge for assessing immune parameters, oxidative stress and gene expression. Total and differential peritoneal cell counts were performed. The presence of viable bacteria in the blood and peritoneal cavity was studied. Results: Symptoms of tenacibaculosis, such as skin/fin abrasions, were only observed in the bath-challenged fish, where 0% survival was recorded, whereas 100% survival was observed after i.p. injection of the same bacterial inoculum. An increase in total leukocyte numbers in the peritoneal cavity was observed 3 h post-injection of BECPs when compared to the other treatments. Blood total leukocytes, lymphocytes, and thrombocyte numbers dropped after the challenge, mainly in fish challenged with BECPs. At 48 h post-challenge, bactericidal activity in the plasma increased in fish injected with bacteria (with and without ECPs). The same tendency was seen for some of the oxidative stress parameters. Discussion/Conclusions: The increased expression of il1ß, il6, il8, and hamp1 in fish challenged with ECPs and BECPs suggests a more exacerbated pro-inflammatory response in the head-kidney against these inocula. The infection trial and the observed immune responses showed that the infection route is a determinant factor regarding T. maritimum-induced pathogenesis in European sea bass.
Asunto(s)
Lubina , Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Tenacibaculum , Animales , Lubina/inmunología , Lubina/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología , Tenacibaculum/inmunología , Inyecciones Intraperitoneales , Inflamación/inmunología , Citocinas/metabolismoRESUMEN
Leopard coral grouper (Plectropomus leopardus) is one of the most important cultured fish in the Pacific and Indian oceans. Vibrio harveyi is a serious pathogen causing serious skin ulceration and high mortality in P. leopardus. To gain more insight into the tissue-specific and dynamic immune regulation process of P. leopardus in response to V. harveyi infection, RNA sequencing (RNA-seq) was used to examine the transcriptome profiles in the spleen and liver at 0, 6, 12, 24, 48, and 72 h post-infection. The upregulated differentially expressed genes (DEGs) were predominantly involved in the immune response in the spleen and liver at the early infection stage (6-12 h), and downregulated DEGs were mainly involved in metabolic processes in the liver at the early and middle infection stage (6-48 h). Moreover, an overview of the immune response of P. leopardus against V. harveyi was exhibited including innate and adaptive immune-related pathways. Afterwards, the results of WGCNA analysis in the spleen indicated that TAP2, IRF1, SOCS1, and CFLAR were the hub genes closely involved in immune regulation in the gene co-expression network. This study provides a global picture of V. harveyi-induced gene expression profiles of P. leopardus at the transcriptome level and uncovers a set of key immune pathways and genes closely linked to V. harveyi infection, which will lay a foundation for further study the immune regulation of bacterial diseases in P. leopardus.
Asunto(s)
Enfermedades de los Peces , Perfilación de la Expresión Génica , Hígado , Bazo , Transcriptoma , Vibriosis , Vibrio , Animales , Vibrio/inmunología , Vibriosis/inmunología , Vibriosis/veterinaria , Bazo/inmunología , Bazo/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/genética , Hígado/inmunología , Hígado/microbiología , Hígado/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Lubina/inmunología , Lubina/microbiología , Lubina/genética , Inmunidad Innata/genéticaRESUMEN
This study investigated a disease outbreak characterized by caligid copepod infestations and subsequent secondary bacterial infections in European seabass (Dicentrarchus labrax) and flathead grey mullet (Mugil cephalus) cultivated at a private facility in the Deeba Triangle region of Egypt. Moribund fish displayed brown spots on the skin, tongue, and gills, along with lethargy and excess mucus. The fish suffered severe infections, exhibiting external hemorrhages, ulcers, and ascites. The fish had pale, enlarged livers with hemorrhaging. Comprehensive parasitological, bacteriological, molecular, immunity and histopathological analyses were conducted to identify the etiological agents and pathological changes. Caligid copepod infestation was observed in wet mounts from the buccal and branchial cavities of all examined fish, and the caligids were identified as Caligus clemensi through COI gene sequencing and phylogenetic analysis. Vibrio alginolyticus was confirmed as a secondary bacterial infection through biochemical tests, recA gene sequencing, and phylogenetic analyses. Antibiotic susceptibility testing revealed resistance to ß-lactams, aminoglycosides, and trimethoprim-sulfamethoxazole in V. alginolyticus isolates. Upregulation of the inflammatory marker IL-1ß in gill and skin tissues indicated a robust cell-mediated immune response against the pathogens. Histopathological examination revealed severe tissue damage, hyperplasia, hemorrhage, and congestion in the gills, along with hepatocellular degeneration and steatosis in the liver, providing initial insights into this outbreak. A comprehensive therapeutic regimen was implemented, comprising prolonged hydrogen peroxide immersion baths, followed by the application of the nature-identical plant-based compound Lice-less and probiotic Sanolife Pro-W supplementation. This integrated approach effectively eliminated C. clemensi infestations, controlled secondary bacterial infections, and restored fish health, reducing morbidity and mortality rates to minimal levels.
Asunto(s)
Coinfección , Enfermedades de los Peces , Vibrio alginolyticus , Animales , Vibrio alginolyticus/fisiología , Vibrio alginolyticus/patogenicidad , Coinfección/microbiología , Enfermedades de los Peces/microbiología , Vibriosis/veterinaria , Vibriosis/tratamiento farmacológico , Vibriosis/microbiología , Copépodos/fisiología , Copépodos/microbiología , Lubina/microbiología , Filogenia , AcuiculturaRESUMEN
The significant role played by the gut microbiota in fish growth, development, immunity, and overall health has been widely established. Nevertheless, there remains a lack of clarity regarding the interaction and origin between the environmental microbiota and the gut microbiota of aquaculture species within the aquaponics coupling system. Thus, we conducted an analysis of the gut microbiota of largemouth bass (Micropterus salmoides) obtained from an indoor enclosed circulating water aquaponics coupling system located in greenhouses in northern China. Additionally, we examined the microbiota of the fish pond water and tomato rhizosphere soil using high-throughput sequencing of the 16S rRNA gene. Our results demonstrated significant differences in the compositions of fish pond water, rhizosphere soil, and the gut microbiota of largemouth bass. Moreover, these compositions changed throughout the culture period. Approximately 11.99% of the bacterial composition in the gut microbiota of largemouth bass could be attributable to the rhizosphere soil microbiota, while 62.01% of the bacterial composition could be attributable to the fish pond water microbiota. However, the proportion of bacteria in the gut microbiota from the fish pond water microbiota remained respectively 40.90% and 56.15% in May and September, which increased markedly to 88.97% in July. Similarly, the proportion of bacteria in the pond water microbiota from the tomato rhizosphere soil microbiota were respectively 0% and 8.95% in samples collected in May and September, which increased markedly to 69.26% in July, and the proportion of bacteria in the gut microbiota from the tomato rhizosphere soil microbiota were respectively 0.07% and 0% in samples collected in May and September, which increased to 0.45% in July. The research results offer essential insights into the interactions and origins of environmental microbiota and gut microbiota in the aquaponics system of cultured fish. This knowledge could enhance green aquaponics practices for largemouth bass.
Asunto(s)
Lubina , Microbioma Gastrointestinal , Animales , Lubina/microbiología , Acuicultura , ARN Ribosómico 16S , Microbiota , China , Bacterias/clasificación , Bacterias/genética , RizosferaRESUMEN
Probiotics play an essential role in the largemouth bass (Micropterus salmoides) aquaculture sector. They aid the fish in sickness prevention, intestinal structure improvement, food absorption, and immune system strengthening. In this experiment, Bacillus subtilis (BS, 107 CFU/g) and Lactobacillus reuteri (LR, 107 CFU/g) were added to the feed and then fed to M. salmoides for 35 days. The effects of two probiotics on the growth, immunity, and metabolism of M. salmoides organisms were studied. The results revealed that the BS group significantly increased the growth rate and specific growth rate of M. salmoides, while both the BS and LR groups significantly increase the length of villi M. salmoides intestines. The BS group significantly increased the levels of AKP, T-AOC, and CAT in the blood of M. salmoides, as well as AKP levels in the intestine. Furthermore, the BS group significantly increased the expression of intestinal genes Nrf2, SOD1, GPX, and CAT, while significantly decreasing the expression of the keap1 gene. M. salmoides gut microbial analysis showed that the abundance of Planctomycetota was significantly different in both control and experimental groups. Analyzed at the genus level, the abundance of Citrobacter, Paracoccus, Luedemannellaï¼ Sphingomonas, Streptomyces and Xanthomonas in the both control and experimental groups were significantly different. The BS group's differentially expressed genes were predominantly enriched in oxidative phosphorylation pathways in the intestine, indicating that they had a good influence on intestinal metabolism and inflammation suppression. In contrast, differentially expressed genes in the LR group were primarily enriched in the insulin signaling and linoleic acid metabolism pathways, indicating improved intestine metabolic performance. In conclusion, B. subtilis and L. reuteri improve the growth and health of M. salmoides, indicating tremendous potential for enhancing intestinal metabolism and providing significant application value.
Asunto(s)
Alimentación Animal , Bacillus subtilis , Lubina , Suplementos Dietéticos , Microbioma Gastrointestinal , Limosilactobacillus reuteri , Probióticos , Animales , Probióticos/administración & dosificación , Lubina/inmunología , Lubina/crecimiento & desarrollo , Lubina/microbiología , Limosilactobacillus reuteri/inmunología , Limosilactobacillus reuteri/fisiología , Microbioma Gastrointestinal/inmunología , Intestinos/inmunología , Intestinos/microbiología , Acuicultura , Proteínas de Peces/metabolismo , Proteínas de Peces/genéticaRESUMEN
Asian seabass (Lates calcarifer) is an economically important fish species that is widely cultivated in Thailand. However, aquaculture of Asian seabass is limited by infectious diseases. One of the most serious diseases is photobacteriosis, caused by Photobacterium damselae. Vaccination is recognized as an efficient disease prevention and pathogen control method for strengthening the aquaculture industry. To promote vaccine development, the characterization of pathogenic bacteria and their pathogenesis is required. In this study, isolates of P. damselae were obtained from commercial aquaculture farms in Thailand during 2019-2021. Analyses of 16S rRNA and the urease subunit alpha genes identified the isolates as P. damselae subsp. damselae (Phdd). Antibiotic susceptibility analyses showed that all Phdd isolates were resistant to amoxicillin (10 µg). Haemolysis and phospholipase activities were used to categorize P. damselae into three groups based on their biological activities. The pathogenicity of four candidates (SK136, PD001, PD002 and T11L) was tested in Asian seabass. Isolate SK136 showed the highest virulence, with a lethal dose (LD50) of 1.47 × 105 CFU/fish, whereas isolate PD001 did not show any virulence. Genotypic characterization, based on multi-locus sequence typing analysis, demonstrated that all candidates were novel strains with new sequence types (64, 65, 66 and 67). Preliminary vaccination using formalin-killed cells (FKCs) protected Asian seabass from artificial challenges. Taken together, these results provide fundamental knowledge for vaccine development against Phdd infection in Asian seabass.
Asunto(s)
Vacunas Bacterianas , Lubina , Enfermedades de los Peces , Photobacterium , Animales , Photobacterium/genética , Photobacterium/patogenicidad , Photobacterium/aislamiento & purificación , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Vacunas Bacterianas/inmunología , Tailandia , Lubina/microbiología , Vacunas de Productos Inactivados , ARN Ribosómico 16S/genética , Formaldehído/farmacología , Acuicultura , VirulenciaRESUMEN
The role of the gut microbiota in host physiology has been previously elucidated for some marine organisms, but little information is available on their metabolic activity involved in transformation of environmental pollutants. This study assessed the metabolic profiles of the gut microbial cultures from grouper (Epinephelus coioides), green mussel (Perna viridis) and giant tiger prawn (Penaeus monodon) and investigated their transformation mechanisms to typical plastic additives. Community-level physiological profiling analysis confirmed the utilization profiles of the microbial cultures including carbon sources of carbohydrates, amines, carboxylic acids, phenolic compounds, polymers and amino acids, and the plastic additives of organophosphate flame retardants, tetrabromobisphenol A derivates and bisphenols. Using in vitro incubation, triphenyl phosphate (TPHP) was found to be rapidly metabolized into diphenyl phosphate by the gut microbiota as a representative ester-containing plastic additive, whereas the transformation of BPA (a representative phenol) was relatively slower. Interestingly, all three kinds of microbial cultures efficiently transformed the hepatic metabolite of BPA (BPA-G) back to BPA, thereby increasing its bioavailability in the body. The specific enzyme analysis confirmed the ability of the gut microbiota to perform the metabolic reactions. The results of 16S rRNA sequencing and network analysis revealed that the genera Escherichia-Shigella, Citrobacter, and Anaerospora were functional microbes, and their collaboration with fermentative microbes played pivotal roles in the transformation of the plastic additives. The structure-specific transformations by the gut microbiota and their distinct bioavailability deserve more attention in the future.
Asunto(s)
Microbioma Gastrointestinal , Plásticos , Animales , Microbioma Gastrointestinal/fisiología , Plásticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Penaeidae/metabolismo , Penaeidae/microbiología , Organismos Acuáticos/metabolismo , ARN Ribosómico 16S/genética , Bacterias/metabolismo , Bacterias/genética , Lubina/metabolismo , Lubina/microbiología , Biotransformación , Bivalvos/microbiología , Bivalvos/metabolismo , Fenoles/metabolismo , Compuestos de BencidriloRESUMEN
Microorganisms, proteins, and lipids play crucial and intricate roles in the aroma generation of aquatic products. To explore the impact of the interaction between microorganisms and proteins on the volatile compounds (VOCs) in grouper, this study employed whey protein isolate (WPI) to inhibit lipid oxidation and reduce mutual interference. Changes in bacterial profiles, metabolites, and VOCs were detected. Eighteen key VOCs associated with the overall flavor of grouper were identified, and the potential relationships among microorganisms, proteins, and VOCs were explored using a correlation network. Five microorganisms (Vibrio, Vagococcus, Pseudomonas, Psychrobacter, and Shewanella) closely related to characteristic flavor compounds were identified. Additionally, 30 differential metabolites related to proteins and six metabolic pathways were screened. Therefore, this study unveils the potential interaction between microorganisms and proteins in flavor formation and provides new insights into the relationships among microorganisms, proteins, and VOCs.
Asunto(s)
Bacterias , Microbiota , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Animales , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Almacenamiento de Alimentos , Lubina/metabolismo , Lubina/microbiología , Alimentos Marinos/análisis , Alimentos Marinos/microbiología , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/química , Proteolisis , FríoRESUMEN
Pseudomonas plecoglossicida, a gram-negative bacterium, is the main pathogen of visceral white-point disease in marine fish, responsible for substantial economic losses in the aquaculture industry. The FliL protein, involved in torque production of the bacterial flagella motor, is essential for the pathogenicity of a variety of bacteria. In the current study, the fliL gene deletion strain (ΔfliL), fliL gene complement strain (C-ΔfliL), and wild-type strain (NZBD9) were compared to explore the influence of the fliL gene on P. plecoglossicida pathogenicity and its role in host immune response. Results showed that fliL gene deletion increased the survival rate (50%) and reduced white spot disease progression in the hybrid groupers. Moreover, compared to the NZBD9 strain, the ΔfliL strain was consistently associated with lower bacterial loads in the grouper spleen, head kidney, liver, and intestine, coupled with reduced tissue damage. Transcriptomic analysis identified 2 238 differentially expressed genes (DEGs) in the spleens of fish infected with the ΔfliL strain compared to the NZBD9 strain. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the DEGs were significantly enriched in seven immune system-associated pathways and three signaling molecule and interaction pathways. Upon infection with the ΔfliL strain, the toll-like receptor (TLR) signaling pathway was activated in the hybrid groupers, leading to the activation of transcription factors (NF-κB and AP1) and cytokines. The expression levels of proinflammatory cytokine-related genes IL-1ß, IL-12B, and IL-6 and chemokine-related genes CXCL9, CXCL10, and CCL4 were significantly up-regulated. In conclusion, the fliL gene markedly influenced the pathogenicity of P. plecoglossicida infection in the hybrid groupers. Notably, deletion of fliL gene in P. plecoglossicida induced a robust immune response in the groupers, promoting defense against and elimination of pathogens via an inflammatory response involving multiple cytokines.
Asunto(s)
Enfermedades de los Peces , Infecciones por Pseudomonas , Pseudomonas , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/genética , Pseudomonas/patogenicidad , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/veterinaria , Infecciones por Pseudomonas/microbiología , Lubina/inmunología , Lubina/microbiología , Lubina/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/genética , Transcriptoma , Perfilación de la Expresión Génica , Proteínas de Peces/genética , Proteínas de Peces/inmunologíaRESUMEN
BACKGROUND: The gut microbiota significantly influences the health and growth of red-spotted grouper (Epinephelus akaara), a well-known commercial marine fish from Fujian Province in southern China. However, variations in survival strategies and seasons can impact the stability of gut microbiota data, rendering it inaccurate in reflecting the state of gut microbiota. Which impedes the effective enhancement of aquaculture health through a nuanced understanding of gut microbiota. Inspired by this, we conducted a comprehensive analysis of the gut microbiota of wild and captive E. akaara in four seasons. RESULTS: Seventy-two E. akaara samples were collected from wild and captive populations in Dongshan city, during four different seasons. Four sections of the gut were collected to obtain comprehensive information on the gut microbial composition and sequenced using 16S rRNA next-generation Illumina MiSeq. We observed the highest gut microbial diversity in both captive and wild E. akaara during the winter season, and identified strong correlations with water temperature using Mantel analysis. Compared to wild E. akaara, we found a more complex microbial network in captive E. akaara, as evidenced by increased abundance of Bacillaceae, Moraxellaceae and Enterobacteriaceae. In contrast, Vibrionaceae, Clostridiaceae, Flavobacteriaceae and Rhodobacteraceae were found to be more active in wild E. akaara. However, some core microorganisms, such as Firmicutes and Photobacterium, showed similar distribution patterns in both wild and captive groups. Moreover, we found the common community composition and distribution characteristics of top 10 core microbes from foregut to hindgut in E. akaara. CONCLUSIONS: Collectively, the study provides relatively more comprehensive description of the gut microbiota in E. akaara, taking into account survival strategies and temporal dimensions, which yields valuable insights into the gut microbiota of E. akaara and provides a valuable reference to its aquaculture.
Asunto(s)
Bacterias , Microbioma Gastrointestinal , ARN Ribosómico 16S , Estaciones del Año , Animales , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , China , Ecosistema , Filogenia , Acuicultura , Lubina/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , ADN Bacteriano/genética , BiodiversidadRESUMEN
Largemouth bass (Micropterus salmoides) has emerged as a significant economic fish species, with a rise in Aeromonas veronii infections in farming. However, research on adjuvants for vaccines against A. veronii in largemouth bass remains scarce. In present study, recombinant largemouth bass IL-1ß (LbIL-1ß) was expressed to explore its adjuvant effect on the A. veronii inactivated vaccine. Following vaccination with recombinant LbIL-1ß (rLbIL-1ß) and the inactivated A. veronii, higher serum SOD levels and lysozyme activities were observed in largemouth bass from inactivated A. veronii + rLbIL-1ß vaccinated group. Furthermore, it was discovered that rLbIL-1ß was able to boost the serum-specific antibody levels induced by the inactivated A. veronii. The qRT-PCR analysis revealed that rLbIL-1ß also enhanced the expression of IgM, CD4, and MHC II in largemouth bass triggered by the inactivated A. veronii. After challenged with live A. veronii, the outcomes demonstrated that the relative percentage survival (RPS) for largemouth bass resulting from the inactivated A. veronii in combination with rLbIL-1ß was 76.67 %, surpassing the RPS of 60 % in the inactivated A. veronii group. Collectively, these findings indicate that rLbIL-1ß enhances the protective effect of the A. veronii inactivated vaccine on largemouth bass, showcasing potential as an adjuvant for further development.
Asunto(s)
Adyuvantes Inmunológicos , Aeromonas veronii , Vacunas Bacterianas , Lubina , Enfermedades de los Peces , Interleucina-1beta , Vacunas de Productos Inactivados , Animales , Aeromonas veronii/inmunología , Vacunas Bacterianas/inmunología , Lubina/inmunología , Lubina/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/prevención & control , Vacunación , Vacunas de Productos Inactivados/inmunologíaRESUMEN
A strategy for vaccine design involves identifying proteins that could be involved in pathogen-host interactions. The aim of this proteomic study was to determine how iron limitation affects the protein expression of Tenacibaculum dicentrarchi, with a primary focus on virulence factors and proteins associated with iron uptake. The proteomic analysis was carried out using two strains of T. dicentrarchi grown under normal (control) and iron-limited conditions, mimicking the host environment. Our findings revealed differences in the proteins expressed by the type strain CECT 7612T and the Chilean strain TdCh05 of T. dicentrarchi. Nonetheless, both share a common response to iron deprivation, with an increased expression of proteins associated with iron oxidation and reduction metabolism (e.g., SufA, YpmQ, SufD), siderophore transport (e.g., ExbD, TonB-dependent receptor, HbpA), heme compound biosynthesis, and iron transporters under iron limitation. Proteins involved in gliding motility, such as GldL and SprE, were also upregulated in both strains. A negative differential regulation of metabolic proteins, particularly those associated with amino acid biosynthesis, was observed under iron limitation, reflecting the impact of iron availability on bacterial metabolism. Additionally, the TdCh05 strain exhibited unique proteins associated with gliding motility machinery and phage infection control compared to the type strain. These groups of proteins have been identified as virulence factors within the Flavobacteriaceae family, including the genus Tenacibaculum. These results build upon our previous report on iron acquisition mechanisms and could lay the groundwork for future studies aimed at elucidating the role of some of the described proteins in the infectious process of tenacibaculosis, as well as in the development of potential vaccines.
Asunto(s)
Proteínas Bacterianas , Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Hierro , Oxidación-Reducción , Proteómica , Tenacibaculum , Regulación hacia Arriba , Hierro/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología , Animales , Enfermedades de los Peces/microbiología , Tenacibaculum/genética , Tenacibaculum/metabolismo , Proteoma , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Lubina/microbiologíaRESUMEN
C-type lectins in organisms play an important role in the process of innate immunity. In this study, a C-type lectin belonging to the DC-SIGN class of Micropterus salmoides was identified. MsDC-SIGN is classified as a type II transmembrane protein. The extracellular segment of MsDC-SIGN possesses a coiled-coil region and a carbohydrate recognition domain (CRD). The key amino acid motifs of the extracellular CRD of MsDC-SIGN in Ca2+-binding site 2 were EPN (Glu-Pro-Asn) and WYD (Trp-Tyr-Asp). MsDC-SIGN-CRD can bind to four pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), glucan, peptidoglycan (PGN), and mannan. Moreover, it can also bind to Gram-positive, Gram-negative bacteria, and fungi. Its CRD can agglutinate microbes and displays D-mannose and D-galactose binding specificity. MsDC-SIGN was distributed in seven tissues of the largemouth bass, among which the highest expression was observed in the liver, followed by the spleen and intestine. Additionally, MsDC-SIGN was present on the membrane of M. salmoides leukocytes, thereby augmenting the phagocytic activity against bacteria. In a subsequent investigation, the expression patterns of the MsDC-SIGN gene and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) exhibited an up-regulated expression response to the stimulation of Aeromonas hydrophila. Furthermore, through RNA interference of MsDC-SIGN, the expression level of the DC-SIGN signaling pathway-related gene (RAF1) and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) was decreased. Therefore, MsDC-SIGN plays a pivotal role in the immune defense against A. hydrophila by modulating the TLR signaling pathway.
Asunto(s)
Aeromonas hydrophila , Lubina , Moléculas de Adhesión Celular , Enfermedades de los Peces , Transducción de Señal , Animales , Aeromonas hydrophila/inmunología , Lubina/inmunología , Lubina/metabolismo , Lubina/microbiología , Lubina/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/metabolismo , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/metabolismo , Infecciones por Bacterias Gramnegativas/microbiología , Inmunidad Innata , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genéticaRESUMEN
Aeromonas veronii, a significant pathogen in aquatic environments, poses a substantial threat to both human and animal health, particularly in aquaculture. In this study, we isolated A. veronii strain GD2019 from diseased largemouth bass (Micropterus salmoides) during a severe outbreak of aeromonad septicemia in Guangdong Province, China. The complete genome sequence of A. veronii GD2019 revealed that GD2019 contains a single chromosome of 4703,168â¯bp with an average G+C content of 58.3%. Phylogenetic analyses indicated that GD2019 forms a separate sub-branch in A. veronii and comparative genomic analyses identified the existence of an intact Type III secretion system. Moreover, to investigate the genes that are required for the conditional fitness of A. veronii under various stresses, a high-density transposon insertion library in GD2019 was generated by a Tn5-based transposon and covers 6311 genomic loci including 4155 genes and 2156 intergenic regions. Leveraging this library, 630 genes were classified as essential genes for growth in rich-nutrient LB medium. Furthermore, the genes GE001863/NtrC and GE002550 were found to confer tolerance to sodium hypochlorite in A. veronii. GE002562 and GE002614 were associated with the resistance to carbenicillin. Collectively, our results provide abundant genetic information on A. veronii, shedding light on the pathogenetic mechanisms of Aeromonas.
Asunto(s)
Aeromonas veronii , Elementos Transponibles de ADN , Farmacorresistencia Bacteriana , Enfermedades de los Peces , Genoma Bacteriano , Filogenia , Hipoclorito de Sodio , Secuenciación Completa del Genoma , Aeromonas veronii/genética , Aeromonas veronii/efectos de los fármacos , Elementos Transponibles de ADN/genética , Animales , Hipoclorito de Sodio/farmacología , Farmacorresistencia Bacteriana/genética , Enfermedades de los Peces/microbiología , China , Infecciones por Bacterias Gramnegativas/microbiología , Lubina/microbiología , Antibacterianos/farmacología , Composición de Base , Mutagénesis InsercionalRESUMEN
The increasing emergence and dissemination of bacterial pathogens in largemouth bass culture accelerate the desire for new treatment measures. Antimicrobial peptides as the host's antimicrobial source dominate the preferred molecules for discovering antibacterial agents. Here, the potential of Hepcidin-1 from largemouth bass (Micropterus salmoides) (MsHep-1) against bacterial infection is demonstrated. MsHep-1 not only improved the survival rate in infection experiments involving Nocardia seriolae (12 %) and Aeromonas hydrophila (18 %) but also coped with iron overload conditions in vivo. Moreover, the antibacterial activity of MsHep-1 in vitro was identified against both gram-negative and gram-positive bacteria. Mechanistic studies show MsHep-1 leads to bacterial death by changing the bacterial membrane potential and disrupting the bacterial membrane structure. These findings demonstrate that MsHep-1 may play an important role in the host response to bacterial infection. It provides promising strategies in the application of immunosuppression prevention and control in fish. AMPs may be a promising and available reservoir for treating the current bacterial diseases.
Asunto(s)
Infecciones Bacterianas , Lubina , Enfermedades de los Peces , Hepcidinas , Animales , Hepcidinas/metabolismo , Lubina/microbiología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/tratamiento farmacológico , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Antibacterianos/farmacología , Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/patogenicidadRESUMEN
Vibrio anguillarum is one of the major pathogens responsible for bacterial infections in marine environments, causing significant impacts on the aquaculture industry. The misuse of antibiotics leads to bacteria developing multiple drug resistances, which is detrimental to the development of the fisheries industry. In contrast, live attenuated vaccines are gradually gaining acceptance and widespread recognition. In this study, we constructed a double-knockout attenuated strain, V. anguillarum ΔspeA-aroC, to assess its potential for preparing a live attenuated vaccine. The research results indicate a significant downregulation of virulence-related genes, including Type VI secretion system, Type II secretion system, biofilm synthesis, iron uptake system, and other related genes, in the mutant strain. Furthermore, the strain lacking the genes exhibited a 67.47% reduction in biofilm formation ability and increased sensitivity to antibiotics. The mutant strain exhibited significantly reduced capability in evading host immune system defenses and causing in vivo infections in spotted sea bass (Lateolabrax maculatus), with an LD50 that was 13.93 times higher than that of the wild-type V. anguillarum. Additionally, RT-qPCR analysis of immune-related gene expression in spotted sea bass head kidney and spleen showed a weakened immune response triggered by the knockout strain. Compared to the wild-type V. anguillarum, the mutant strain caused reduced levels of tissue damage. The results demonstrate that the deletion of speA and aroC significantly reduces the biosynthesis of biofilms in V. anguillarum, leading to a decrease in its pathogenicity. This suggests a crucial role of biofilms in the survival and invasive capabilities of V. anguillarum.
Asunto(s)
Lubina , Enfermedades de los Peces , Vibriosis , Vibrio , Animales , Vibriosis/microbiología , Lubina/microbiología , Virulencia/genética , Vibrio/genética , Antibacterianos , Enfermedades de los Peces/microbiologíaRESUMEN
Streptococcus iniae, a zoonotic Gram-positive pathogen, poses a threat to finfish aquaculture, causing streptococcosis with an annual economic impact exceeding $150 million globally. As aquaculture trends shift towards recirculating systems, the potential for horizontal transmission of S. iniae among fish intensifies. Current vaccine development provides only short-term protection, driving the widespread use of antibiotics like florfenicol. However, this practice raises environmental concerns and potentially contributes to antibiotic resistance. Thus, alternative strategies are urgently needed. Endolysin therapy, derived from bacteriophages, employs hydrolytic endolysin enzymes that target bacterial peptidoglycan cell walls. This study assesses three synthetic endolysins (PlyGBS 90-1, PlyGBS 90-8, and ClyX-2) alongside the antibiotic carbenicillin in treating S. iniae-infected hybrid striped bass (HSB). Results demonstrate that ClyX-2 exhibits remarkable bacteriolytic potency, with lytic activity detected at concentrations as low as â¼15 µg/mL, approximately 8-fold more potent than the PlyGBS derivatives. In therapeutic effectiveness assessments, both carbenicillin and ClyX-2 treatments achieved significantly higher survival rates (85 % and 95 %, respectively) compared to placebo and PlyGBS-based endolysin treatments. Importantly, no statistical differences were observed between ClyX-2 and carbenicillin treatments. This highlights ClyX-2 as a promising alternative for combating S. iniae infections in aquaculture, offering potent bacteriolytic activity and high survival rates.
Asunto(s)
Lubina , Endopeptidasas , Enfermedades de los Peces , Infecciones Estreptocócicas , Animales , Lubina/microbiología , Streptococcus , Streptococcus iniae , Antibacterianos , CarbenicilinaRESUMEN
This study investigated the effect of chlorogenic acid grafted chitosan (CS-g-CA) on the microbiota composition of sea bass (Lateolabrax japonicus), isolated and identified the specific spoilage organisms (SSOs) in the late stage of refrigerated fillets and evaluation of their spoilage potential. Moreover, antibacterial activity and membrane damage mechanism of CS-g-CA against spoilage bacteria was also investigated. Illumina-MiSeq high throughput sequencing results showed that CS-g-CA retarded the growth of Pseudomonas spp., which largely contributed to delaying the quality degradation of sea bass during storage. Then nine spoilage bacteria were isolated and identified from the fillets at the end of storage and inoculated into sterile fish fillets to determine their spoilage capacity. Results showed that fish fillets inoculated with spoilage bacteria exhibited a significant increase in TVB-N, TBA and putrescine content and decreased sensory quality during storage. Subsequently, the inhibitory activity of CS-g-CA against spoilage bacteria was investigated and strains that were more sensitive to the CS-g-CA with a strong spoilage capacity were selected for the study of the inhibition mechanism. Results suggested that CS-g-CA had strong inhibitory activity and led to bacterial death through the mechanism of membrane damage. Overall, this study analyzed the effect of CS-g-CA on the preservation of fish fillets from a microbiological point of view to provide a reference for the anti-bacterial preservation of aquatic products.
Asunto(s)
Lubina , Quitosano , Animales , Lubina/microbiología , Conservación de Alimentos/métodos , Quitosano/farmacología , Ácido Clorogénico/farmacología , Bacterias , Almacenamiento de AlimentosRESUMEN
OBJECTIVE: The Largemouth Bass Micropterus salmoides is an important freshwater fish that is native to the southeastern United States and is cultured for conservation, food, and for the sports fishing industry. Francisella orientalis is a globally distributed bacterial pathogen of warmwater fish species and is associated with granulomatous inflammation and high mortalities. Outbreaks of piscine francisellosis in the United States have been reported in only a few fish species. This study describes three case presentations of francisellosis in Largemouth Bass from a public display system in north-central Florida. Additionally, laboratory-controlled immersion challenges using an F. orientalis isolate from tilapia Oreochromis spp. evaluate susceptibility of Largemouth Bass fingerlings to F. orientalis infection and mortality through this exposure route. METHODS: Necropsy, histologic examination, immunohistochemistry, bacterial recovery and culture, and quantitative polymerase chain reaction were used as diagnostic tools to evaluate both the affected display fish and the immersion-challenged fingerlings. RESULT: Although the display fish and immersion-challenged fingerlings presented with nonspecific clinical signs, gross and histological changes were indicative of granulomatous disease. Immunohistochemical and molecular testing methods confirmed F. orientalis infection in affected fish. CONCLUSION: The three case presentations described here mark the first reporting of naturally occurring piscine francisellosis in Largemouth Bass that were held in a public display exhibit. Additionally, causality was proven in the Largemouth Bass fingerlings through the immersion challenges. These findings demonstrate susceptibility through immersion-based exposure and assert that francisellosis should be considered among the list of differential diagnoses for Largemouth Bass with granulomatous disease.
Asunto(s)
Lubina , Enfermedades de los Peces , Francisella , Infecciones por Bacterias Gramnegativas , Animales , Lubina/microbiología , Cíclidos , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Florida/epidemiología , Tilapia , Infecciones por Bacterias Gramnegativas/diagnóstico , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/microbiologíaRESUMEN
The present study aimed to investigate the response of intestinal microbiota during 3 weeks' starvation of largemouth bass (Micropterus salmoides), an economically important freshwater fish, using 16S rRNA gene amplicon sequencing and PICRUSt2 predictive functional profiling. Overall, the microbiota was mainly represented by Mycoplasma, Pseudomonas, Acinetobacter, and Microbacterium in the initial group. This pattern contrasted with that of Cetobacterium and Aeromonas, which were major representative genera in the starved group. Significant differences in the richness and composition of intestinal microbial community induced by starvation were observed. Notably, earthy-musty off-flavor compounds (geosmin and 2-methylisoborneol) were significantly decreased during starvation, which were significantly correlated with the abundance of certain actinobacterial taxa, namely, Microbacterium and Nocardioides. Additionally, the functional pathways involved in synthesis of off-flavor compounds, protein digestion, fatty acid degradation, and biosynthesis of cofactors greatly decreased with starvation, indicating that microbiota modulated the specific metabolic pathway to adapt to food deprivation. These results emphasize that starvation can modulate diversity, community structure, and functions of the intestinal microbiota and mitigate the off-flavors, which has important implications for strategies to eliminate off-flavor odorants through the application of probiotics to manipulate the gut microbiome and ultimately enhance flesh quality of freshwater fish.