Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.256
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38780270

RESUMEN

Spinal cord injury is associated with spinal vascular disruptions that result in spinal ischemia and tissue hypoxia. This study evaluated the therapeutic efficacy of normobaric hyperoxia on spinal cord oxygenation and circulatory function at the acute stage of cervical spinal cord injury. Adult male Sprague Dawley rats underwent dorsal cervical laminectomy or cervical spinal cord contusion. At 1-2 days after spinal surgery, spinal cord oxygenation was monitored in anesthetized and spontaneously breathing rats through optical recording of oxygen sensor foils placed on the cervical spinal cord and pulse oximetry. The arterial blood pressure, heart rate, blood gases, and peripheral oxyhemoglobin saturation were also measured under hyperoxic (50% O2) and normoxic (21% O2) conditions. The results showed that contused animals had significantly lower spinal cord oxygenation levels than uninjured animals during normoxia. Peripheral oxyhemoglobin saturation, arterial oxygen partial pressure, and mean arterial blood pressure are significantly reduced following cervical spinal cord contusion. Notably, spinal oxygenation of contused rats could be improved to a level comparable to uninjured animals under hyperoxia. Furthermore, acute hyperoxia elevated blood pressure, arterial oxygen partial pressure, and peripheral oxyhemoglobin saturation. These results suggest that normobaric hyperoxia can significantly improve spinal cord oxygenation and circulatory function in the acute phase after cervical spinal cord injury. We propose that adjuvant normobaric hyperoxia combined with other hemodynamic optimization strategies may prevent secondary damage after spinal cord injury and improve functional recovery.


Asunto(s)
Hiperoxia , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/metabolismo , Masculino , Hiperoxia/fisiopatología , Hiperoxia/sangre , Ratas , Oxígeno/sangre , Oxígeno/metabolismo , Médula Espinal/metabolismo , Médula Espinal/irrigación sanguínea , Médula Espinal/fisiopatología , Médula Cervical/lesiones , Médula Cervical/metabolismo , Presión Sanguínea/fisiología , Oxihemoglobinas/metabolismo , Frecuencia Cardíaca/fisiología
3.
Spinal Cord Ser Cases ; 10(1): 19, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600098

RESUMEN

STUDY DESIGN: Cross-Sectional Study. OBJECTIVES: To investigate the changes in the characteristics of cervical spinal cord injuries (CSCI) before and after the coronavirus disease 2019 (COVID-19) pandemic among patients transported to our hospital in Japan. SETTING: Hospital with an emergency center in Chiba, Japan. METHODS: Patients eligible for the study were those transported within 24 h of injury and diagnosed with cervical spinal cord injury between January 2018 and December 2021 at our hospital. Medical records were retrospectively examined to investigate the number and characteristics of patients with CSCI. The clinical variables of patients with CSCI were compared according to the time of admission as related to the COVID-19 pandemic: 2018-19 (before) or 2020-21 (after). RESULTS: The total number of patients with CSCI from 2018 to 2021 was 108, with 57 before the COVID-19 pandemic and 51 after the COVID-19 pandemic. The number of severe cases with an injury severity score (ISS) of >16 decreased after COVID-19 (p < 0.05). Falls on level surfaces were the most common cause of injury both before and after COVID-19. Although the ranking of traffic accidents decreased after COVID-19, among those, the number of bicycle injuries tended to increase. CONCLUSIONS: The number of serious cases with an ISS > 16 decreased, presumably because of the decline in high-energy trauma due to the background decrease in the number of traffic accidents.


Asunto(s)
COVID-19 , Médula Cervical , Traumatismos del Cuello , Traumatismos de la Médula Espinal , Humanos , Pandemias , Estudios Retrospectivos , Médula Cervical/lesiones , Estudios Transversales , Vértebras Cervicales/lesiones , COVID-19/epidemiología , COVID-19/complicaciones , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos del Cuello/complicaciones
4.
Exp Neurol ; 376: 114769, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582278

RESUMEN

Ampakines are positive allosteric modulators of AMPA receptors. We hypothesized that low-dose ampakine treatment increases diaphragm electromyogram (EMG) activity after mid-cervical contusion injury in rats. Adult male and female Sprague Dawley rats were implanted with in-dwelling bilateral diaphragm EMG electrodes. Rats received a 150 kDyn C4 unilateral contusion (C4Ct). At 4- and 14-days following C4Ct, rats were given an intravenous bolus of ampakine CX717 (5 mg/kg, n = 10) or vehicle (2-hydroxypropyl-beta-cyclodextrin; HPCD; n = 10). Diaphragm EMG was recorded while breathing was assessed using whole-body plethysmography. At 4-days, ampakine administration caused an immediate and sustained increase in bilateral peak inspiratory diaphragm EMG bursting and ventilation. The vehicle had no impact on EMG bursting. CX717 treated rats were able to increase EMG activity during a respiratory challenge to a greater extent vs. vehicle treated. Rats showed a considerable degree of spontaneous recovery of EMG bursting by 14 days, and the impact of CX717 delivery was blunted as compared to 4-days. Direct recordings from the phrenic nerve at 21-24 days following C4Ct confirmed that ampakines stimulated bilateral phrenic neural output in injured rats. We conclude that low-dose intravenous treatment with a low-impact ampakine can enhance diaphragm activation shortly following mid-cervical contusion injury, when deficits in diaphragm activation are prominent.


Asunto(s)
Diafragma , Electromiografía , Isoxazoles , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Diafragma/efectos de los fármacos , Diafragma/fisiopatología , Ratas , Masculino , Femenino , Traumatismos de la Médula Espinal/fisiopatología , Modelos Animales de Enfermedad , Contusiones/fisiopatología , Médula Cervical/lesiones , Médula Cervical/efectos de los fármacos
5.
Eur J Neurol ; 31(6): e16268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38465478

RESUMEN

BACKGROUND AND PURPOSE: In amyotrophic lateral sclerosis (ALS), there is an unmet need for more precise patient characterization through quantitative, ideally operator-independent, assessments of disease extent and severity. Radially sampled averaged magnetization inversion recovery acquisitions (rAMIRA) magnetic resonance imaging enables gray matter (GM) and white matter (WM) area quantitation in the cervical and thoracic spinal cord (SC) with optimized contrast. We aimed to investigate rAMIRA-derived SC GM and SC WM areas and their association with clinical phenotype and disability in ALS. METHODS: A total of 36 patients with ALS (mean [SD] age 61.7 [12.6] years, 14 women) and 36 healthy, age- and sex-matched controls (HCs; mean [SD] age 63.1 [12.1] years, 14 women) underwent two-dimensional axial rAMIRA imaging at the inter-vertebral disc levels C2/3-C5/C6 and the lumbar enlargement level Tmax. ALS Functional Rating Scale-revised (ALSFRS-R) score, muscle strength, and sniff nasal inspiratory pressure (SNIP) were assessed. RESULTS: Compared to HCs, GM and WM areas were reduced in patients at all cervical levels (p < 0.0001). GM area (p = 0.0001), but not WM area, was reduced at Tmax. Patients with King's Stage 3 showed significant GM atrophy at all levels, while patients with King's Stage 1 showed significant GM atrophy selectively at Tmax. SC GM area was significantly associated with muscle force at corresponding myotomes. GM area at C3/C4 was associated with ALSFRS-R (p < 0.001) and SNIP (p = 0.0016). CONCLUSION: Patients with ALS assessed by rAMIRA imaging show significant cervical and thoracic SC GM and SC WM atrophy. SC GM area correlates with muscle strength and clinical disability. GM area reduction at Tmax may be an early disease sign. Longitudinal studies are warranted.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia , Sustancia Gris , Imagen por Resonancia Magnética , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/complicaciones , Femenino , Persona de Mediana Edad , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Anciano , Atrofia/patología , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Vértebras Torácicas/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Vértebras Cervicales/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
6.
Physiol Rep ; 12(5): e15973, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38467570

RESUMEN

Cervical spinal cord injury impacts ventilatory and non-ventilatory functions of the diaphragm muscle (DIAm) and contributes to clinical morbidity and mortality in the afflicted population. Periodically, integrated brainstem neural circuit activity drives the DIAm to generate a markedly augmented effort or sigh-which plays an important role in preventing atelectasis and thus maintaining lung function. Across species, the general pattern of DIAm efforts during a normal sigh is variable in amplitude and the extent of post-sigh "apnea" (i.e., the post-sigh inter-breath interval). This post-sigh inter-breath interval acts as a respiratory reset, following the interruption of regular respiratory rhythm by sigh. We examined the impact of upper cervical (C2 ) spinal cord hemisection (C2 SH) on the transdiaphragmatic pressure (Pdi ) generated during sighs and the post-sigh respiratory reset in rats. Sighs were identified in Pdi traces by their characteristic biphasic pattern. We found that C2 SH results in a reduction of Pdi during both eupnea and sighs, and a decrease in the immediate post-sigh breath interval. These results are consistent with partial removal of descending excitatory synaptic inputs to phrenic motor neurons that results from C2 SH. Following cervical spinal cord injury, a reduction in the amplitude of Pdi during sighs may compromise the maintenance of normal lung function.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Respiración , Diafragma/fisiología
7.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474302

RESUMEN

Our previous research studies have demonstrated the role of microRNA133b (miR133b) in healing the contused spinal cord when administered either intranasally or intravenously 24 h following an injury. While our data showed beneficial effects of exogenous miR133b delivered within hours of a spinal cord injury (SCI), the kinetics of endogenous miR133b levels in the contused spinal cord and rostral/caudal segments of the injury were not fully investigated. In this study, we examined the miR133b dysregulation in a mouse model of moderate unilateral contusion injury at the fifth cervical (C5) level. Between 30 min and 7 days post-injury, mice were euthanized and tissues were collected from different areas of the spinal cord, ipsilateral and contralateral prefrontal motor cortices, and off-targets such as lung and spleen. The endogenous level of miR133b was determined by RT-qPCR. We found that after SCI, (a) most changes in miR133b level were restricted to the injured area with very limited alterations in the rostral and caudal parts relative to the injury site, (b) acute changes in the endogenous levels were predominantly specific to the lesion site with delayed miR133b changes in the motor cortex, and (c) ipsilateral and contralateral hemispheres responded differently to unilateral SCI. Our results suggest that the therapeutic window for exogenous miR133b therapy begins earlier than 24 h post-injury and potentially lasts longer than 7 days.


Asunto(s)
Médula Cervical , Contusiones , MicroARNs , Traumatismos de la Médula Espinal , Animales , Ratones , Contusiones/metabolismo , Modelos Animales de Enfermedad , MicroARNs/metabolismo , MicroARNs/uso terapéutico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Médula Cervical/lesiones
8.
J Neural Eng ; 21(2)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38471169

RESUMEN

Objective. Chronic motor impairments of arms and hands as the consequence of a cervical spinal cord injury (SCI) have a tremendous impact on activities of daily life. A considerable number of people however retain minimal voluntary motor control in the paralyzed parts of the upper limbs that are measurable by electromyography (EMG) and inertial measurement units (IMUs). An integration into human-machine interfaces (HMIs) holds promise for reliable grasp intent detection and intuitive assistive device control.Approach. We used a multimodal HMI incorporating EMG and IMU data to decode reach-and-grasp movements of groups of persons with cervical SCI (n = 4) and without (control, n = 13). A post-hoc evaluation of control group data aimed to identify optimal parameters for online, co-adaptive closed-loop HMI sessions with persons with cervical SCI. We compared the performance of real-time, Random Forest-based movement versus rest (2 classes) and grasp type predictors (3 classes) with respect to their co-adaptation and evaluated the underlying feature importance maps.Main results. Our multimodal approach enabled grasp decoding significantly better than EMG or IMU data alone (p<0.05). We found the 0.25 s directly prior to the first touch of an object to hold the most discriminative information. Our HMIs correctly predicted 79.3 ± STD 7.4 (102.7 ± STD 2.3 control group) out of 105 trials with grand average movement vs. rest prediction accuracies above 99.64% (100% sensitivity) and grasp prediction accuracies of 75.39 ± STD 13.77% (97.66 ± STD 5.48% control group). Co-adaption led to higher prediction accuracies with time, and we could identify adaptions in feature importances unique to each participant with cervical SCI.Significance. Our findings foster the development of multimodal and adaptive HMIs to allow persons with cervical SCI the intuitive control of assistive devices to improve personal independence.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Humanos , Electromiografía/métodos , Mano , Brazo , Fuerza de la Mano
9.
Neuroradiology ; 66(5): 839-846, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38441573

RESUMEN

PURPOSE: Degenerative cervical myelopathy (DCM) is a common cause of spinal cord dysfunction. In this study, we explored the potential of magnetization transfer ratio (MTR) for evaluating the structural integrity of spinal cord tracts in patients with clinically significant DCM. METHODS: Fifty-three patients with DCM and 41 patients with cervical radiculopathy were evaluated using high-resolution cervical spinal cord magnetic resonance imaging (MRI), which included the magnetization transfer technique. MRI data were analyzed with the Spinal Cord Toolbox (v5.5); MTR values in each spinal tract were calculated and compared between groups after correction for patient age and sex. Correlations between MTR values and patients' clinical disability rate were also evaluated. RESULTS: A statistically significant reduction in the average MTR of the spinal cord white matter, as well as the MTR of the ventral columns and lateral funiculi, was revealed in the DCM group (adjusted p < 0.01 for all comparisons). Furthermore, reductions in MTR values in the fasciculus cuneatus, spinocerebellar, rubrospinal, and reticulospinal tracts were found in patients with DCM (adjusted p < 0.01 for all comparisons). Positive correlations between the JOA score and the MTR within the ventral columns of the spinal cord (R = 0.38, adjusted p < 0.05) and the ventral spinocerebellar tract (R = 0.41, adjusted p < 0.05) were revealed. CONCLUSION: The findings of our study indicate that demyelination in patients with DCM primarily affects the spinal tracts of the extrapyramidal system, and the extent of these changes is related to the severity of the condition.


Asunto(s)
Médula Cervical , Compresión de la Médula Espinal , Enfermedades de la Médula Espinal , Sustancia Blanca , Humanos , Enfermedades de la Médula Espinal/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Médula Cervical/diagnóstico por imagen , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/patología
10.
Brain Res ; 1832: 148842, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447599

RESUMEN

BACKGROUND: Idiopathic trigeminal neuralgia (TN) cases encountered frequently in daily practice indicate significant gaps that still need to be illuminated in the etiopathogenesis. In this study, a novel TN animal model was developed by compressing the dorsal horn (DH) of the upper cervical spinal cord. METHODS: Eighteen rabbits were equally divided into three groups, namely control (CG), sham (SG), and spinal cord compression (SCC) groups. External pressure was applied to the left side at the C3 level in the SCC group. Dorsal hemilaminectomy was performed in the SG, and the operative side was closed without compression. No procedure was implemented in the control group. Samples from the SC, TG, and ION were taken after seven days. For the histochemical staining, damage and axons with myelin were scored using Hematoxylin and Eosin and Toluidine Blue, respectively. Immunohistochemistry, nuclei, apoptotic index, astrocyte activity, microglial labeling, and CD11b were evaluated. RESULTS: Mechanical allodynia was observed on the ipsilateral side in the SCC group. In addition, both the TG and ION were partially damaged from SC compression, which resulted in significant histopathological changes and increased the expression of all markers in both the SG and SCC groups compared to that in the CG. There was a notable increase in tissue damage, an increase in the number of apoptotic nuclei, an increase in the apoptotic index, an indication of astrocytic gliosis, and an upsurge in microglial cells. Significant increases were noted in the SG group, whereas more pronounced significant increases were observed in the SCC group. Transmission electron microscopy revealed myelin damage, mitochondrial disruption, and increased anchoring particles. Similar changes were observed to a lesser extent in the contralateral spinal cord. CONCLUSION: Ipsilateral trigeminal neuropathic pain was developed due to upper cervical SCC. The clinical finding is supported by immunohistochemical and ultrastructural changes. Thus, alterations in the DH due to compression of the upper cervical region should be considered as a potential cause of idiopathic TN.


Asunto(s)
Médula Cervical , Neuralgia , Neuralgia del Trigémino , Animales , Conejos , Neuralgia del Trigémino/complicaciones , Neuralgia del Trigémino/metabolismo , Neuralgia del Trigémino/patología , Médula Cervical/metabolismo , Neuralgia/metabolismo , Médula Espinal/metabolismo , Nervio Trigémino , Asta Dorsal de la Médula Espinal/metabolismo , Hiperalgesia/metabolismo
11.
Neuroradiology ; 66(5): 835-838, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531984

RESUMEN

Understanding the risks of contrast-induced encephalopathy (CIE), a serious complication of contrast agents, is crucial in endovascular treatment. We present the case of a 73-year-old woman who developed CIE in the medulla and cervical cord during coil embolization for unruptured left basilar-superior cerebellar artery and basilar artery tip aneurysms. The CIE was identified via neuromonitoring. In this case, spinal cord ischemia might have occurred due to reduced perfusion pressure after inserting the distal access catheter (DAC) in the vertebral artery. Multiple injections of contrast medium via the DAC during coil embolization likely contributed to an unusual form of CIE. Extreme caution is warranted during endovascular treatments involving the posterior circulation, due to the relatively high incidence of contrast-mediated encephalopathy, which can lead to severe consequences such as perforator infarction. Neuromonitoring is very useful for the early detection of neurological changes, particularly because intraoperative angiography may not reveal all irregularities.


Asunto(s)
Encefalopatías , Médula Cervical , Embolización Terapéutica , Aneurisma Intracraneal , Femenino , Humanos , Anciano , Resultado del Tratamiento , Aneurisma Intracraneal/terapia , Aneurisma Intracraneal/cirugía
12.
Clin Neurophysiol ; 161: 188-197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520799

RESUMEN

OBJECTIVE: Corticospinal inhibitory mechanisms are relevant to functional recovery but remain poorly understood after spinal cord injury (SCI). Post-injury characteristics of contralateral silent period (CSP), a measure of corticospinal inhibition evaluated using transcranial magnetic stimulation (TMS), is inconsistent in literature. We envisioned that investigating CSP across muscles with varying degrees of weakness may be a reasonable approach to resolve inconsistencies and elucidate the relevance of corticospinal inhibition for upper extremity function following SCI. METHODS: We studied 27 adults with chronic C1-C8 SCI (age 48.8 ± 16.1 years, 3 females) and 16 able-bodied participants (age 33.2 ± 11.8 years, 9 females). CSP characteristics were assessed across biceps (muscle power = 3-5) and triceps (muscle power = 1-3) representing stronger and weaker muscles, respectively. We assessed functional abilities using the Capabilities of the Upper Extremity Test (CUE-T). RESULTS: Participants with chronic SCI had prolonged CSPs for biceps but delayed and diminished CSPs for triceps compared to able-bodied participants. Early-onset CSPs for biceps and longer, deeper CSPs for triceps correlated with better CUE-T scores. CONCLUSIONS: Corticospinal inhibition is pronounced for stronger biceps but diminished for weaker triceps muscle in SCI indicating innervation relative to the level of injury matters in the study of CSP. SIGNIFICANCE: Nevertheless, corticospinal inhibition or CSP holds relevance for upper extremity function following SCI.


Asunto(s)
Inhibición Neural , Tractos Piramidales , Traumatismos de la Médula Espinal , Estimulación Magnética Transcraneal , Extremidad Superior , Humanos , Femenino , Traumatismos de la Médula Espinal/fisiopatología , Masculino , Adulto , Persona de Mediana Edad , Tractos Piramidales/fisiopatología , Extremidad Superior/fisiopatología , Estimulación Magnética Transcraneal/métodos , Inhibición Neural/fisiología , Músculo Esquelético/fisiopatología , Potenciales Evocados Motores/fisiología , Médula Cervical/fisiopatología , Médula Cervical/lesiones , Adulto Joven , Vértebras Cervicales/fisiopatología , Electromiografía/métodos
14.
Magn Reson Imaging ; 109: 56-66, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38458552

RESUMEN

BACKGROUND: Diffusion tensor imaging (DTI) is a promising technique for the visualization of the cervical spinal cord (CSC) in vivo. It provides information about the tissue structure of axonal white matter, and it is thought to be more sensitive than other MR imaging techniques for the evaluation of damage to tracts in the spinal cord. AIM: The purpose of this study was to determine the within-participants reliability and error magnitude of measurements of DTI metrics in healthy human CSC. METHODS: A total of twenty healthy controls (10 male, mean age: 33.9 ± 3.5 years, 10 females, mean age: 47.5 ± 14.4 years), with no family history of any neurological disorders or a contraindication to MRI scanning were recruited over a period of two months. Each participant was scanned twice with an MRI 3 T scanner using standard DTI sequences. Spinal Cord Toolbox (SCT) software was used for image post-processing. Data were first corrected for motion artefact, then segmented, registered to a template, and then the DTI metrics were computed. The within-participants coefficients of variation (CV%), the single and average within-participants intraclass correlation coefficients (ICC) and Bland-Altman plots for WM, VC, DC and LC fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were determined for the cervical spinal cord (between the 2nd and 5th cervical vertebrae). RESULTS: DTI metrics showed poor to excellent within-participants reliability for both single and average ICC and moderate to high reproducibility for CV%, all variation dependent on the location of the ROI. The BA plots showed good within-participants agreement between the scan-rescan values. CONCLUSION: Results from this reliability study demonstrate that clinical trials using the DTI technique are feasible and that DTI, in particular regions of the cord is suitable for use for the monitoring of degenerative WM changes.


Asunto(s)
Médula Cervical , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Adulto , Persona de Mediana Edad , Imagen de Difusión Tensora/métodos , Médula Cervical/diagnóstico por imagen , Reproducibilidad de los Resultados , Médula Espinal/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética
15.
NMR Biomed ; 37(6): e5115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38355219

RESUMEN

Arterial spin labeling (ASL) has been widely used to evaluate arterial blood and perfusion dynamics, particularly in the brain, but its application to the spinal cord has been limited. The purpose of this study was to optimize vessel-selective pseudocontinuous arterial spin labeling (pCASL) for angiographic and perfusion imaging of the rat cervical spinal cord. A pCASL preparation module was combined with a train of gradient echoes for dynamic angiography. The effects of the echo train flip angle, label duration, and a Cartesian or radial readout were compared to examine their effects on visualizing the segmental arteries and anterior spinal artery (ASA) that supply the spinal cord. Lastly, vessel-selective encoding with either vessel-encoded pCASL (VE-pCASL) or super-selective pCASL (SS-pCASL) were compared. Vascular territory maps were obtained with VE-pCASL perfusion imaging of the spinal cord, and the interanimal variability was evaluated. The results demonstrated that longer label durations (200 ms) resulted in greater signal-to-noise ratio in the vertebral arteries, improved the conspicuity of the ASA, and produced better quality maps of blood arrival times. Cartesian and radial readouts demonstrated similar image quality. Both VE-pCASL and SS-pCASL adequately labeled the right or left vertebral arteries, which revealed the interanimal variability in the segmental artery with variations in their location, number, and laterality. VE-pCASL also demonstrated unique interanimal variations in spinal cord perfusion with a right-sided dominance across the six animals. Vessel-selective pCASL successfully achieved visualization of the arterial inflow dynamics and corresponding perfusion territories of the spinal cord. These methodological developments provide unique insights into the interanimal variations in the arterial anatomy and dynamics of spinal cord perfusion.


Asunto(s)
Angiografía por Resonancia Magnética , Ratas Sprague-Dawley , Animales , Masculino , Angiografía por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Marcadores de Spin , Ratas , Médula Cervical/diagnóstico por imagen , Médula Cervical/irrigación sanguínea , Médula Espinal/irrigación sanguínea , Médula Espinal/diagnóstico por imagen
16.
Mult Scler ; 30(4-5): 516-534, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38372019

RESUMEN

BACKGROUND: We assessed the ability of a brain-and-cord-matched quantitative magnetic resonance imaging (qMRI) protocol to differentiate patients with progressive multiple sclerosis (PMS) from controls, in terms of normal-appearing (NA) tissue abnormalities, and explain disability. METHODS: A total of 27 patients and 16 controls were assessed on the Expanded Disability Status Scale (EDSS), 25-foot timed walk (TWT), 9-hole peg (9HPT) and symbol digit modalities (SDMT) tests. All underwent 3T brain and (C2-C3) cord structural imaging and qMRI (relaxometry, quantitative magnetisation transfer, multi-shell diffusion-weighted imaging), using a fast brain-and-cord-matched protocol with brain-and-cord-unified imaging readouts. Lesion and NA-tissue volumes and qMRI metrics reflecting demyelination and axonal loss were obtained. Random forest analyses identified the most relevant volumetric/qMRI measures to clinical outcomes. Confounder-adjusted linear regression estimated the actual MRI-clinical associations. RESULTS: Several qMRI/volumetric differences between patients and controls were observed (p < 0.01). Higher NA-deep grey matter quantitative-T1 (EDSS: beta = 7.96, p = 0.006; 9HPT: beta = -0.09, p = 0.004), higher NA-white matter orientation dispersion index (TWT: beta = -3.21, p = 0.005; SDMT: beta = -847.10, p < 0.001), lower whole-cord bound pool fraction (9HPT: beta = 0.79, p = 0.001) and higher NA-cortical grey matter quantitative-T1 (SDMT = -94.31, p < 0.001) emerged as particularly relevant predictors of greater disability. CONCLUSION: Fast brain-and-cord-matched qMRI protocols are feasible and identify demyelination - combined with other mechanisms - as key for disability accumulation in PMS.


Asunto(s)
Médula Cervical , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Médula Cervical/patología , Esclerosis Múltiple/patología , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple Crónica Progresiva/patología , Sustancia Gris/patología
17.
Mult Scler ; 30(4-5): 505-515, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38419027

RESUMEN

BACKGROUND: Performing routine brain magnetic resonance imaging (MRI) is widely accepted as the standard of care for disease monitoring in multiple sclerosis (MS), but the utility of performing routine spinal cord (SC) MRI for this purpose is still debatable. OBJECTIVE: This study aimed to measure the frequency of new isolated cervical spinal cord lesions (CSLs) in people with MS (pwMS) undergoing routine brain and cervical SC-MRI for disease monitoring and determine the factors associated with the development of new CSLs and their prognostic value. METHODS: We retrospectively identified 1576 pwMS who underwent follow-up 3T brain and cervical SC-MRI over a 9-month period. MRI was reviewed for the presence of new brain lesions (BLs) and CSLs. Clinical records were reviewed for interval relapses between sequential scans and subsequent clinical relapse and disability worsening after the follow-up MRI. RESULTS: In 1285 pwMS (median interval: 13-14 months) who were clinically stable with respect to relapses, 73 (5.7%) had new CSLs, of which 49 (3.8%) had concomitant new BLs and 24 (1.9%) had new isolated CSLs only. New asymptomatic CSLs were associated with ⩾ 3 prior relapses (p = 0.04), no disease-modifying therapy (DMT) use (p = 0.048), and ⩾ 3 new BLs (p < 0.001); ⩾ 3 new BLs (OR: 7.11, 95% CI: 4.3-11.7, p < 0.001) remained independently associated with new CSLs on multivariable analysis. Having new asymptomatic CSLs was not independently associated with subsequent relapse or disability worsening after the follow-up MRI (median follow-up time of 26 months). CONCLUSION: Routine brain and cervical SC-MRI detected new isolated CSLs in only < 2% of clinically stable pwMS. Developing new asymptomatic CSLs was associated with concomitant new BLs and did not confer an independent increased risk of relapse or disability worsening. Performing SC-MRI may not be warranted for routine monitoring in most pwMS, and performing only brain MRI may be sufficient to capture the vast majority of clinically silent disease activity.


Asunto(s)
Médula Cervical , Esclerosis Múltiple , Enfermedades de la Médula Espinal , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Estudios Retrospectivos , Progresión de la Enfermedad , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Enfermedades de la Médula Espinal/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Recurrencia
18.
World Neurosurg ; 184: e530-e536, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316177

RESUMEN

OBJECTIVE: The objective of this study was to investigate the influence of blood pressure on the severity and functional recovery of patients with acute cervical spinal cord injury (SCI) without fracture and dislocation. METHODS: A retrospective case control study analyzed the data of 40 patients admitted to our orthopedics department (Beijing Tiantan Hospital, Capital Medical University) from January 2013 to February 2021. They were diagnosed as acute cervical SCI without fracture and dislocation. Gender, age, height, weight, history of hypertension, postinjury American Spinal Injury Association grade, postinjury modified Japanese Orthopaedic Association (mJOA) score, postoperative mJOA score, 1-year follow-up mJOA score, preoperative mean arterial pressure (MAP), intramedullary T2 hyperintensity, and hyponatremia were collected. The patients were divided into groups and subgroups based on their history of hypertension and preoperative MAP. The effects of history of hypertension and preoperative MAP on the incidence of T2 hyperintensity, hyponatremia, the improvement rate of the postoperative mJOA and 1-year follow-up mJOA scores were analyzed. RESULTS: Patients with history of hypertension had a lower incidence of intramedullary T2 hyperintensity than patients without history of hypertension (P < 0.05). Patients with history of hypertension and patients with a higher preoperative MAP had better neurological recovery at 1 year of follow-up (P < 0.05). CONCLUSIONS: Blood pressure has great influence on acute cervical SCI without fracture and dislocation. Maintaining a higher preoperative MAP is advantageous for better recovery after SCI. Attention should be paid to the dynamic management of blood pressure to avoid the adverse effects of hypotension after SCI.


Asunto(s)
Médula Cervical , Fracturas Óseas , Hipertensión , Hiponatremia , Traumatismos del Cuello , Traumatismos de la Médula Espinal , Humanos , Estudios Retrospectivos , Presión Sanguínea , Estudios de Casos y Controles , Médula Cervical/lesiones , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/cirugía , Traumatismos de la Médula Espinal/diagnóstico , Hipertensión/epidemiología , Vértebras Cervicales/cirugía , Resultado del Tratamiento
19.
Zhonghua Yi Xue Za Zhi ; 104(9): 690-694, 2024 Mar 05.
Artículo en Chino | MEDLINE | ID: mdl-38418168

RESUMEN

Objective: To investigate the changes of spinal vascular blood flow in SD rats after cervical, thoracic and lumbar spinal cord injury (SCI) using super-resolution ultrafast ultrasound technology. Methods: A total of 9 SD rats were used to construct SCI models at different segments using a 50 g aneurysm clip. Super-resolution ultrafast ultrasound technology was used to perform vascular blood flow imaging on the spinal cord of rats before and after injury at 6 hours, obtaining quantitative information such as spinal cord vascular density and blood flow velocity. Results: Ultrasound imaging showed that after SCI, the vascular density in the thoracic segment decreased (18.16%±1.04%) more than in the cervical segment (11.42%±1.39%) and lumbar segment (13.88%±1.43%, both P<0.05). The length of the spinal cord with decreased vascular density in the thoracic segment [(4.80±0.34)mm] was longer than that in the cervical segment [(2.80±0.57)mm] and lumbar segment [(3.10±0.36)mm, both P<0.05]. After injury, the decrease of blood flow in the thoracic segment [(8.87±0.85)ml/min] was higher than that in the cervical segment [(4.88±0.56)ml/min] and lumbar segment [(6.19±0.71)ml/min, both P<0.05]. HE staining and Nissl staining showed that the proportion of cavity area after thoracic SCI (11.53%±0.93%) was higher than that in the cervical segment (4.90%±1.72%) and lumbar segment (7.64%±0.84%, both P<0.05). The number of Nissl bodies in the thoracic segment (18.0±5.3) was also lower than that in the cervical segment (32.3±5.1) and lumbar segment (37.0±5.6) (both P<0.05). Conclusions: There are different changes in vascular blood flow after SCI in different segments of rats. The same injury causes the most severe damage to blood vessels in the thoracic spinal cord, followed by the lumbar spinal cord, and the cervical spinal cord has the least damage.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Ratas , Animales , Ratas Sprague-Dawley , Médula Espinal/irrigación sanguínea , Médula Espinal/diagnóstico por imagen , Ultrasonografía
20.
Clin Neurol Neurosurg ; 237: 108149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38350172

RESUMEN

Dural arteriovenous fistulas may have insidious clinical presentations and are often challenging to diagnose. A small number of cases have been associated with perimedullary venous congestion and cord oedema, mimicking common pathologies, such as cervical myelopathy. We describe a case report of a patient presenting with a constellation of symptoms and radiological signs mimicking C5/6 cervical myelopathy secondary to disc herniation. The patient was managed with anterior cervical discectomy and fusion, with postoperative neurological deterioration unresponsive to steroid therapy. This prompted further investigation of other pathologies. An infratentorial Cognard 5 and Borden type 3 dural arteriovenous fistula was diagnosed on 6-vessel DSA and managed with onyx embolization. Marked improvement of neurological symptoms, notably bilateral lower limb weakness, was achieved postoperatively. In summary, this case demonstrates the importance of considering alternative, less common pathologies that involve the cervical spinal cord when neurological improvement is not achieved following decompressive surgery for cervical myelopathy.


Asunto(s)
Malformaciones Vasculares del Sistema Nervioso Central , Médula Cervical , Enfermedades de la Médula Espinal , Humanos , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Malformaciones Vasculares del Sistema Nervioso Central/diagnóstico por imagen , Malformaciones Vasculares del Sistema Nervioso Central/cirugía , Discectomía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA