Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.253
Filtrar
1.
Biol Pharm Bull ; 47(9): 1467-1476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39218668

RESUMEN

Since its first discovery as a bioactive phospholipid inducing potent platelet aggregation, platelet-activating factor (PAF) has been shown to be involved in a wide variety of inflammatory and allergic disease states. Many pharmacological studies in the 1980s and 1990s also showed that PAF induces endothelium-dependent vascular relaxation and contraction of various smooth muscles (SMs), including those in the airway, gastrointestinal organs, and uterus. However, since the late 1990s, there have been few reports on the SM contractions induced by PAF. The lower urinary tract (LUT), particularly the urinary bladder (UB) has attracted recent attention in SM pharmacology research because patients with LUT dysfunctions including overactive bladder are increasing as the population ages. In addition, recent clinical studies have implicated the substantial role of PAF in the inflammatory state in LUT because its production increases with smoking and with cancer. However, the effects of PAF on mechanical activities of LUT SMs including UBSM have not been investigated to date. Recently, we found that PAF very strongly increased mechanical activities of UBSM in guinea pigs and mice, and partly elucidated the possible mechanisms underlying these actions of PAF. In this review, we describe the effects of PAF on LUT SMs by introducing our recent findings obtained in isolated UBSMs and discuss the physiological and pathophysiological significance. We also introduce our data showing the effects of PAF on the SM mechanical activities of genital tissues (prostate and vas deferens).


Asunto(s)
Contracción Muscular , Músculo Liso , Factor de Activación Plaquetaria , Factor de Activación Plaquetaria/farmacología , Factor de Activación Plaquetaria/metabolismo , Animales , Humanos , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Músculo Liso/metabolismo , Contracción Muscular/efectos de los fármacos , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Vejiga Urinaria/fisiología , Masculino , Femenino
2.
Physiol Rep ; 12(17): e70026, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39245804

RESUMEN

Pulmonary surfactant serves as a barrier to respiratory epithelium but can also regulate airway smooth muscle (ASM) tone. Surfactant (SF) relaxes contracted ASM, similar to ß2-agonists, anticholinergics, nitric oxide, and prostanoids. The exact mechanism of surfactant relaxation and whether surfactant relaxes hyperresponsive ASM remains unknown. Based on previous research, relaxation requires an intact epithelium and prostanoid synthesis. We sought to examine the mechanisms by which surfactant causes ASM relaxation. Organ bath measurements of isometric tension of ASM of guinea pigs in response to exogenous surfactant revealed that surfactant reduces tension of healthy and hyperresponsive tracheal tissue. The relaxant effect of surfactant was reduced if prostanoid synthesis was inhibited and/or if prostaglandin E2-related EP2 receptors were antagonized. Atomic force microscopy revealed that human ASM cells stiffen during contraction and soften during relaxation. Surfactant softened ASM cells, similarly to the known bronchodilator prostaglandin E2 (PGE2) and the cell softening was abolished when EP4 receptors for PGE2 were antagonized. Elevated levels of PGE2 were found in cultures of normal human bronchial epithelial cells exposed to pulmonary surfactant. We conclude that prostaglandin E2 and its EP2 and EP4 receptors are likely involved in the relaxant effect of pulmonary surfactant in airways.


Asunto(s)
Dinoprostona , Relajación Muscular , Músculo Liso , Surfactantes Pulmonares , Tráquea , Cobayas , Animales , Humanos , Masculino , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Músculo Liso/metabolismo , Relajación Muscular/efectos de los fármacos , Dinoprostona/farmacología , Dinoprostona/metabolismo , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacología , Tráquea/efectos de los fármacos , Tráquea/fisiología , Tráquea/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Células Cultivadas , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo
3.
PLoS One ; 19(8): e0307932, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39116057

RESUMEN

Determining the female animal cycle is crucial in preclinical studies and animal husbandry. Changes in hormone levels during the cycle affect physiological responses, including altered contractility of the visceral smooth muscle. The study aimed to identify estrus and anestrus using smooth muscle electromyographic (SMEMG) measurements, in vivo fluorescent imaging (IVIS) and in vitro organ contractility of the uterus and cecum. The study involved sexually mature female Sprague-Dawley rats, aged 10-12 weeks. The rats received a daily injection of cetrorelix acetate solution for 7 days, while another group served as the control. The animals were subjected to gastrointestinal and myometrial SMEMG. The change in αvß3 integrin activity was measured with IVIS in the abdominal cavity. Contractility studies were performed in isolated organ baths using dissected uterus and cecum samples. Plasma samples were collected for hormone level measurements. A 3-fold increase in spontaneous contraction activity was detected in SMEMG measurements, while a significant decrease in αvß3 integrin was measured in the IVIS imaging procedure. Cetrorelix reduced the level of LH and the progesterone / estradiol ratio, increased the spontaneous activity of the cecum rings, and enhanced KCl-evoked contractions in the uterus. We found a significant change in the rate of SMEMG signals, indicating simultaneous increases in the contraction of the cecum and the non-pregnant uterus, as evidenced by isolated organ bath results. Fluorescence imaging showed high levels of uterine αvß3 integrin during the proestrus-estrus phase, but inhibiting the sexual cycle reduced fluorescence activity. Based on the results, the SMEMG and IVIS imaging methods are suitable for detecting estrus phase alterations in rats.


Asunto(s)
Electromiografía , Ciclo Estral , Ratas Sprague-Dawley , Animales , Femenino , Ratas , Ciclo Estral/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Progesterona/sangre , Contracción Muscular/efectos de los fármacos , Estro/fisiología , Útero/fisiología , Útero/efectos de los fármacos , Ciego/efectos de los fármacos , Integrina alfaVbeta3/metabolismo , Estradiol/sangre , Estradiol/análogos & derivados
4.
Comput Biol Med ; 181: 109035, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39213708

RESUMEN

The stomach, a central organ in the Gastrointestinal (GI) tract, regulates the processing of ingested food through gastric motility and emptying. Understanding the stomach function is crucial for treating gastric disorders. Experimental studies in this field often face difficulties due to limitations and invasiveness of available techniques and ethical concerns. To counter this, researchers resort to computational and numerical methods. However, existing computational studies often isolate one aspect of the stomach function while neglecting the rest and employ computationally expensive methods. This paper proposes a novel cost-efficient multi-compartmental model, offering a comprehensive insight into gastric function at an organ level, thus presenting a promising alternative. The proposed approach divides the spatial geometry of the stomach into four compartments: Proximal/Middle/Terminal antrum and Pyloric sphincter. Each compartment is characterized by a set of ordinary differential equations (ODEs) with respect to time to characterize the stomach function. Electrophysiology is represented by simplified equations reflecting the "slow wave behavior" of Interstitial Cells of Cajal (ICC) and Smooth Muscle Cells (SMC) in the stomach wall. An electro-mechanical coupling model translates SMC "slow waves" into smooth muscle contractions. Muscle contractions induce peristalsis, affecting gastric fluid flow velocity and subsequent emptying when the pyloric sphincter is open. Contraction of the pyloric sphincter initiates a retrograde flow jet at the terminal antrum, modeled by a circular liquid jet flow equation. The results from the proposed model for a healthy human stomach were compared with experimental and computational studies on electrophysiology, muscle tissue mechanics, and fluid behavior during gastric emptying. These findings revealed that each "ICC" slow wave corresponded to a muscle contraction due to electro-mechanical coupling behavior. The rate of gastric emptying and mixing efficiency decreased with increasing viscosity of gastric liquid but remained relatively unchanged with gastric liquid density variations. Utilizing different ODE solvers in MATLAB, the model was solved, with ode15s demonstrating the fastest computation time, simulating 180 s of real-time stomach response in just 2.7 s. This multi-compartmental model signifies a promising advancement in understanding gastric function, providing a cost-effective and comprehensive approach to study complex interactions within the stomach and test innovative therapies like neuromodulation for treating gastric disorders.


Asunto(s)
Vaciamiento Gástrico , Modelos Biológicos , Estómago , Humanos , Vaciamiento Gástrico/fisiología , Estómago/fisiología , Músculo Liso/fisiología , Contracción Muscular/fisiología , Motilidad Gastrointestinal/fisiología , Células Intersticiales de Cajal/fisiología , Simulación por Computador
5.
Exp Physiol ; 109(9): 1545-1556, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38979869

RESUMEN

Gut motility undergoes a switch from myogenic to neurogenic control in late embryonic development. Here, we report on the electrical events that underlie this transition in the enteric nervous system, using the GCaMP6f reporter in neural crest cell derivatives. We found that spontaneous calcium activity is tetrodotoxin (TTX) resistant at stage E11.5, but not at E18.5. Motility at E18.5 was characterized by periodic, alternating high- and low-frequency contractions of the circular smooth muscle; this frequency modulation was inhibited by TTX. Calcium imaging at the neurogenic-motility stages E18.5-P3 showed that CaV1.2-positive neurons exhibited spontaneous calcium activity, which was inhibited by nicardipine and 2-aminoethoxydiphenyl borate (2-APB). Our protocol locally prevented muscle tone relaxation, arguing for a direct effect of nicardipine on enteric neurons, rather than indirectly by its relaxing effect on muscle. We demonstrated that the ENS was mechanosensitive from early stages on (E14.5) and that this behaviour was TTX and 2-APB resistant. We extended our results on L-type channel-dependent spontaneous activity and TTX-resistant mechanosensitivity to the adult colon. Our results shed light on the critical transition from myogenic to neurogenic motility in the developing gut, as well as on the intriguing pathways mediating electro-mechanical sensitivity in the enteric nervous system. HIGHLIGHTS: What is the central question of this study? What are the first neural electric events underlying the transition from myogenic to neurogenic motility in the developing gut, what channels do they depend on, and does the enteric nervous system already exhibit mechanosensitivity? What is the main finding and its importance? ENS calcium activity is sensitive to tetrodotoxin at stage E18.5 but not E11.5. Spontaneous electric activity at fetal and adult stages is crucially dependent on L-type calcium channels and IP3R receptors, and the enteric nervous system exhibits a tetrodotoxin-resistant mechanosensitive response. Abstract figure legend Tetrodotoxin-resistant Ca2+ rise induced by mechanical stimulation in the E18.5 mouse duodenum.


Asunto(s)
Canales de Calcio Tipo L , Calcio , Sistema Nervioso Entérico , Motilidad Gastrointestinal , Neuronas , Tetrodotoxina , Animales , Canales de Calcio Tipo L/metabolismo , Tetrodotoxina/farmacología , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/fisiología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Motilidad Gastrointestinal/efectos de los fármacos , Motilidad Gastrointestinal/fisiología , Calcio/metabolismo , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Músculo Liso/fisiología , Ratones Endogámicos C57BL , Bloqueadores de los Canales de Calcio/farmacología , Femenino , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Nicardipino/farmacología , Compuestos de Boro
6.
Pflugers Arch ; 476(8): 1263-1277, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963545

RESUMEN

6-Cyanodopamine is a novel catecholamine released from rabbit isolated heart. However, it is not known whether this catecholamine presents any biological activity. Here, it was evaluated whether 6-cyanodopamine (6-CYD) is released from rat vas deferens and its effect on this tissue contractility. Basal release of 6-CYD, 6-nitrodopamine (6-ND), 6-bromodopamine, 6-nitrodopa, and 6-nitroadrenaline from vas deferens were quantified by LC-MS/MS. Electric-field stimulation (EFS) and concentration-response curves to noradrenaline, adrenaline, and dopamine of the rat isolated epididymal vas deferens (RIEVD) were performed in the absence and presence of 6-CYD and /or 6-ND. Expression of tyrosine hydroxylase was assessed by immunohistochemistry. The rat isolated vas deferens released significant amounts of both 6-CYD and 6-ND. The voltage-gated sodium channel blocker tetrodotoxin had no effect on the release of 6-CYD, but it virtually abolished 6-ND release. 6-CYD alone exhibited a negligible RIEVD contractile activity; however, at 10 nM, 6-CYD significantly potentiated the noradrenaline- and EFS-induced RIEVD contractions, whereas at 10 and 100 nM, it also significantly potentiated the adrenaline- and dopamine-induced contractions. The potentiation of noradrenaline- and adrenaline-induced contractions by 6-CYD was unaffected by tetrodotoxin. Co-incubation of 6-CYD (100 pM) with 6-ND (10 pM) caused a significant leftward shift and increased the maximal contractile responses to noradrenaline, even in the presence of tetrodotoxin. Immunohistochemistry revealed the presence of tyrosine hydroxylase in both epithelial cell cytoplasm of the mucosae and nerve fibers of RIEVD. The identification of epithelium-derived 6-CYD and its remarkable synergism with catecholamines indicate that epithelial cells may regulate vas deferens smooth muscle contractility.


Asunto(s)
Dopamina , Contracción Muscular , Conducto Deferente , Masculino , Animales , Conducto Deferente/efectos de los fármacos , Conducto Deferente/metabolismo , Conducto Deferente/fisiología , Contracción Muscular/efectos de los fármacos , Ratas , Dopamina/metabolismo , Dopamina/farmacología , Ratas Wistar , Norepinefrina/farmacología , Norepinefrina/metabolismo , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Músculo Liso/fisiología , Estimulación Eléctrica , Epinefrina/farmacología , Tirosina 3-Monooxigenasa/metabolismo
7.
J Physiol ; 602(15): 3693-3713, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970617

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel that is gated by the pungent constituent of red chili pepper, capsaicin, and by related chemicals from the group of vanilloids, in addition to noxious heat. It is expressed mostly in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Although TRPV1 is also found outside the sensory nervous system, its expression and function in the bladder detrusor smooth muscle (DSM) remain controversial. Here, by using Ca2+ imaging and patch clamp on isolated rat DSM cells, in addition to tensiometry on multicellular DSM strips, we show that TRPV1 is expressed functionally in only a fraction of DSM cells, in which it acts as an endoplasmic reticulum Ca2+-release channel responsible for the capsaicin-activated [Ca2+]i rise. Carbachol-stimulated contractions of multicellular DSM strips contain a TRPV1-dependent component, which is negligible in the circular DSM but reaches ≤50% in the longitudinal DSM. Activation of TRPV1 in rat DSM during muscarinic cholinergic stimulation is ensured by phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists. Immunofluorescence detection of TRPV1 protein in bladder sections and isolated DSM cells confirmed both its preferential expression in the longitudinal DSM sublayer and its targeting to the endoplasmic reticulum. We conclude that TRPV1 is an essential contributor to the cholinergic contraction of bladder longitudinal DSM, which might be important for producing spatial and/or temporal anisotropy of bladder wall deformation in different regions during parasympathetic stimulation. KEY POINTS: The transient receptor potential vanilloid 1 (TRPV1) heat/capsaicin receptor/channel is localized in the endoplasmic reticulum membrane of detrusor smooth muscle (DSM) cells of the rat bladder, operating as a calcium-release channel. Isolated DSM cells are separated into two nearly equal groups, within which the cells either show or do not show TRPV1-dependent [Ca2+]i rise. Carbachol-stimulated, muscarinic ACh receptor-mediated contractions of multicellular DSM strips contain a TRPV1-dependent component. This component is negligible in the circular DSM but reaches ≤50% in longitudinal DSM. Activation of TRPV1 in rat DSM during cholinergic stimulation involves phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists.


Asunto(s)
Contracción Muscular , Músculo Liso , Canales Catiónicos TRPV , Vejiga Urinaria , Animales , Canales Catiónicos TRPV/metabolismo , Vejiga Urinaria/fisiología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Contracción Muscular/fisiología , Músculo Liso/fisiología , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Ratas , Masculino , Carbacol/farmacología , Capsaicina/farmacología , Calcio/metabolismo , Ratas Sprague-Dawley , Ratas Wistar
8.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928511

RESUMEN

The influence of accelerated electrons on neuronal structures is scarcely explored compared to gamma and X-rays. This study aims to investigate the effects of accelerated electron radiation on some pivotal neurotransmitter circuits (cholinergic and serotonergic) of rats' myenteric plexus. Male Wistar rats were irradiated with an electron beam (9 MeV, 5 Gy) generated by a multimodality linear accelerator. The contractile activity of isolated smooth muscle samples from the gastric corpus was measured. Furthermore, an electrical stimulation (200 µs, 20 Hz, 50 s, 60 V) was performed on the samples and an assessment of the cholinergic and serotonergic circuits was made. Five days after irradiation, the recorded mechanical responses were biphasic-contraction/relaxation in controls and contraction/contraction in irradiated samples. The nature of the contractile phase of control samples was cholinergic with serotonin involvement. The relaxation phase involved ACh-induced nitric oxide release from gastric neurons. There was a significant increase in serotonergic involvement during the first and second contractile phases of the irradiated samples, along with a diminished role of acetylcholine in the first phase. This study demonstrates an increased involvement of serotonergic neurotransmitter circuits in the gastric myenteric plexus caused by radiation with accelerated electrons.


Asunto(s)
Electrones , Plexo Mientérico , Ratas Wistar , Estómago , Animales , Plexo Mientérico/efectos de la radiación , Plexo Mientérico/metabolismo , Masculino , Ratas , Estómago/inervación , Estómago/efectos de la radiación , Estómago/fisiología , Músculo Liso/fisiología , Músculo Liso/efectos de la radiación , Músculo Liso/metabolismo , Serotonina/metabolismo , Contracción Muscular/efectos de la radiación , Contracción Muscular/fisiología , Acetilcolina/metabolismo , Óxido Nítrico/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G254-G266, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38860855

RESUMEN

Rhythmic electrical events, termed slow waves, govern the timing and amplitude of phasic contractions of the gastric musculature. Extracellular multielectrode measurement of gastric slow waves can be a biomarker for phenotypes of motility dysfunction. However, a gastric slow-wave conduction pathway for the rat, a common animal model, is unestablished. In this study, the validity of extracellular recording was demonstrated in vitro with simultaneous intracellular and extracellular recordings and by pharmacological inhibition of slow waves. The conduction pathway was determined by in vivo extracellular recordings while considering the effect of motion. Slow-wave characteristics [means (SD)] varied regionally having higher amplitude in the antrum than the distal corpus [1.03 (0.12) mV vs. 0.75 (0.31) mV; n = 7; P = 0.025 paired t test] and faster propagation near the greater curvature than the lesser curvature [1.00 (0.14) mm·s-1 vs. 0.74 (0.14) mm·s-1; n = 9 GC, 7 LC; P = 0.003 unpaired t test]. Notably, in some subjects, separate wavefronts propagated near the lesser and greater curvatures with a loosely coupled region occurring in the area near the distal corpus midline at the interface of the two wavefronts. This region had either the greater or lesser curvature wavefront propagating through it in a time-varying manner. The conduction pattern suggests that slow waves in the rat stomach form annular wavefronts in the antrum and not the corpus. This study has implications for interpretation of the relationship between slow waves, the interstitial cells of Cajal network structure, smooth muscles, and gastric motility.NEW & NOTEWORTHY Mapping of rat gastric slow waves showed regional variations in their organization. In some subjects, separate wavefronts propagated near the lesser and greater curvatures with a loosely coupled region near the midline, between the wavefronts, having a varying slow-wave origin. Furthermore, simultaneous intracellular and extracellular recordings were concordant and independent of movement artifacts, indicating that extracellular recordings can be interpreted in terms of their intracellular counterparts when intracellular recording is not possible.


Asunto(s)
Motilidad Gastrointestinal , Músculo Liso , Ratas Sprague-Dawley , Estómago , Animales , Estómago/fisiología , Ratas , Motilidad Gastrointestinal/fisiología , Masculino , Músculo Liso/fisiología , Contracción Muscular/fisiología , Antro Pilórico/fisiología , Células Intersticiales de Cajal/fisiología
11.
Sci Rep ; 14(1): 11720, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778154

RESUMEN

We studied the inhibitory actions of docosahexaenoic acid (DHA) on the contractions induced by carbachol (CCh), angiotensin II (Ang II), and bradykinin (BK) in guinea pig (GP) gastric fundus smooth muscle (GFSM), particularly focusing on the possible inhibition of store-operated Ca2+ channels (SOCCs). DHA significantly suppressed the contractions induced by CCh, Ang II, and BK; the inhibition of BK-induced contractions was the strongest. Although all contractions were greatly dependent on external Ca2+, more than 80% of BK-induced contractions remained even in the presence of verapamil, a voltage-dependent Ca2+ channel inhibitor. BK-induced contractions in the presence of verapamil were not suppressed by LOE-908 (a receptor-operated Ca2+ channel (ROCC) inhibitor) but were suppressed by SKF-96365 (an SOCC and ROCC inhibitor). BK-induced contractions in the presence of verapamil plus LOE-908 were strongly inhibited by DHA. Furthermore, DHA inhibited GFSM contractions induced by cyclopiazonic acid (CPA) in the presence of verapamil plus LOE-908 and inhibited the intracellular Ca2+ increase due to Ca2+ addition in CPA-treated 293T cells. These findings indicate that Ca2+ influx through SOCCs plays a crucial role in BK-induced contraction in GP GFSM and that this inhibition by DHA is a new mechanism by which this fatty acid inhibits GFSM contractions.


Asunto(s)
Angiotensina II , Bradiquinina , Carbacol , Ácidos Docosahexaenoicos , Fundus Gástrico , Contracción Muscular , Músculo Liso , Animales , Cobayas , Ácidos Docosahexaenoicos/farmacología , Bradiquinina/farmacología , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Músculo Liso/metabolismo , Carbacol/farmacología , Contracción Muscular/efectos de los fármacos , Angiotensina II/farmacología , Fundus Gástrico/efectos de los fármacos , Fundus Gástrico/fisiología , Fundus Gástrico/metabolismo , Verapamilo/farmacología , Calcio/metabolismo , Masculino , Humanos , Canales de Calcio/metabolismo , Células HEK293 , Bloqueadores de los Canales de Calcio/farmacología , Imidazoles/farmacología
12.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R97-R108, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38780425

RESUMEN

The transitional epithelial cells (urothelium) that line the lumen of the urinary bladder form a barrier between potentially harmful pathogens, toxins, and other bladder contents and the inner layers of the bladder wall. The urothelium, however, is not simply a passive barrier, as it can produce signaling factors, such as ATP, nitric oxide, prostaglandins, and other prostanoids, that can modulate bladder function. We investigated whether substances produced by the urothelium could directly modulate the contractility of the underlying urinary bladder smooth muscle. Force was measured in isolated strips of mouse urinary bladder with the urothelium intact or denuded. Bladder strips developed spontaneous tone and phasic contractions. In urothelium-intact strips, basal tone, as well as the frequency and amplitude of phasic contractions, were 25%, 32%, and 338% higher than in urothelium-denuded strips, respectively. Basal tone and phasic contractility in urothelium-intact bladder strips were abolished by the cyclooxygenase (COX) inhibitor indomethacin (10 µM) or the voltage-dependent Ca2+ channel blocker diltiazem (50 µM), whereas blocking neuronal sodium channels with tetrodotoxin (1 µM) had no effect. These results suggest that prostanoids produced in the urothelium enhance smooth muscle tone and phasic contractions by activating voltage-dependent Ca2+ channels in the underlying bladder smooth muscle. We went on to demonstrate that blocking COX inhibits the generation of transient pressure events in isolated pressurized bladders and greatly attenuates the afferent nerve activity during bladder filling, suggesting that urothelial prostanoids may also play a role in sensory nerve signaling.NEW & NOTEWORTHY This paper provides evidence for the role of urothelial-derived prostanoids in maintaining tone in the urinary bladder during bladder filling, not only underscoring the role of the urothelium as more than a barrier but also contributing to active regulation of the urinary bladder. Furthermore, cyclooxygenase products greatly augment sensory nerve activity generated by bladder afferents during bladder filling and thus may play a role in perception of bladder fullness.


Asunto(s)
Ratones Endogámicos C57BL , Contracción Muscular , Músculo Liso , Prostaglandinas , Vejiga Urinaria , Urotelio , Animales , Vejiga Urinaria/inervación , Vejiga Urinaria/fisiología , Vejiga Urinaria/efectos de los fármacos , Urotelio/inervación , Urotelio/efectos de los fármacos , Urotelio/metabolismo , Urotelio/fisiología , Contracción Muscular/efectos de los fármacos , Prostaglandinas/metabolismo , Músculo Liso/efectos de los fármacos , Músculo Liso/inervación , Músculo Liso/fisiología , Músculo Liso/metabolismo , Ratones , Masculino , Neuronas Aferentes/fisiología , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Femenino
13.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G93-G104, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772901

RESUMEN

Few biomarkers support the diagnosis and treatment of disorders of gut-brain interaction (DGBI), although gastroduodenal junction (GDJ) electromechanical coupling is a target for novel interventions. Rhythmic "slow waves," generated by interstitial cells of Cajal (ICC), and myogenic "spikes" are bioelectrical mechanisms underpinning motility. In this study, simultaneous in vivo high-resolution electrophysiological and impedance planimetry measurements were paired with immunohistochemistry to elucidate GDJ electromechanical coupling. Following ethical approval, the GDJ of anaesthetized pigs (n = 12) was exposed. Anatomically specific, high-resolution electrode arrays (256 electrodes) were applied to the serosa. EndoFLIP catheters (16 electrodes; Medtronic, MN) were positioned luminally to estimate diameter. Postmortem tissue samples were stained with Masson's trichrome and Ano1 to quantify musculature and ICC. Electrical mapping captured slow waves (n = 512) and spikes (n = 1,071). Contractions paralleled electrical patterns. Localized slow waves and spikes preceded rhythmic contractions of the antrum and nonrhythmic contractions of the duodenum. Slow-wave and spike amplitudes were correlated in the antrum (r = 0.74, P < 0.001) and duodenum (r = 0.42, P < 0.001). Slow-wave and contractile amplitudes were correlated in the antrum (r = 0.48, P < 0.001) and duodenum (r = 0.35, P < 0.001). Distinct longitudinal and circular muscle layers of the antrum and duodenum had a total thickness of (2.8 ± 0.9) mm and (0.4 ± 0.1) mm, respectively. At the pylorus, muscle layers merged and thickened to (3.5 ± 1.6) mm. Pyloric myenteric ICC covered less area (1.5 ± 1.1%) compared with the antrum (4.2 ± 3.0%) and duodenum (5.3 ± 2.8%). Further characterization of electromechanical coupling and ICC biopsies may generate DGBI biomarkers.NEW & NOTEWORTHY This study applies electrical mapping, impedance planimetry, and histological techniques to the gastroduodenal junction to elucidate electromechanical coupling in vivo. Contractions of the terminal antrum and pyloric sphincter were associated with gastric slow waves. In the duodenum, bursts of spike activity triggered oscillating contractions. The relative sparsity of myenteric interstitial cells of Cajal in the pylorus, compared with the adjacent antrum and duodenum, is hypothesized to prevent coupling between antral and duodenal slow waves.


Asunto(s)
Duodeno , Motilidad Gastrointestinal , Células Intersticiales de Cajal , Animales , Duodeno/fisiología , Duodeno/inervación , Células Intersticiales de Cajal/fisiología , Porcinos , Motilidad Gastrointestinal/fisiología , Estómago/fisiología , Estómago/inervación , Femenino , Contracción Muscular/fisiología , Impedancia Eléctrica , Músculo Liso/fisiología
15.
Ann Biomed Eng ; 52(8): 2193-2202, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38619723

RESUMEN

Airway distensibility is defined as the ease whereby airways are dilating in response to inflating lung pressure. If measured swiftly and accurately, airway distensibility would be a useful readout to parse the various elements contributing to airway wall stiffening, such as smooth muscle contraction, surface tension, and airway remodeling. The goal of the present study was to develop a method for measuring airway distensibility in mice. Lungs of BALB/c and C57BL/6 mice from either sex were subjected to stepwise changes in pressure. At each pressure step, an oscillometric perturbation was used to measure the impedance spectrum, on which the constant-phase model was fitted to deduce a surrogate for airway caliber called Newtonian conductance (GN). The change in GN over the change in pressure was subsequently used as an index of airway distensibility. An additional group of mice was infused with methacholine to confirm that smooth muscle contraction changes airway distensibility. GN increased with increasing steps in pressure, suggesting that the extent to which this occurs can be used as an index of airway distensibility. Airway distensibility was greater in BALB/c than C57BL/6 mice, and its variation by sex was mouse strain dependent, being greater in female than male in BALB/c mice with an inverse trend in C57BL/6 mice. Airway distensibility was also decreased by methacholine. This novel method swiftly measures airway distensibility in mice. Airway distensibility was also shown to vary with sex and mouse strain and to be sensitive to the contraction of smooth muscle.


Asunto(s)
Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Animales , Ratones , Femenino , Masculino , Pulmón/fisiología , Cloruro de Metacolina/farmacología , Músculo Liso/fisiología
16.
Respir Physiol Neurobiol ; 325: 104264, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38599345

RESUMEN

Eight pig tracheal strips were stimulated to contract with log increments of methacholine from 10-8 to 10-5 M. For each strip, the concentration-response was repeated four times in a randomized order to measure isometric force, isotonic shortening against a load corresponding to either 5 or 10 % of a reference force, and average force, stiffness, elastance and resistance over one cycle while the strip length was oscillating sinusoidally by 5 % at 0.2 Hz. For each readout, the logEC50 was calculated and compared. Isotonic shortening with a 5 % load had the lowest logEC50 (-7.13), yielding a greater sensitivity than any other contractile readout (p<0.05). It was followed by isotonic shortening with a 10 % load (-6.66), elastance (-6.46), stiffness (-6.46), resistance (-6.38), isometric force (-6.32), and average force (-6.30). Some of these differences were significant. For example, the EC50 with the average force was 44 % greater than with the elastance (p=0.001). The methacholine sensitivity is thus affected by the contractile readout being measured.


Asunto(s)
Broncoconstrictores , Cloruro de Metacolina , Músculo Liso , Tráquea , Animales , Músculo Liso/fisiología , Músculo Liso/efectos de los fármacos , Cloruro de Metacolina/farmacología , Porcinos , Tráquea/fisiología , Tráquea/efectos de los fármacos , Broncoconstrictores/farmacología , Contracción Muscular/fisiología , Contracción Muscular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Elasticidad/fisiología , Contracción Isométrica/fisiología , Contracción Isométrica/efectos de los fármacos
17.
Methods Mol Biol ; 2757: 315-359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38668975

RESUMEN

Unlike in the Cnidaria, where muscle cells are coupled together into an epithelium, ctenophore muscles are single, elongated, intramesogleal structures resembling vertebrate smooth muscle. Under voltage-clamp, these fibers can be separated into different classes with different sets of membrane ion channels. The ion channel makeup is related to the muscle's anatomical position and specific function. For example, Beroe ovata radial fibers, which are responsible for maintaining the rigidity of the body wall, generate sequences of brief action potentials whereas longitudinal fibers, which are concerned with mouth opening and body flexions, often produce single longer duration action potentials.Beroe muscle contractions depend on the influx of Ca2+. During an action potential the inward current is carried by Ca2+, and the increase in intracellular Ca2+ concentration generated can be monitored in FLUO-3-loaded cells. Confocal microscopy in line scan mode shows that the Ca2+ spreads from the outer membrane into the core of the fiber and is cleared from there relatively slowly. The rise in intracellular Ca2+ is linked to an increase in a Ca2+-activated K+ conductance (KCa), which can also be elicited by iontophoretic Ca2+ injection. Near the cell membrane, Ca2+ clearance monitored using FLUO3, matches the decline in the KCa conductance. For light loads, Ca2+ is cleared rapidly, but this fast system is insufficient when Ca2+ influx is maintained. Action potential frequency may be regulated by the slowly developing KCa conductance.


Asunto(s)
Calcio , Ctenóforos , Músculo Liso , Animales , Músculo Liso/fisiología , Músculo Liso/metabolismo , Calcio/metabolismo , Ctenóforos/fisiología , Técnicas de Placa-Clamp/métodos , Potenciales de Acción/fisiología , Contracción Muscular/fisiología , Fenómenos Electrofisiológicos , Electrofisiología/métodos , Microscopía Confocal
18.
J Physiol Sci ; 74(1): 26, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654149

RESUMEN

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer. Exogenous application of ATP (10-100 µM) evoked relaxation of the esophageal smooth muscle in a longitudinal direction under the condition of carbachol (1 µM) -induced precontraction. Pretreatment with a non-selective P2 receptor antagonist, suramin (500 µM), and a P2Y receptor antagonist, cibacron blue F3GA (200 µM), inhibited the ATP (100 µM) -induced relaxation, but a P2X receptor antagonist, pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (50 µM), did not affect it. A blocker of ATP-dependent potassium channels (KATP channels), glibenclamide (200 µM), inhibited the ATP-induced relaxation and application of an opener of KATP channels, nicorandil (50 µM), produced relaxation. The findings suggest that ATP is involved in inhibitory regulation of the longitudinal smooth muscle in the muscularis mucosae of the rat esophagus via activation of P2Y receptors and then opening of KATP channels.


Asunto(s)
Adenosina Trifosfato , Esófago , Canales KATP , Músculo Liso , Receptores Purinérgicos P2Y , Animales , Ratas , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Músculo Liso/metabolismo , Masculino , Receptores Purinérgicos P2Y/metabolismo , Esófago/efectos de los fármacos , Esófago/fisiología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Canales KATP/metabolismo , Relajación Muscular/efectos de los fármacos , Relajación Muscular/fisiología , Ratas Wistar , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Motilidad Gastrointestinal/fisiología , Ratas Sprague-Dawley
19.
Commun Biol ; 7(1): 151, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317010

RESUMEN

Maintenance of fecal continence requires a continuous or basal tone of the internal anal sphincter (IAS). Paradoxically, the basal tone results largely from high-frequency rhythmic contractions of the IAS smooth muscle. However, the cellular and molecular mechanisms that initiate these contractions remain elusive. Here we show that the IAS contains multiple pacemakers. These pacemakers spontaneously generate propagating calcium waves that drive rhythmic contractions and establish the basal tone. These waves are myogenic and act independently of nerve, paracrine or autocrine signals. Using cell-specific gene knockout mice, we further found that TMEM16A Cl- channels in smooth muscle cells (but not in the interstitial cells of Cajal) are indispensable for pacemaking, rhythmic contractions, and basal tone. Our results identify TMEM16A in smooth muscle cells as a critical pacemaker channel that enables the IAS to contract rhythmically and continuously. This study provides cellular and molecular insights into fecal continence.


Asunto(s)
Canal Anal , Anoctamina-1 , Contracción Muscular , Animales , Ratones , Canal Anal/inervación , Canal Anal/fisiología , Contracción Muscular/fisiología , Músculo Liso/fisiología , Miocitos del Músculo Liso , Anoctamina-1/fisiología
20.
Pflugers Arch ; 476(5): 809-820, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38421408

RESUMEN

Parathyroid hormone-related protein (PTHrP) released from detrusor smooth muscle (DSM) cells upon bladder distension attenuates spontaneous phasic contractions (SPCs) in DSM and associated afferent firing to facilitate urine storage. Here, we investigate the mechanisms underlying PTHrP-induced inhibition of SPCs, focusing on large-conductance Ca2+-activated K+ channels (BK channels) that play a central role in stabilizing DSM excitability. Perforated patch-clamp techniques were applied to DSM cells of the rat bladder dispersed using collagenase. Isometric tension changes were recorded from DSM strips, while intracellular Ca2+ dynamics were visualized using Cal520 AM -loaded DSM bundles. DSM cells developed spontaneous transient outward potassium currents (STOCs) arising from the opening of BK channels. PTHrP (10 nM) increased the frequency of STOCs without affecting their amplitude at a holding potential of - 30 mV but not - 40 mV. PTHrP enlarged depolarization-induced, BK-mediated outward currents at membrane potentials positive to + 20 mV in a manner sensitive to iberiotoxin (100 nM), the BK channel blocker. The PTHrP-induced increases in BK currents were also prevented by inhibitors of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (CPA 10 µM), L-type voltage-dependent Ca2+ channel (LVDCC) (nifedipine 3 µM) or adenylyl cyclase (SQ22536 100 µM). PTHrP had no effect on depolarization-induced LVDCC currents. PTHrP suppressed and slowed SPCs in an iberiotoxin (100 nM)-sensitive manner. PTHrP also reduced the number of Ca2+ spikes during each burst of spontaneous Ca2+ transients. In conclusion, PTHrP accelerates STOCs discharge presumably by facilitating SR Ca2+ release which prematurely terminates Ca2+ transient bursts resulting in the attenuation of SPCs.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio , Contracción Muscular , Músculo Liso , Proteína Relacionada con la Hormona Paratiroidea , Vejiga Urinaria , Animales , Ratas , Vejiga Urinaria/metabolismo , Vejiga Urinaria/fisiología , Vejiga Urinaria/efectos de los fármacos , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso/metabolismo , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Ratas Sprague-Dawley , Masculino , Calcio/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA