Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Theor Appl Genet ; 137(7): 155, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858311

RESUMEN

White lupin (Lupinus albus L.) is a high-protein grain legume alternative to soybean in Central Europe, but its cultivation is risky due to the fungal disease anthracnose that can cause severe yield damage. In addition, management of seed alkaloids is critical for human nutrition and animal feed. We report on a white lupin collection of genebank accessions, advanced breeding lines and cultivars that was genotyped and phenotypically characterized for anthracnose resistance and seed alkaloids and protein levels. Using genotyping by sequencing (GBS), SeqSNP-targeted GBS, BiomarkX genotyping and Sanger sequencing, a genetic resource of genome-wide SNPs for white lupin was established. We determined anthracnose resistance in two years field trials at four locations with infection rows and measured seed alkaloids and protein levels by near-infrared spectroscopy (NIRS). Few white lupin breeding lines showed anthracnose resistance comparable or better than Celina and Frieda, currently the best commercial cultivars in Germany. NIRS estimates for seed alkaloids and protein levels revealed variation in the white lupin collection. Using genome-wide association studies (GWAS), we identified SNPs significantly associated with anthracnose resistance in the field representing known and new genomic regions. We confirmed the pauper locus and detected new SNP markers significantly associated with seed alkaloids. For the first time, we present loci associated with total grain protein content. Finally, we tested the potential of genomic prediction (GP) in predicting the phenotype of these three quantitative traits. Application of results and resources are discussed in the context of fostering breeding programs for white lupin.


Asunto(s)
Alcaloides , Resistencia a la Enfermedad , Lupinus , Fenotipo , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Semillas , Lupinus/genética , Lupinus/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Semillas/genética , Semillas/química , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fitomejoramiento , Estudios de Asociación Genética
2.
Genes (Basel) ; 14(10)2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37895238

RESUMEN

(1) Background: Seed storage mobilization, together with oxidative metabolism, with the ascorbate-glutathione (AsA-GSH) cycle as a crucial signaling and metabolic functional crossroad, is one of the main regulators of the control of cell morphogenesis and division, a fundamental physiological process driving seed germination and seedling growth. This study aims to characterize the cellular changes, composition, and patterns of the protein mobilization and ROS-dependent gene expression of redox metabolism in Lupinus angustifolius L. (narrow-leafed lupin, NLL) cotyledons during seed germination. (2) Methods: We performed gene expression analyses via RT-qPCR for conglutins α (1, 2, and 3), ß (1, 2, and 5), γ (1, 2), and δ (2 and 4), including a ubiquitin gene as a control, and for redox metabolism-related genes; GADPH was used as a control gene. A microscopic study was developed on cotyledon samples from different germination stages, including as IMB (imbibition), and 2-5, 7, 9, and 11 DAI (days after imbibition), which were processed for light microscopy. SDS-PAGE and immunocytochemistry assays were performed using an anti-ß-conglutin antibody (Agrisera), and an anti-rabbit IgG Daylight 488-conjugated secondary antibody. The controls were made while omitting primary Ab. (3) Results and Discussion: Our results showed that a large amount of seed storage protein (SSP) accumulates in protein bodies (PBs) and mobilizes during germination. Families of conglutins (ß and γ) may play important roles as functional and signaling molecules, beyond the storage function, at intermediate steps of the seed germination process. In this regard, metabolic activities are closely associated with the regulation of oxidative homeostasis through AsA-GSH activities (γ-L-Glutamyl-L-cysteine synthetase, NOS, Catalase, Cu/Zn-SOD, GPx, GR, GS, GsT) after the imbibition of NLL mature seeds, metabolism activation, and dormancy breakage, which are key molecular and regulatory signaling pathways with particular importance in morphogenesis and developmental processes. (4) Conclusions: The knowledge generated in this study provides evidence for the functional changes and cellular tightly regulated events occurring in the NLL seed cotyledon, orchestrated by the oxidative-related metabolic machinery involved in seed germination advancement.


Asunto(s)
Germinación , Lupinus , Plantones , Lupinus/genética , Lupinus/metabolismo , Semillas/metabolismo , Oxidación-Reducción
3.
Physiol Plant ; 175(4): e13976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37616014

RESUMEN

White lupin (Lupinus albus L.) is an important crop with high phosphorus (P) use efficiency; however, technologies for its functional genomic and molecular analyses are limited. Cluster regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system has been applied to gene editing and function genomics in many crops, but its application in white lupin has not been well documented. Here, we adapted the CRISPR/Cas9-based multiplex genome editing system by using the native U3/U6 and ubiquitin (UBQ) promoters to drive sgRNAs and Cas9. Two target sites (T1 and T2) within the Lalb_Chr05g0223881 gene, encoding a putative trehalase, were selected to validate its efficacy in white lupin based on the Agrobacterium rhizogenes-mediated transformation. We found that the T0 hairy roots were efficiently mutated at T1 and T2 with a frequency of 6.25%-35% and 50%-92.31%, respectively. The mutation types include nucleotide insertion, deletion, substitution, and complicated variant. Simultaneous mutations of the two targets were also observed with a range of 6.25%-35%. The combination of LaU6.6 promoter for sgRNA and LaUBQ12 promoter for Cas9 generated the highest frequency of homozygous/biallelic mutations at 38.46%. In addition, the target-sgRNA sequence also contributes to the editing efficiency of the CRISPR/Cas9 system in white lupin. In conclusion, our results expand the toolbox of the CRISPR/Cas9 system and benefit the basic research in white lupin.


Asunto(s)
Edición Génica , Lupinus , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas , Lupinus/genética , Mutación/genética
4.
Ann Bot ; 132(3): 541-552, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37647862

RESUMEN

BACKGROUND AND AIMS: Within-population genetic and phenotypic variation play a key role in the development of adaptive responses to environmental change. Between-population variation is also an essential element in assessing the evolutionary potential of species in response to changes in environmental conditions. In this context, common garden experiments are a useful tool to separate the genetic and environmental components of phenotypic variation. We aimed to assess within- and between-population phenotypic variation of Lupinus angustifolius L. in terms of its evolutionary potential to adapt to ongoing climate change. METHODS: We evaluated populations' phenotypic variation of foliar, phenological and reproductive traits with a common garden experiment. Patterns of functional trait variation were assessed with (1) mixed model analyses and coefficients of variation (CVs) with confidence intervals, (2) principal component analyses (PCAs) and (3) correlations between pairs of traits. Analyses were performed at the population level (four populations) and at the latitude level (grouping pairs of populations located in two latitudinal ranges). KEY RESULTS: Phenotypic variation had a significant genetic component associated with a latitudinal pattern. (1) Mixed models found lower specific leaf area, advanced flowering phenology and lower seed production of heavier seeds in southern populations, whereas CV analyses showed lower within-latitude variation especially in phenological and reproductive traits in southern populations. (2) PCAs showed a clearer differentiation of phenotypic variation between latitudes than between populations. (3) Correlation analyses showed a greater number of significant correlations between traits in southern populations (25 vs. 13). CONCLUSIONS: Between-population phenotypic variation was determined by contrasting temperature and drought at different latitude and elevation. Southern populations had differential trait values compatible with adaptations to high temperatures and drought. Moreover, they had lower within-population variation and a greater number of trait correlations probably as a result of these limiting conditions, making them more vulnerable to climate change.


Asunto(s)
Lupinus , Lupinus/genética , Fenotipo , Semillas , Hojas de la Planta , Reproducción
5.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569754

RESUMEN

The maturation of seeds is a process of particular importance both for the plant itself by assuring the survival of the species and for the human population for nutritional and economic reasons. Controlling this process requires a strict coordination of many factors at different levels of the functioning of genetic and hormonal changes as well as cellular organization. One of the most important examples is the transcriptional activity of the LAFL gene regulatory network, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2), as well as hormonal homeostasis-of abscisic acid (ABA) and gibberellins (GA) in particular. From the nutritional point of view, the key to seed development is the ability of seeds to accumulate large amounts of proteins with different structures and properties. The world's food deficit is mainly related to shortages of protein, and taking into consideration the environmental changes occurring on Earth, it is becoming necessary to search for a way to obtain large amounts of plant-derived protein while maintaining the diversity of its origin. Yellow lupin, whose storage proteins are conglutins, is one of the plant species native to Europe that accumulates large amounts of this nutrient in its seeds. In this article we have shown the key changes occurring in the developing seeds of the yellow-lupin cultivar Taper by means of modern molecular biology techniques, including RNA-seq, chromatographic techniques and quantitative PCR analysis. We identified regulatory genes fundamental to the seed-filling process, as well as genes encoding conglutins. We also investigated how exogenous application of ABA and GA3 affects the expression of LlLEC2, LlABI3, LlFUS3, and genes encoding ß- and δ-conglutins and whether it results in the amount of accumulated seed storage proteins. The research shows that for each species, even related plants, very specific changes can be identified. Thus the analysis and possibility of using such an approach to improve and stabilize yields requires even more detailed and extended research.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lupinus , Humanos , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Lupinus/genética , Lupinus/metabolismo , Arabidopsis/genética , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
6.
Sci Adv ; 9(31): eadg8866, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540741

RESUMEN

Lupins are high-protein crops that are rapidly gaining interest as hardy alternatives to soybean; however, they accumulate antinutritional alkaloids of the quinolizidine type (QAs). Lupin domestication was enabled by the discovery of genetic loci conferring low QA levels (sweetness), but the precise identity of the underlying genes remains uncertain. We show that pauper, the most common sweet locus in white lupin, encodes an acetyltransferase (AT) unexpectedly involved in the early QA pathway. In pauper plants, a single-nucleotide polymorphism (SNP) strongly impairs AT activity, causing pathway blockage. We corroborate our hypothesis by replicating the pauper chemotype in narrow-leafed lupin via mutagenesis. Our work adds a new dimension to QA biosynthesis and establishes the identity of a lupin sweet gene for the first time, thus facilitating lupin breeding and enabling domestication of other QA-containing legumes.


Asunto(s)
Lupinus , Fitomejoramiento , Mutación , Hojas de la Planta/genética , Lupinus/genética , Lupinus/metabolismo , Sitios Genéticos
7.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047476

RESUMEN

Lupin is a high-protein legume crop that grows in a wide range of edaphoclimatic conditions where other crops are not viable. Its unique seed nutrient profile can promote health benefits, and it has been proposed as a phytoremediation plant. Most rhizobia nodulating Lupinus species belong to the genus Bradyrhizobium, comprising strains that are phylogenetically related to B. cytisi, B. hipponenese, B. rifense, B. iriomotense/B. stylosanthis, B. diazoefficiens, B. japonicum, B. canariense/B. lupini, and B. retamae/B. valentinum. Lupins are also nodulated by fast-growing bacteria within the genera Microvirga, Ochrobactrum, Devosia, Phyllobacterium, Agrobacterium, Rhizobium, and Neorhizobium. Phylogenetic analyses of the nod and nif genes, involved in microbial colonization and symbiotic nitrogen fixation, respectively, suggest that fast-growing lupin-nodulating bacteria have acquired their symbiotic genes from rhizobial genera other than Bradyrhizobium. Horizontal transfer represents a key mechanism allowing lupin to form symbioses with bacteria that were previously considered as non-symbiotic or unable to nodulate lupin, which might favor lupin's adaptation to specific habitats. The characterization of yet-unstudied Lupinus species, including microsymbiont whole genome analyses, will most likely expand and modify the current lupin microsymbiont taxonomy, and provide additional knowledge that might help to further increase lupin's adaptability to marginal soils and climates.


Asunto(s)
Bradyrhizobium , Fabaceae , Lupinus , Rhizobium , Fabaceae/genética , Fabaceae/microbiología , Lupinus/genética , Lupinus/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Filogenia , Transferencia de Gen Horizontal , Promoción de la Salud , ADN Bacteriano/genética , Verduras/genética , Rhizobium/genética , Bradyrhizobium/genética , Simbiosis/genética , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética
8.
Mol Plant Pathol ; 24(6): 616-627, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37078402

RESUMEN

Colletotrichum lupini, the causative agent of lupin anthracnose, affects lupin cultivation worldwide. Understanding its population structure and evolutionary potential is crucial to design successful disease management strategies. The objective of this study was to employ population genetics to investigate the diversity, evolutionary dynamics, and molecular basis of the interaction of this notorious lupin pathogen with its host. A collection of globally representative C. lupini isolates was genotyped through triple digest restriction site-associated DNA sequencing, resulting in a data set of unparalleled resolution. Phylogenetic and structural analysis could distinguish four independent lineages (I-IV). The strong population structure and high overall standardized index of association (r̅d ) indicates that C. lupini reproduces clonally. Different morphologies and virulence patterns on white lupin (Lupinus albus) and Andean lupin (Lupinus mutabilis) were observed between and within clonal lineages. Isolates belonging to lineage II were shown to have a minichromosome that was also partly present in lineage III and IV, but not in lineage I isolates. Variation in the presence of this minichromosome could imply a role in host-pathogen interaction. All four lineages were present in the South American Andes region, which is suggested to be the centre of origin of this species. Only members of lineage II have been found outside South America since the 1990s, indicating it as the current pandemic population. As a seedborne pathogen, C. lupini has mainly spread through infected but symptomless seeds, stressing the importance of phytosanitary measures to prevent future outbreaks of strains that are yet confined to South America.


Asunto(s)
Colletotrichum , Lupinus , Lupinus/genética , Filogenia , Genética de Población , Colletotrichum/genética , Células Clonales
9.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203260

RESUMEN

Autophagy is a fundamental process for plants that plays a crucial role in maintaining cellular homeostasis and promoting survival in response to various environmental stresses. One of the lesser-known stages of plant autophagy is the degradation of autophagic bodies in vacuoles. To this day, no plant vacuolar enzyme has been confirmed to be involved in this process. On the other hand, several enzymes have been described in yeast (Saccharomyces cerevisiae), including Atg15, that possess lipolytic activity. In this preliminary study, which was conducted on isolated embryonic axes of the white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet), the potential involvement of plant vacuolar lipases in the degradation of autophagic bodies was investigated. We identified in transcriptomes (using next-generation sequencing (NGS)) of white and Andean lupin embryonic axes 38 lipases with predicted vacuolar localization, and for three of them, similarities in amino acid sequences with yeast Atg15 were found. A comparative transcriptome analysis of lupin isolated embryonic axes cultured in vitro under different sucrose and asparagine nutrition, evaluating the relations in the levels of the transcripts of lipase genes, was also carried out. A clear decrease in lipase gene transcript levels caused by asparagine, a key amino acid in lupin seed metabolism which retards the degradation of autophagic bodies during sugar-starvation-induced autophagy in lupin embryonic axes, was detected. Although the question of whether lipases are involved in the degradation of autophagic bodies during plant autophagy is still open, our findings strongly support such a hypothesis.


Asunto(s)
Lupinus , Lupinus/genética , Saccharomyces cerevisiae , Asparagina , Semillas/genética , Lipasa/genética
10.
Molecules ; 27(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36557904

RESUMEN

Among grain pulses, lupins have recently gained considerable interest for a number of attractive nutritional attributes relating to their high protein and dietary fiber and negligible starch contents. The seeds of Lupinus albus (cv. Multitalia and Luxor, and the Modica ecotype); L. luteus (cv. Dukat, Mister, and Taper); and L. angustifolius (cv. Sonet) analyzed in this study were deposited within the germplasm collection of the Research Centre for Cereal and Industrial Crops of Acireale and were sowed in East Sicily in 2013/14. The collected seeds were analyzed for their multielemental micro- and macronutrient profiles, resulting in a wide variability between genotypes. Lupin seed flour samples were subjected to a defatting process using supercritical CO2, with oil yields dependent on the species and genotype. We determined the fatty acid profile and tocopherol content of the lupin oil samples, finding that the total saturated fatty acid quantities of different samples were very close, and the total tocopherol content was about 1500.00 µg/g FW. The proteomic analysis of the defatted lupin seed flours showed substantial equivalence between the cultivars of the same species of Lupinus albus and L. luteus. Moreover, the L. angustifolius proteome map showed the presence of additional spots in comparison to L. albus, corresponding to α-conglutins. Lupin, in addition to being a good source of mineral elements, also contributes vitamin E and, thanks to the very high content of gamma-tocopherols, demonstrates powerful antioxidant activity.


Asunto(s)
Lupinus , Lupinus/genética , Lupinus/metabolismo , Proteómica , Ácidos Grasos/metabolismo , Nutrientes , Semillas/genética , Semillas/metabolismo , Genotipo , Tocoferoles/metabolismo
11.
Physiol Plant ; 174(6): e13807, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36270730

RESUMEN

Manganese (Mn) is an essential microelement, but overaccumulation is harmful to many plant species. Most plants have similar minimal Mn requirements, but the tolerance to elevated Mn varies considerably. Mobilization of phosphate (P) by plant roots leads to increased Mn uptake, and shoot Mn levels have been reported to serve as an indicator for P mobilization efficiency in the presence of P deficiency. White lupin (Lupinus albus L.) mobilizes P and Mn with outstanding efficiency due to the formation of determinate cluster roots that release carboxylates. The high Mn tolerance of L. albus goes along with shoot Mn accumulation, but the molecular basis of this detoxification mechanism has been unknown. In this study, we identify LaMTP8.1 as the transporter mediating vacuolar sequestration of Mn in the shoot of white lupin. The function of Mn transport was demonstrated by yeast complementation analysis, in which LaMTP8.1 detoxified Mn in pmr1∆ mutant cells upon elevated Mn supply. In addition, LaMTP8.1 also functioned as an iron (Fe) transporter in yeast assays. The expression of LaMTP8.1 was particularly high in old leaves under high Mn stress. However, low P availability per se did not result in transcriptional upregulation of LaMTP8.1. Moreover, LaMTP8.1 expression was strongly upregulated under Fe deficiency, where it was accompanied by Mn accumulation, indicating a role in the interaction of these micronutrients in L. albus. In conclusion, the tonoplast-localized Mn transporter LaMTP8.1 mediates Mn detoxification in leaf vacuoles, providing a mechanistic explanation for the high Mn accumulation and Mn tolerance in this species.


Asunto(s)
Lupinus , Lupinus/genética , Lupinus/metabolismo , Manganeso/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
12.
Plant J ; 112(5): 1127-1140, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36178138

RESUMEN

Emergence of secondary roots through parental tissue is a highly controlled developmental process. Although the model plant Arabidopsis has been useful to uncover the predominant role of auxin in this process, its simple root structure is not representative of how emergence takes place in most plants, which display more complex root anatomy. White lupin is a legume crop producing structures called cluster roots, where closely spaced rootlets emerge synchronously. Rootlet primordia push their way through several cortical cell layers while maintaining the parent root integrity, reflecting more generally the lateral root emergence process in most multilayered species. In this study, we showed that lupin rootlet emergence is associated with an upregulation of cell wall pectin modifying and degrading genes under the active control of auxin. Among them, we identified LaPG3, a polygalacturonase gene typically expressed in cells surrounding the rootlet primordium and we showed that its downregulation delays emergence. Immunolabeling of pectin epitopes and their quantification uncovered a gradual pectin demethylesterification in the emergence zone, which was further enhanced by auxin treatment, revealing a direct hormonal control of cell wall properties. We also report rhamnogalacturonan-I modifications affecting cortical cells that undergo separation as a consequence of primordium outgrowth. In conclusion, we describe a model of how external tissues in front of rootlet primordia display cell wall modifications to allow for the passage of newly formed rootlets.


Asunto(s)
Arabidopsis , Lupinus , Ácidos Indolacéticos , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Lupinus/genética , Arabidopsis/genética , Pectinas , Plantas
13.
Sci Rep ; 12(1): 15162, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071148

RESUMEN

Adequate intake of micronutrients is necessary to reduce widespread health issues linked to low intake of iron (Fe), zinc (Zn), boron (B), copper (Cu), and manganese (Mn). Because more than two billion people suffer from micronutrient deficiency globally, to address this problem, highly-nutritious ancestral Peruvian crops like tarwi can be an important component of food security. Thus, our work explores the tarwi micronutrient variability to select biofortified genotypes without affecting seed size and weight. Tarwi is a biofortified food because of its seeds' Fe, Zn, and B content. Furthermore, Boron showed a positive correlation between seed size and weight. At the same time, copper showed a negative correlation. Finally, six accessions (P14, P16, P21, T05, T08, and T25) that are biofortified for Fe, Zn, and B with excellent seed size and weight and with adequate levels of Cu and Mn; adding value to Peruvian biodiversity at a low cost is a starting point for a breeding program to prevent micronutrient disorders.


Asunto(s)
Lupinus , Oligoelementos , Boro , Cobre , Productos Agrícolas/genética , Humanos , Lupinus/genética , Manganeso , Micronutrientes , Fitomejoramiento , Zinc
14.
Plant Physiol ; 190(4): 2449-2465, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36066452

RESUMEN

The rhizosheath is a belowground area that acts as a communication hub at the root-soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; -P: soil without fertilizer). We expressed purple acid phosphatase12 (LaPAP12) in white lupin and rice (Oryza sativa) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD-P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD-P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD-P conditions.


Asunto(s)
Lupinus , Oryza , Oryza/genética , Oryza/metabolismo , Lupinus/genética , Fósforo/metabolismo , Fertilizantes , Raíces de Plantas/metabolismo , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Suelo
15.
PeerJ ; 10: e13836, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935254

RESUMEN

Lupinus polyphyllus is rich in color, making it a well-known horticultural ornamental plant. However, little is known about the genes related to anthocyanin and carotenoid biosynthesis in L. polyphyllus. In this study, transcriptome sequencing was performed on eight different colors of L. polyphyllus. A total of 1.13 billion clean reads were obtained and assembled into 89,124 unigenes, which were then aligned with six databases, resulting in the identification of 54,823 annotated unigenes. Among these unigenes, 76 and 101 were involved in the biosynthetic pathway of carotenoids and anthocyanins, respectively. In addition, 505 transcription factors were revealed, which belonged to the MYB, R2R3-MYB, NAC, bHLH, and WD40 families. A total of 6,700 differentially expressed genes (DEGs) were obtained by comparative transcriptome analysis. Among them, 17 candidate unigenes (four carotenoid genes, seven anthocyanin genes, and six TFs) were specifically up-regulated for one or more colors of L. polyphyllus. Eight representative candidate unigenes were analyzed by qRT-PCR. The findings enrich the transcriptome database of lupine, and provide a rich molecular resource for research on the coloration mechanism of L. polyphyllus.


Asunto(s)
Lupinus , Transcriptoma , Humanos , Transcriptoma/genética , Lupinus/genética , Antocianinas/genética , Perfilación de la Expresión Génica/métodos , Carotenoides
16.
Plant J ; 111(5): 1252-1266, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779281

RESUMEN

Narrow-leafed lupin (NLL; Lupinus angustifolius) is a key rotational crop for sustainable farming systems, whose grain is high in protein content. It is a gluten-free, non-genetically modified, alternative protein source to soybean (Glycine max) and as such has gained interest as a human food ingredient. Here, we present a chromosome-length reference genome for the species and a pan-genome assembly comprising 55 NLL lines, including Australian and European cultivars, breeding lines and wild accessions. We present the core and variable genes for the species and report on the absence of essential mycorrhizal associated genes. The genome and pan-genomes of NLL and its close relative white lupin (Lupinus albus) are compared. Furthermore, we provide additional evidence supporting LaRAP2-7 as the key alkaloid regulatory gene for NLL and demonstrate the NLL genome is underrepresented in classical NLR disease resistance genes compared to other sequenced legume species. The NLL genomic resources generated here coupled with previously generated RNA sequencing datasets provide new opportunities to fast-track lupin crop improvement.


Asunto(s)
Lupinus , Australia , Cromosomas , Genómica , Humanos , Lupinus/genética , Fitomejoramiento
17.
Sci Rep ; 12(1): 8164, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581248

RESUMEN

Narrow-leafed lupin (NLL, Lupinus angustifolius L.) is a legume plant cultivated for grain production and soil improvement. Worldwide expansion of NLL as a crop attracted various pathogenic fungi, including Colletotrichum lupini causing a devastating disease, anthracnose. Two alleles conferring improved resistance, Lanr1 and AnMan, were exploited in NLL breeding, however, underlying molecular mechanisms remained unknown. In this study, European NLL germplasm was screened with Lanr1 and AnMan markers. Inoculation tests in controlled environment confirmed effectiveness of both resistance donors. Representative resistant and susceptible lines were subjected to differential gene expression profiling. Resistance to anthracnose was associated with overrepresentation of "GO:0006952 defense response", "GO:0055114 oxidation-reduction process" and "GO:0015979 photosynthesis" gene ontology terms. Moreover, the Lanr1 (83A:476) line revealed massive transcriptomic reprogramming quickly after inoculation, whereas other lines showed such a response delayed by about 42 h. Defense response was associated with upregulation of TIR-NBS, CC-NBS-LRR and NBS-LRR genes, pathogenesis-related 10 proteins, lipid transfer proteins, glucan endo-1,3-beta-glucosidases, glycine-rich cell wall proteins and genes from reactive oxygen species pathway. Early response of 83A:476, including orchestrated downregulation of photosynthesis-related genes, coincided with the successful defense during fungus biotrophic growth phase, indicating effector-triggered immunity. Mandelup response was delayed and resembled general horizontal resistance.


Asunto(s)
Lupinus , Lupinus/genética , Oxidación-Reducción , Fotosíntesis/genética , Fitomejoramiento , Hojas de la Planta/genética
18.
Syst Appl Microbiol ; 45(4): 126324, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35580548

RESUMEN

Three moderately halophilic strains, TMW 2.2308T, TMW 2.2299 and TMW 2.2304, were isolated from a lupine-based moromi fermentation. Initial identification based on their low molecular sub-proteome using mass spectrometry showed relation to the genus Halomonas, however, low score values indicated novelty. The comparison of 16S rRNA gene sequences placed these strains within the genus Chromohalobacter with C. japonicus CECT 7219T (99.67% 16S rRNA sequence similarity to strain TMW2.2308T), C. canadensis DSM 6769T (99.54%) and C. beijerinckii LMG 2148T (99.32%) being their closest relatives. However, average nucleotide highest identity values of TMW 2.2308T to C. beijerinckii LMG 2148T of 93.12% and 92.88% to C. japonicus CECT 7219T demonstrate that it represents a novel species within the genus Chromohalobacter with additional strains TMW 2.2299 (96.91%) and TMW 2.2304 (96.98%). The isolated strains were non-spore-forming, motile and able to grow at temperatures from 5 to 45 °C with an optimum at 37 °C. Growth of TMW 2.2308T occurs at 5 to 25% (w/v) NaCl with optimum growth between 10and 12.5%. The genome of TMW 2.2308T has a size of 3.47 Mb and a G + C content of 61.0 mol%. The polyphasic evidence lead to the classification of TMW 2.2308T, TMW 2.2299 and TMW 2.2304 as members of a novel species of the genus Chromohalobacter. We propose a novel species as Chromohalobacter moromii sp. nov., with TMW 2.2308T (=DSM113153T =CECT30422T) as the type strain.


Asunto(s)
Chromohalobacter , Lupinus , Técnicas de Tipificación Bacteriana , Chromohalobacter/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fermentación , Lupinus/genética , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Int J Biol Macromol ; 205: 772-781, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35331794

RESUMEN

According to global estimation, 5.7 billion hectares of agricultural land contain limited phosphorus (P) availability leading to insufficient plant growth and productivity. Internal phosphate transporters play an essential role in mediating P mobilization and uptake from the soil. White lupin (Lupinus albus) is a cluster root (CR) forming crop with great potential to survive under P limited soil. However, it is imperative to identify and characterize the phosphate transporter (PHT) gene family in plants to validate their involvement in solving P deficiency problems. The recent availability of white lupin high-quality genome allowed us an exhaustive searches in the whole genome and identified five phosphates transporters subfamilies, including 35 putative genes that are unevenly distributed on 16 chromosomes. The LaPHT1 subfamily contained eight genes, LaPHT2 subfamily have three, LaPHT3 subfamily have eight, LaPHT4 subfamily have nine, and LaPHO subfamily has seven. Gene structure and duplication were also examined in detail. Syntenic analysis revealed that white lupin PHT family members had maximum the collinear relationship with those in L. angustifolius followed by Phaseolus vulgaris but showed the least collinear relationship with those in Arabidopsis. Gene ontology (GO) analysis revealed that the in white lupin PHT genes were enriched in functions regulated P uptake, transport, and recycling mechanisms. RT-qPCR was performed to evaluate the transcript levels of LaPHT genes in different parts of CR under P deficient hydroponic culture. Our study would provide better understanding the genetic evolution and expression phosphate of phosphate transporters in L. albus CR under P deficiency. It will also be helpful for further functional-based studies to solve P deficiency-related issues and mitigate P stress responses.


Asunto(s)
Lupinus , Regulación de la Expresión Génica de las Plantas , Lupinus/genética , Lupinus/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas
20.
Nat Prod Rep ; 39(7): 1423-1437, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35302146

RESUMEN

Covering: up to 2022Quinolizidine alkaloids (QAs) are a class of alkaloids that accumulate in a variety of leguminous plants and have applications in the agricultural, pharmaceutical and chemical industries. QAs are notoriously present in cultivated lupins (Lupinus spp.) where they complicate the use of the valuable, high-protein beans due to their toxic properties and bitter taste. Compared to many other alkaloid classes, the biosynthesis of QAs is poorly understood, with only the two first pathway enzymes having been discovered so far. In this article, we review the different biosynthetic hypotheses that have been put forth in the literature (1988-2009) and highlight one particular hypothesis (1988) that agrees with the often ignored precursor feeding studies (1964-1994). Our focus is on the biosynthesis of the simple tetracyclic QA (-)-sparteine, from which many of the QAs found in lupins derive. We examine every pathway step on the way to (-)-sparteine and discuss plausible mechanisms, altogether proposing the involvement of 6-9 enzymes. Together with the new resources for gene discovery developed for lupins in the past few years, this review will contribute to the full elucidation of the QA pathway, including the identification and characterization of the missing pathway enzymes.


Asunto(s)
Alcaloides , Lupinus , Quinolizidinas , Esparteína , Lupinus/química , Lupinus/genética , Lupinus/metabolismo , Plantas/metabolismo , Esparteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA