RESUMEN
Cardiotoxins (CaTxs) are a group of snake toxins that affect the cardiovascular system (CVS). Two types (S and P) of CaTxs are known, but the exact differences in the effects of these types on CVS have not been thoroughly studied. We investigated cellular mechanisms of action on CVS for Naja oxiana cobra CaTxs CTX-1 (S-type) and CTX-2 (P-type) focusing on the papillary muscle (PM) contractility and contraction of aortic rings (AR) supplemented by pharmacological analysis. It was found that CTX-1 and CTX-2 exerted dose-dependent effects manifested in PM contracture and AR contraction. CTX-2 impaired functions of PM and AR more strongly than CTX-1. Effects of CaTxs on PM were significantly reduced by nifedipine, an L-type Ca2+ channel blocker, and by KB-R7943, an inhibitor of reverse-mode Na+/Ca2+ exchange. Furthermore, 2-aminoethoxydiphenyl borate, an inhibitor of store-operated calcium entry, partially restored PM contractility damaged by CaTxs. The CaTx influence on AR contracture was significantly reduced by nifedipine and KB-R7943. The involvement of reverse-mode Na+/Ca2+ exchange in the effect of CaTxs on the rat aorta was shown for the first time. The results obtained indicate that CaTx effects on CVS are mainly associated with disturbance of transporting systems responsible for the Ca2+ influx.
Asunto(s)
Aorta/efectos de los fármacos , Cardiotoxinas/farmacología , Venenos Elapídicos , Naja naja , Músculos Papilares/efectos de los fármacos , Animales , Aorta/fisiología , Masculino , Contracción Muscular/efectos de los fármacos , Músculos Papilares/fisiología , Ratas Wistar , Vasoconstricción/efectos de los fármacosRESUMEN
Force enhancement is one kind of myogenic spontaneous fasciculation in lengthening preload striated muscles. In cardiac muscle, the role of this biomechanical event is not well established. The physiological passive property is an essential part for maintaining normal diastole in the heart. In excessive preload heart, force enhancement relative erratic passive properties may cause muscle decompensating, implicate in the development of diastolic dysfunction. In this study, the force enhancement occurrence in mouse cardiac papillary muscle was evaluated by a microstepping stretch method. The intracellular Ca2+ redistribution during occurrence of force enhancement was monitored in real-time by a Flou-3 (2 mM) indicator. The force enhancement amplitude, the enhancement of the prolongation time, and the tension-time integral were analyzed by myography. The results indicated that the force enhancement occurred immediately after active stretching and was rapidly enhanced during sustained static stretch. The presence of the force and the increase in the amplitude synchronized with the acquisition and immediate transfer of Ca2+ to adjacent fibres. In highly preloaded fibres, the enhancement exceeded the maximum passive tension (from 4.49 ± 0.43 N/mm2 to 6.20 ± 0.51 N/mm2). The occurrence of force enhancement were unstable in each static stretch. The increased enhancement amplitude combined with the reduced prolongation time to induce a reduction in the tension-time integral. We concluded that intracellular Ca2+-synchronized force enhancement is one kind of interruption event in excessive preload cardiac muscle. During the cardiac muscle in its passive relaxation period, the occurrence of this interruption affected the rhythmic stability of the cardiac relaxation cycle.
Asunto(s)
Venenos de Cnidarios/farmacología , Fasciculación/patología , Músculos Papilares/patología , Animales , Fenómenos Biomecánicos , Calcio/metabolismo , Fasciculación/metabolismo , Fasciculación/fisiopatología , Masculino , Ratones , Contracción Miocárdica , Músculos Papilares/efectos de los fármacos , Músculos Papilares/metabolismo , Músculos Papilares/fisiopatologíaRESUMEN
Subchronic intoxication was induced in outbred male rats by repeated intraperitoneal injections with lead oxide (PbO) and/or cadmium oxide (CdO) nanoparticles (NPs) 3 times a week during 6 weeks for the purpose of examining its effects on the contractile characteristics of isolated right ventricle trabeculae and papillary muscles in isometric and afterload contractions. Isolated and combined intoxication with these NPs was observed to reduce the mechanical work produced by both types of myocardial preparation. Using the in vitro motility assay, we showed that the sliding velocity of regulated thin filaments drops under both isolated and combined intoxication with CdO-NP and PbO-NP. These results correlate with a shift in the expression of myosin heavy chain (MHC) isoforms towards slowly cycling ß-MHC. The type of CdO-NP + PbO-NP combined cardiotoxicity depends on the effect of the toxic impact, the extent of this effect, the ratio of toxicant doses, and the degree of stretching of cardiomyocytes and muscle type studied. Some indices of combined Pb-NP and CdO-NP cardiotoxicity and general toxicity (genotoxicity included) became fully or partly normalized if intoxication developed against background administration of a bioprotective complex.
Asunto(s)
Compuestos de Cadmio/toxicidad , Corazón/efectos de los fármacos , Plomo/toxicidad , Nanopartículas del Metal/toxicidad , Nanotecnología/métodos , Óxidos/toxicidad , Músculos Papilares/efectos de los fármacos , Animales , Cardiotoxicidad , Fragmentación del ADN , Inyecciones Intraperitoneales , Masculino , Miocardio/metabolismo , Miocardio/patología , Cadenas Pesadas de Miosina , Miosinas/química , Isoformas de Proteínas , Ratas , Pruebas de Toxicidad SubcrónicaRESUMEN
Myocardial mitochondrial function and biogenesis are suppressed in diabetes, but the mechanisms are unclear. Increasing evidence suggests that asymmetric dimethylarginine (ADMA) is associated with diabetic cardiovascular complications. This study was to determine whether endogenous ADMA accumulation contributes to cardiac and mitochondrial dysfunctions of diabetic rats and elucidate the potential mechanisms. Diabetic rat was induced by single intraperitoneal injection of streptozotocin (50 mg/kg). N-acetylcysteine was given (250 mg/kg/d) by gavage for 12w. Cardiac function was detected by echocardiography. Left ventricle papillary muscles were isolated to examine myocardial contractility. Myocardial ATP and mitochondrial DNA contents were measured to evaluate mitochondrial function and biogenesis. Endogenous ADMA accumulation was augmented resulting in decreased nitric oxide (NO) production and increased oxidative stress, suggesting NO synthase (NOS) uncoupling in the myocardium of T1DM rats compared with control rats. ADMA augmentation was associated with cardiac and mitochondrial dysfunctions along with myocardial uncoupling protein-2 (UCP2) upregulation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) downregulation in T1DM rats. Exogenous ADMA could directly inhibit myocardial contractility, mitochondrial function and biogenesis in parallel with decreasing NO content and PGC-1α expression while increasing oxidative stress and UCP2 expression in papillary muscles and cardiomyocytes. Treatment with antioxidant N-acetylcysteine, also an inhibitor of NOS uncoupling, either ameliorated ADMA-associated cardiac and mitochondrial dysfunctions or reversed ADMA-induced NO reduction and oxidative stress enhance in vivo and in vitro. These results indicate that myocardial ADMA accumulation precipitates cardiac and mitochondrial dysfunctions in T1DM rats. The underlying mechanism may be related to NOS uncoupling, resulting in NO reduction and oxidative stress increment, ultimate PGC-1α down-regulation and UCP2 up-regulation.
Asunto(s)
Arginina/análogos & derivados , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Cardiopatías/metabolismo , Mitocondrias/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Animales , Arginina/metabolismo , Glucemia/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Glicosilación/efectos de los fármacos , Resistencia a la Insulina , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Músculos Papilares/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , EstreptozocinaRESUMEN
Morbidity and mortality associated with heart disease is a growing threat to the global population, and novel therapies are needed. Mavacamten (formerly called MYK-461) is a small molecule that binds to cardiac myosin and inhibits myosin ATPase. Mavacamten is currently in clinical trials for the treatment of obstructive hypertrophic cardiomyopathy (HCM), and it may provide benefits for treating other forms of heart disease. We investigated the effect of mavacamten on cardiac muscle contraction in two transgenic mouse lines expressing the human isoform of cardiac myosin regulatory light chain (RLC) in their hearts. Control mice expressed wild-type RLC (WT-RLC), and HCM mice expressed the N47K RLC mutation. In the absence of mavacamten, skinned papillary muscle strips from WT-RLC mice produced greater isometric force than strips from N47K mice. Adding 0.3 µM mavacamten decreased maximal isometric force and reduced Ca2+ sensitivity of contraction for both genotypes, but this reduction in pCa50 was nearly twice as large for WT-RLC versus N47K. We also used stochastic length-perturbation analysis to characterize cross-bridge kinetics. The cross-bridge detachment rate was measured as a function of [MgATP] to determine the effect of mavacamten on myosin nucleotide handling rates. Mavacamten increased the MgADP release and MgATP binding rates for both genotypes, thereby contributing to faster cross-bridge detachment, which could speed up myocardial relaxation during diastole. Our data suggest that mavacamten reduces isometric tension and Ca2+ sensitivity of contraction via decreased strong cross-bridge binding. Mavacamten may become a useful therapy for patients with heart disease, including some forms of HCM.NEW & NOTEWORTHY Mavacamten is a pharmaceutical that binds to myosin, and it is under investigation as a therapy for some forms of heart disease. We show that mavacamten reduces isometric tension and Ca2+ sensitivity of contraction in skinned myocardial strips from a mouse model of hypertrophic cardiomyopathy that expresses the N47K mutation in cardiac myosin regulatory light chain. Mavacamten reduces contractility by decreasing strong cross-bridge binding, partially due to faster cross-bridge nucleotide handling rates that speed up myosin detachment.
Asunto(s)
Bencilaminas/farmacología , Señalización del Calcio/efectos de los fármacos , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Contracción Miocárdica/efectos de los fármacos , Cadenas Ligeras de Miosina/metabolismo , Músculos Papilares/efectos de los fármacos , Uracilo/análogos & derivados , Miosinas Ventriculares/antagonistas & inhibidores , Animales , Cardiomiopatía Hipertrófica/enzimología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Modelos Animales de Enfermedad , Humanos , Cinética , Masculino , Ratones Transgénicos , Mutación , Cadenas Ligeras de Miosina/genética , Músculos Papilares/enzimología , Músculos Papilares/fisiopatología , Uracilo/farmacología , Miosinas Ventriculares/metabolismoRESUMEN
Previously, we have shown that an increased cGMP-activated protein Kinase (PKG) activity after phosphodiesterase 5 (PDE5) inhibition by Sildenafil (SIL), leads to myocardial Na+/H+ exchanger (NHE1) inhibition preserving its basal homeostatic function. Since NHE1 is hyperactive in the hypertrophied myocardium of spontaneous hypertensive rats (SHR), while its inhibition was shown to prevent and revert this pathology, the current study was aimed to evaluate the potential antihypertrophic effect of SIL on adult SHR myocardium. We initially tested the inhibitory capability of SIL on NHE1 in isolated cardiomyocytes of SHR by comparing H+ efflux during the recovery from an acid load. After confirmed that effect, eight-month-old SHR were chronically treated for one month with SIL through drinking water. Compared to their littermate controls, SIL-treated rats presented a decreased NHE1 activity, which correlated with a reduction in its phosphorylation level assigned to activation of a PKG-p38 MAP kinase-PP2A signaling pathway. Moreover, treated animals showed a decreased oxidative stress that appears to be a consequence of a decreased mitochondrial NHE1 phosphorylation. Treated SHR showed a significant reduction in the pro-hypertrophic phosphatase calcineurin, despite slight tendency to decrease hypertrophy was detected. When SIL treatment was prolonged to three months, a significant decrease in myocardial hypertrophy and interstitial fibrosis that correlated with a lower myocardial stiffness was observed. In conclusion, the current study provides evidence concerning the ability of SIL to revert established cardiac hypertrophy in SHR, a clinically relevant animal model that resembles human essential hypertension.
Asunto(s)
Cardiomegalia/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Músculos Papilares/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Citrato de Sildenafil/farmacología , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Animales , Cardiomegalia/enzimología , Cardiomegalia/etiología , Cardiomegalia/fisiopatología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Fibrosis , Hipertensión/complicaciones , Masculino , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Músculos Papilares/enzimología , Músculos Papilares/fisiopatología , Fosforilación , Proteína Fosfatasa 2/metabolismo , Ratas Endogámicas SHR , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Cannabis use is associated with cardiovascular adverse effects ranging from arrhythmias to sudden cardiac death. The exact mechanism of action behind these activities is unknown. The aim of our work was to study the effect of cannabidiol (CBD), tetrahydrocannabinol and 11-nor-9-carboxy-tetrahydrocannabinol on cellular cardiac electrophysiological properties including ECG parameters, action potentials, hERG and IKr ion channels in HEK cell line and in rabbit and guinea pig cardiac preparations. CBD increased action potential duration in rabbit and guinea pig right ventricular papillary muscle at lower concentrations (1 µM, 2.5 µM and 5 µM) but did not significantly change it at 10 µM. CBD at high concentration (10 µM) decreased inward late sodium and L-type calcium currents as well. CBD inhibited hERG potassium channels with an IC50 value of 2.07 µM at room temperature and delayed rectifier potassium current with 6.5 µM at 37 °C, respectively. The frequency corrected QT interval (QTc) was significantly lengthened in anaesthetized guinea pig without significantly changing other ECG parameters. Although the IC50 value of CBD was higher than literary Cmax values after CBD smoking and oral intake, our results raise the possibility that hERG and potassium channel inhibition might have a role in the possible proarrhythmic adverse effects of cannabinoids in situations where metabolism of CBD impaired and/or the repolarization reserve is weakened.
Asunto(s)
Cannabidiol/farmacología , Canal de Potasio ERG1/antagonistas & inhibidores , Músculos Papilares/efectos de los fármacos , Músculos Papilares/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Canal de Potasio ERG1/metabolismo , Fenómenos Electrofisiológicos/efectos de los fármacos , Cobayas , Células HEK293 , Humanos , Técnicas In Vitro , Técnicas de Placa-Clamp , ConejosRESUMEN
The cardiac work-loop technique closely mimics the intrinsic in vivo movement and characteristics of cardiac muscle function. In this study, six known inotropes were profiled using the work-loop technique to evaluate the potential of this method to predict inotropy. Papillary muscles from male Sprague-Dawley rats were mounted onto an organ bath perfused with Krebs-Henseleit buffer. Following optimisation, work-loop contractions were performed that included an initial stabilisation period followed by vehicle control or drug administration. Six known inotropes were tested: digoxin, dobutamine, isoprenaline, flecainide, verapamil and atenolol. Muscle performance was evaluated by calculating power output during work-loop contraction. Digoxin, dobutamine and isoprenaline caused a significant increase in power output of muscles when compared to vehicle control. Flecainide, verapamil and atenolol significantly reduced power output of muscles. These changes in power output were reflected in alterations in work loop shapes. This is the first study in which changes in work-loop shape detailing for example the activation, shortening or passive re-lengthening have been linked to the mechanism of action of a compound. This study has demonstrated that the work-loop technique can provide an important novel method with which to assess detailed mechanisms of drug-induced effects on cardiac muscle contractility.
Asunto(s)
Cardiotónicos/farmacología , Contracción Miocárdica/efectos de los fármacos , Músculos Papilares/efectos de los fármacos , Animales , Antropometría , Atenolol/farmacología , Digoxina/farmacología , Dobutamina/farmacología , Estimulación Eléctrica , Flecainida/farmacología , Técnicas In Vitro/instrumentación , Técnicas In Vitro/métodos , Contracción Isométrica , Isoproterenol/farmacología , Masculino , Contracción Miocárdica/fisiología , Músculos Papilares/fisiología , Ratas , Ratas Sprague-Dawley , Estrés Mecánico , Verapamilo/farmacologíaRESUMEN
BACKGROUND: The relative efficacies of a long- and medium-chain triglyceride (LCT/MCT) emulsion and an LCT emulsion for treatment of bupivacaine (BPV)-induced cardiac toxicity are poorly defined. METHODS: After inducing asystole by BPV, varied concentrations (1%-12%) of either LCT/MCT (Lipofundin; B. Braun, Melsungen, Germany) or LCT emulsion (Intralipid; Fresenius Kabi, Upsala, Sweden) were applied to observe the recovery of stimulated contractile responses and contractile forces in either a recirculating or washout condition for 60 minutes, using guinea pig papillary muscles. The recirculation condition was used to demonstrate BPV binding by lipid emulsion. The washout condition was used to determine whether the time-dependent recovery of contraction is due to their metabolic enhancement. Oxfenicine, an inhibitor of carnitine palmitoyltransferase I in heart mitochondria, was used to evaluate the effect of each lipid emulsion on mitochondrial metabolic inhibition by BPV. To examine the effect of the lipid emulsion alone on contractility, either lipid emulsion was examined. BPV concentrations in solution and myocardial tissues were measured. RESULTS: In the recirculating condition, LCT/MCT emulsions (2%-12%) restored regular stimulated contractile responses in all muscles. Eight percent and 12% LCT/MCT emulsions led to complete recovery of contractile forces after 30 minutes. Meanwhile, LCT emulsions (4%-12%) did not restore regular stimulated contractile responses in some muscles (6, 3, and 2 in 9 muscles each in 4%, 8%, and 12% emulsions, respectively). Partial recovery, approximately 60%, of contractile forces was observed with 8% and 12% LCT emulsions. In the washout experiments, after asystole, LCT/MCT emulsions (1%-12%) restored contractility to baseline levels earlier and greater than LCT emulsion. Partial recovery, approximately 60%, was observed with a high concentration of LCT emulsion (12%). In the oxfenicine-pretreated group, the contractile recovery was enhanced with LCT/MCT emulsion but showed no change with LCT emulsion. Contractile depression by 40% was observed with high concentrations of LCT emulsion alone (8% and 12%), whereas no depression or enhanced contraction was observed with LCT/MCT emulsion (1%-12%) alone. Both types of lipid emulsions (2%-12%) caused concentration-related reductions of tissue BPV levels; LCT/MCT emulsions reduced tissue BPV levels slightly greater than LCT emulsion in a recirculating condition. CONCLUSIONS: An LCT/MCT emulsion was more beneficial than an LCT emulsion in terms of local anesthetic-binding and metabolic enhancement for treating acute BPV toxicity. The metabolic benefit of MCT, combined with the local anesthetic-binding effect of LCT, in an LCT/MCT emulsion may improve contractile function better than an LCT emulsion in an isolated in vitro animal myocardium model.
Asunto(s)
Anestésicos Locales/toxicidad , Bupivacaína/toxicidad , Emulsiones Grasas Intravenosas/administración & dosificación , Paro Cardíaco/tratamiento farmacológico , Frecuencia Cardíaca/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Músculos Papilares/efectos de los fármacos , Triglicéridos/administración & dosificación , Animales , Cardiotoxicidad , Composición de Medicamentos , Metabolismo Energético/efectos de los fármacos , Emulsiones Grasas Intravenosas/química , Cobayas , Paro Cardíaco/inducido químicamente , Paro Cardíaco/metabolismo , Paro Cardíaco/fisiopatología , Técnicas In Vitro , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Músculos Papilares/metabolismo , Músculos Papilares/fisiopatología , Recuperación de la Función , Factores de Tiempo , Triglicéridos/químicaRESUMEN
Here, we aimed to explore sex differences and the impact of sex hormones on cardiac contractile properties in doxorubicin (DOX)-induced cardiotoxicity. Male and female Sprague-Dawley rats were subjected to sham surgery or gonadectomy and then treated or untreated with DOX (2 mg/kg) every other week for 10 wk. Estrogen preserved maximum active tension (Tmax) with DOX exposure, whereas progesterone and testosterone did not. The effects of sex hormones and DOX correlated with both altered myosin heavy chain isoform expression and myofilament protein oxidation, suggesting both as possible mechanisms. However, acute treatment with oxidative stress (H2O2) or a reducing agent (DTT) indicated that the effects on Tmax were mediated by reversible myofilament oxidative modifications and not only changes in myosin heavy chain isoforms. There were also sex differences in the DOX impact on myofilament Ca2+ sensitivity. DOX increased Ca2+ sensitivity in male rats only in the absence of testosterone and in female rats only in the presence of estrogen. Conversely, DOX decreased Ca2+ sensitivity in female rats in the absence of estrogen. In most instances, this mechanism was through altered phosphorylation of troponin I at Ser23/Ser24. However, there was an additional DOX-induced, estrogen-dependent, irreversible (by DTT) mechanism that altered Ca2+ sensitivity. Our data demonstrate sex differences in cardiac contractile responses to chronic DOX treatment. We conclude that estrogen protects against chronic DOX treatment in the heart, preserving myofilament function. NEW & NOTEWORTHY We identified sex differences in cardiotoxic effects of chronic doxorubicin (DOX) exposure on myofilament function. Estrogen, but not testosterone, decreases DOX-induced oxidative modifications on myofilaments to preserve maximum active tension. In rats, DOX exposure increased Ca2+ sensitivity in the presence of estrogen but decreased Ca2+ sensitivity in the absence of estrogen. In male rats, the DOX-induced shift in Ca2+ sensitivity involved troponin I phosphorylation; in female rats, this was through an estrogen-dependent mechanism.
Asunto(s)
Antioxidantes/farmacología , Doxorrubicina/toxicidad , Estrógenos/farmacología , Músculos Papilares/metabolismo , Testosterona/farmacología , Animales , Calcio/metabolismo , Cardiotoxicidad , Estrógenos/metabolismo , Femenino , Masculino , Contracción Miocárdica , Miofibrillas/efectos de los fármacos , Miofibrillas/metabolismo , Miofibrillas/fisiología , Estrés Oxidativo , Músculos Papilares/efectos de los fármacos , Músculos Papilares/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Testosterona/metabolismo , Troponina I/metabolismoRESUMEN
Turmeric is a yellowish orange spice, widely used in Asian cuisine and obtained from the rhizome of Curcuma longa. It is a mixture of three curcuminoids namely, curcumin, demethoxycurcumin and bisdemethoxycurcumin. Turmeric has been used as a medicinal substance since ancient times for respiratory and gastrointestinal problems. The aim of the present study was to investigate which curcuminoid contributes to the observed pharmacological activities, all three curcuminoids, the major curcumin metabolite tetrahydrocurcumin, and the non-enzymatic curcumin hydrolysis products ferulic acid, feruloyl methane and vanillin were analyzed for spasmolytic, inotropic and chronotropic activity. Furthermore, their uptake in respective tissue samples was also investigated and correlated with activity. Spasmolytic activity was determined in guinea pig ileum, aorta and pulmonary artery. Inotropic and chronotropic activity was determined on guinea pig papillary muscles and right atrium respectively, while tissue uptake was quantified by using high-performance liquid chromatography (HPLC). All the curcuminoids exhibited significant spasmolytic activity with highest EC50 values for bisdemethoxycurcumin (5.8 ± 0.6 µM) followed by curcumin (12.9 ± 0.7 µM), demethoxycurcumin (16.8 ± 3 µM) and tetrahydrocurcumin (22.9 ± 1.5 µM). While only demethoxycurcumin was able to significantly relax the pulmonary artery with EC50 value of 15.78 ± 0.85 µM. All three curcuminoids showed mild negative chronotropic effects in the isolated right atrium; tetrahydrocurcumin demonstrated no activity. Curcumin and bisdemethoxycurcumin also showed mild positive inotropic effect whereas demethoxycurcumin and tetrahydrocurcumin exhibited weak negative inotropic one. Interestingly, ferulic acid, feruloyl methane and vanillin demonstrated no pharmacologicical activity at all in the various isolated organs. All three curcuminoids and tetrahydrocurcumin showed high uptake into the various tissues where concentrations correlated with pharmacological activity. The results indicate pronounced differences in the in vitro pharmacological activities of curcumin, demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin which have to be considered in humans after per-oral intake of turmeric powder.
Asunto(s)
Cardiotónicos/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Parasimpatolíticos/farmacología , Vasodilatadores/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Función Atrial/efectos de los fármacos , Curcuma , Femenino , Cobayas , Atrios Cardíacos/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Íleon/efectos de los fármacos , Íleon/fisiología , Técnicas In Vitro , Masculino , Músculos Papilares/efectos de los fármacos , Músculos Papilares/fisiología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiologíaRESUMEN
Signaling through the mechanistic target of rapamycin complex 1 (mTORC1) has been well defined as an androgen-sensitive transducer mediating skeletal muscle growth in vitro; however, this has yet to be tested in vivo. As such, male mice were subjected to either sham or castration surgery and allowed to recover for 7 wk to induce atrophy of skeletal muscle. Then, castrated mice were implanted with either a control pellet or a pellet that administered rapamycin (~2.5 mg·kg-1·day-1). Seven days postimplant, a subset of castrated mice with control pellets and all castrated mice with rapamycin pellets were given once weekly injections of nandrolone decanoate (ND) to induce muscle growth over a six-week period. Effective blockade of mTORC1 by rapamycin was noted in the skeletal muscle by the inability of insulin to induce phosphorylation of ribosomal S6 kinase 1 70 kDa (Thr389) and uncoordinated-like kinase 1 (Ser757). While castration reduced tibialis anterior (TA) mass, muscle fiber cross-sectional area, and total protein content, ND administration restored these measures to sham levels in a rapamycin-insensitive manner. Similar findings were also observed in the plantaris and soleus, suggesting this rapamycin-insensitive effect was not specific to the TA or fiber type. Androgen-mediated growth was not due to changes in translational capacity. Despite these findings in the limb skeletal muscle, rapamycin completely prevented the ND-mediated growth of the heart. In all, these data indicate that mTORC1 has a limited role in the androgen-mediated growth of the limb skeletal muscle; however, mTORC1 was necessary for androgen-mediated growth of heart muscle.
Asunto(s)
Anabolizantes/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Nandrolona Decanoato/farmacología , Sirolimus/farmacología , Anabolizantes/administración & dosificación , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Implantes de Medicamentos , Inyecciones Intramusculares , Insulina/farmacología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Nandrolona Decanoato/administración & dosificación , Orquiectomía , Músculos Papilares/efectos de los fármacos , Músculos Papilares/crecimiento & desarrollo , Músculos Papilares/metabolismo , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificaciónRESUMEN
Copper is an essential metal for homeostasis and the functioning of living organisms. We investigated the effects of a high copper concentration on the myocardial mechanics, investigating the reactive oxygen species (ROS) mediated effects. The developed force of papillary muscles was reduced after acute exposure to a high copper concentration and was prevented by co-incubation with tempol, DMSO and catalase. The reuptake of calcium by the sarcoplasmic reticulum was reduced by copper and restored by tempol. The contractile response to Ca2+ was reduced and reversed by antioxidants. The response to the ß-adrenergic agonist decreased after exposure to copper and was restored by tempol and catalase. In addition, the in situ detection showed increased O2·- and OH·. Contractions dependent on the sarcolemmal Ca2+ influx were impaired by copper and restored by antioxidants. Myosin-ATPase activity decreased significantly after copper exposure. In conclusion, a high copper concentration can acutely impair myocardial excitation-contraction coupling, reduce the capacity to generate force, reduce the Ca2+ inflow and its reuptake, and reduce myosin-ATPase activity, and these effects are mediated by the local production of O2·-, OH· and H2O2. These toxicity effects of copper overload suggest that copper is a risk factor for cardiovascular disease.
Asunto(s)
Cobre/toxicidad , Músculos Papilares/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Calcio/metabolismo , Masculino , Contracción Miocárdica/efectos de los fármacos , Miosinas/metabolismo , Músculos Papilares/metabolismo , Músculos Papilares/fisiología , Ratas Wistar , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismoRESUMEN
PURPOSE: Antazoline is a first-generation antihistaminic agent with additional anticholinergic properties and antiarrhythmic potential. Recent data shows its high effectiveness in sinus rhythm restoration among patients with paroxysmal atrial fibrillation. The effect of antazoline on electrophysiological parameters of the heart in vivo has not yet been examined. The aim of this study was to evaluate changes in electrophysiological parameters of the heart muscle and conduction system as a response to increasing doses of antazoline. METHODS: After successful ablation of supraventricular arrhythmias, the electrophysiological parameters: sinus rhythm cycle length (SRCL), AH, HV, QRS, QT, QTc intervals, Wenckebach point (WP), sinus node recovery period (SNRT), intra- (hRA-CSos) and interatrial conduction time (hRA-CSd), right and left atrium refractory period (RA-; LA-ERP), and atrioventricular node refractory period (AVN-ERP) were assessed initially and after 100, 200, and 300 mg of antazoline given intravenously. RESULTS: Fifteen patients (8 males, 19-72 years old) undergoing EPS and RF ablation were enrolled. After 100 mg bolus, a significant reduction in SRCL was noticed. After antazoline administration, significant prolongation of HV, QRS, QTc, hRA-CSos, hRA-CSd intervals, RA- and LA-ERP and reduction of SRCL were observed. After a total dose of 300 mg, QT interval prolonged significantly. Increasing the dose of antazoline had no impact on AH, Wenckebach point, AVN-ERP, and SNRT. CONCLUSION: Antazoline has an effect on electrophysiological parameters of the atrial muscle and has rapid onset of action. No negative effect on sinus node function and atrioventricular conduction in a unique property among antiarrhythmic drugs.
Asunto(s)
Potenciales de Acción/efectos de los fármacos , Antazolina/administración & dosificación , Antiarrítmicos/administración & dosificación , Aleteo Atrial/tratamiento farmacológico , Atrios Cardíacos/efectos de los fármacos , Sistema de Conducción Cardíaco/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Músculos Papilares/efectos de los fármacos , Taquicardia por Reentrada en el Nodo Atrioventricular/tratamiento farmacológico , Adulto , Anciano , Aleteo Atrial/diagnóstico , Aleteo Atrial/fisiopatología , Aleteo Atrial/cirugía , Ablación por Catéter , Relación Dosis-Respuesta a Droga , Femenino , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/cirugía , Sistema de Conducción Cardíaco/fisiopatología , Sistema de Conducción Cardíaco/cirugía , Humanos , Masculino , Persona de Mediana Edad , Músculos Papilares/fisiopatología , Músculos Papilares/cirugía , Taquicardia por Reentrada en el Nodo Atrioventricular/diagnóstico , Taquicardia por Reentrada en el Nodo Atrioventricular/fisiopatología , Taquicardia por Reentrada en el Nodo Atrioventricular/cirugía , Resultado del Tratamiento , Adulto JovenRESUMEN
BACKGROUND: After myocardial infarction (MI), mitral valve (MV) tethering stimulates adaptive leaflet growth, but counterproductive leaflet thickening and fibrosis augment mitral regurgitation (MR), doubling heart failure and mortality. MV fibrosis post-MI is associated with excessive endothelial-to-mesenchymal transition (EMT), driven by transforming growth factor (TGF)-ß overexpression. In vitro, losartan-mediated TGF-ß inhibition reduces EMT of MV endothelial cells. OBJECTIVES: This study tested the hypothesis that profibrotic MV changes post-MI are therapeutically accessible, specifically by losartan-mediated TGF-ß inhibition. METHODS: The study assessed 17 sheep, including 6 sham-operated control animals and 11 with apical MI and papillary muscle retraction short of producing MR; 6 of the 11 were treated with daily losartan, and 5 were untreated, with flexible epicardial mesh comparably limiting left ventricular (LV) remodeling. LV volumes, tethering, and MV area were quantified by using three-dimensional echocardiography at baseline and at 60 ± 6 days, and excised leaflets were analyzed by histopathology and flow cytometry. RESULTS: Post-MI LV dilation and tethering were comparable in the losartan-treated and untreated LV constraint sheep. Telemetered sensors (n = 6) showed no significant losartan-induced changes in arterial pressure. Losartan strongly reduced leaflet thickness (0.9 ± 0.2 mm vs. 1.6 ± 0.2 mm; p < 0.05; 0.4 ± 0.1 mm sham animals), TGF-ß, and downstream phosphorylated extracellular-signal-regulated kinase and EMT (27.2 ± 12.0% vs. 51.6 ± 11.7% α-smooth muscle actin-positive endothelial cells, p < 0.05; 7.2 ± 3.5% sham animals), cellular proliferation, collagen deposition, endothelial cell activation (vascular cell adhesion molecule-1 expression), neovascularization, and cells positive for cluster of differentiation (CD) 45, a hematopoietic marker associated with post-MI valve fibrosis. Leaflet area increased comparably (17%) in constrained and losartan-treated sheep. CONCLUSIONS: Profibrotic changes of tethered MV leaflets post-MI can be modulated by losartan without eliminating adaptive growth. Understanding the cellular and molecular mechanisms could provide new opportunities to reduce ischemic MR.
Asunto(s)
Losartán/farmacología , Insuficiencia de la Válvula Mitral/diagnóstico , Válvula Mitral/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Modelos Animales de Enfermedad , Ecocardiografía Tridimensional , Células Endoteliales/metabolismo , Células Endoteliales/patología , Fibrosis , Humanos , Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/etiología , Insuficiencia de la Válvula Mitral/fisiopatología , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Músculos Papilares/diagnóstico por imagen , Músculos Papilares/efectos de los fármacos , Ovinos , Factor de Crecimiento Transformador beta/metabolismo , Remodelación VentricularRESUMEN
We studied the dependence of post-rest positive inotropic response of isolated rat papillary muscles subjected to rhythmic stimulation on severity of postinfarction cardiosclerosis developed during 6 weeks after occlusion of the left descending coronary artery. The isolated papillary muscles were perfused with oxygenated Krebs-Henseleit solution and electrically stimulated at a rate of 0.5 Hz. In all rats, coronary occlusion provoked postinfarction cardiosclerosis with the formation of a scar occupying 20-50% (min-max of the sample) of the left ventricular wall. Despite the presence of large postinfarction scar in all rats, the positive post-rest inotropic responses greatly varied. The post-rest response in rats with scar occupying <37% left ventricular wall was similar to that in intact animals, but rats with scar area >44% demonstrated dramatically decreased inotropic response to rest periods.
Asunto(s)
Infarto del Miocardio/complicaciones , Miocardio/metabolismo , Músculos Papilares/efectos de los fármacos , Músculos Papilares/metabolismo , Hormona Adrenocorticotrópica/análogos & derivados , Hormona Adrenocorticotrópica/uso terapéutico , Animales , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Miocardio/patología , Fármacos Neuroprotectores/uso terapéutico , Fragmentos de Péptidos/uso terapéutico , Ratas , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismoRESUMEN
BACKGROUND: In the diabetic heart the ß-adrenergic response is altered partly by down-regulation of the ß1-adrenoceptor, reducing its positive inotropic effect and up-regulation of the ß3-adrenoceptor, increasing its negative inotropic effect. Statins have clinical benefits on morbidity and mortality in diabetic patients which are attributed to their "pleiotropic" effects. The objective of our study was to investigate the role of statin treatment on ß-adrenergic dysfunction in diabetic rat cardiomyocytes. METHODS: ß-adrenergic responses were investigated in vivo (echocardiography) and ex vivo (left ventricular papillary muscles) in healthy and streptozotocin-induced diabetic rats, who were pre-treated or not by oral atorvastatin over 15 days (50 mg.kg-1.day-1). Micro-array analysis and immunoblotting were performed in left ventricular homogenates. Data are presented as mean percentage of baseline ± SD. RESULTS: Atorvastatin restored the impaired positive inotropic effect of ß-adrenergic stimulation in diabetic hearts compared with healthy hearts both in vivo and ex vivo but did not suppress the diastolic dysfunction of diabetes. Atorvastatin changed the RNA expression of 9 genes in the ß-adrenergic pathway and corrected the protein expression of ß1-adrenoceptor and ß1/ß3-adrenoceptor ratio, and multidrug resistance protein 4 (MRP4). Nitric oxide synthase (NOS) inhibition abolished the beneficial effects of atorvastatin on the ß-adrenoceptor response. CONCLUSIONS: Atorvastatin restored the positive inotropic effect of the ß-adrenoceptor stimulation in diabetic cardiomyopathy. This effect is mediated by multiple modifications in expression of proteins in the ß-adrenergic signaling pathway, particularly through the NOS pathway.
Asunto(s)
Atorvastatina/uso terapéutico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Corazón/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Receptores Adrenérgicos beta/metabolismo , Animales , Atorvastatina/farmacología , Diabetes Mellitus Experimental/diagnóstico por imagen , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Cardiomiopatías Diabéticas/diagnóstico por imagen , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Ecocardiografía , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Músculos Papilares/efectos de los fármacos , Músculos Papilares/metabolismo , Músculos Papilares/fisiopatología , Ratas , Ratas WistarRESUMEN
Patients with ischaemic heart disease or chronic heart failure show altered levels of obestatin, suggesting a role for this peptide in human heart function. We have previously demonstrated that GH secretagogues and the ghrelin gene-derived peptides, including obestatin, exert cardiovascular effects by modulating cardiac inotropism and vascular tone, and reducing cell death and contractile dysfunction in hearts subjected to ischaemia/reperfusion (I/R), through the Akt/nitric oxide (NO) pathway. However, the mechanisms underlying the cardiac actions of obestatin remain largely unknown. Thus, we suggested that obestatin-induced activation of PI3K/Akt/NO and PKG signalling is implicated in protection of the myocardium when challenged by adrenergic, endothelinergic or I/R stress. We show that obestatin exerts an inhibitory tone on the performance of rat papillary muscle in both basal conditions and under ß-adrenergic overstimulation, through endothelial-dependent NO/cGMP/PKG signalling. This pathway was also involved in the vasodilator effect of the peptide, used both alone and under stress induced by endothelin-1. Moreover, when infused during early reperfusion, obestatin reduced infarct size in isolated I/R rat hearts, through an NO/PKG pathway, comprising ROS/PKC signalling, and converging on mitochondrial ATP-sensitive potassium [mitoK(ATP)] channels. Overall, our results suggest that obestatin regulates cardiovascular function in stress conditions and induces cardioprotection by mechanisms dependent on activation of an NO/soluble guanylate cyclase (sGC)/PKG pathway. In fact, obestatin counteracts exaggerated ß-adrenergic and endothelin-1 activity, relevant factors in heart failure, suggesting multiple positive effects of the peptide, including the lowering of cardiac afterload, thus representing a potential candidate in pharmacological post-conditioning.
Asunto(s)
Cardiotónicos/farmacología , Infarto del Miocardio/prevención & control , Isquemia Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Óxido Nítrico/metabolismo , Hormonas Peptídicas/farmacología , Animales , Cardiotónicos/química , Cardiotónicos/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Endotelina-1/antagonistas & inhibidores , Endotelina-1/farmacología , Regulación de la Expresión Génica , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Masculino , Contracción Miocárdica/efectos de los fármacos , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Técnicas de Cultivo de Órganos , Músculos Papilares/efectos de los fármacos , Músculos Papilares/metabolismo , Músculos Papilares/patología , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Guanilil Ciclasa Soluble/genética , Guanilil Ciclasa Soluble/metabolismoRESUMEN
Hibernators have a distinctive ability to adapt to seasonal changes of body temperature in a range between 37°C and near freezing, exhibiting, among other features, a unique reversibility of cardiac contractility. The adaptation of myocardial contractility in hibernation state relies on alterations of excitation contraction coupling, which becomes less-dependent from extracellular Ca2+ entry and is predominantly controlled by Ca2+ release from sarcoplasmic reticulum, replenished by the Ca2+-ATPase (SERCA). We found that the specific SERCA inhibitor cyclopiazonic acid (CPA), in contrast to its effect in papillary muscles (PM) from rat hearts, did not reduce but rather potentiated contractility of PM from hibernating ground squirrels (GS). In GS ventricles we identified drastically elevated, compared to rats, expression of Orai1, Stim1 and Trpc1/3/4/5/6/7 mRNAs, putative components of store operated Ca2+ channels (SOC). Trpc3 protein levels were found increased in winter compared to summer GS, yet levels of Trpc5, Trpc6 or Trpc7 remained unchanged. Under suppressed voltage-dependent K+, Na+ and Ca2+ currents, the SOC inhibitor 2-aminoethyl diphenylborinate (2-APB) diminished whole-cell membrane currents in isolated cardiomyocytes from hibernating GS, but not from rats. During cooling-reheating cycles (30°C-7°C-30°C) of ground squirrel PM, 2-APB did not affect typical CPA-sensitive elevation of contractile force at low temperatures, but precluded the contractility at 30°C before and after the cooling. Wash-out of 2-APB reversed PM contractility to control values. Thus, we suggest that SOC play a pivotal role in governing the ability of hibernator hearts to maintain their function during the transition in and out of hibernating states.
Asunto(s)
Hibernación , Indoles/farmacología , Músculos Papilares/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Sarcoplasmático/metabolismo , Sciuridae/fisiología , Animales , Calcio/metabolismo , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Contracción Miocárdica/efectos de los fármacos , Músculos Papilares/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sciuridae/metabolismo , Transducción de Señal/efectos de los fármacos , TemperaturaRESUMEN
The detrimental cardio-toxic effect of doxorubicin, an effective chemotherapeutic agent, limited its clinical use. It has been claimed that doxorubicin cardio-toxicity occurs through calcium ions (Ca2+) overload and reactive oxygen species production. Agmatine, an endogenous imidazoline receptor agonist, induce uptake of cytosolic Ca2+ and cause an increase in activity of calcium pumps, including Ca2+-ATPase. Also it shows self-scavenging effect against reactive oxygen species production. Therefore, present study was designed to investigate the effects of agmatine against chronic cardio-toxicity of doxorubicin in rats. Male wistar rats were intraperitoneally injected with doxorubicin and agmatine four times a week for a month. Agmatine significantly alleviate the adverse effect of doxorubicin on left ventricular papillary muscle stimulation threshold and contractibility. Chronic co-administration of agmatine with doxorubicin blocked electrocardiographic changes induced by doxorubicin. In addition, agmatine improved body weight and decreased the mortality rate of animals by doxorubicin. Moreover, reversing the doxorubicin induced myocardial lesions was observed in animals treated by agmatine. A significant rise in the total antioxidant capacity of rat plasma was achieved in agmatine-treated animals in comparison to doxorubicin. To conclude, agmatine may improve therapeutic outcomes of doxorubicin since it exerts protective effects against doxorubicin-induced chronic cardiotoxicity in rats.