Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
Sci Rep ; 14(1): 10206, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702334

RESUMEN

Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.


Asunto(s)
Altitud , Hipoxia , Leptina , Transducción de Señal , Leptina/metabolismo , Leptina/sangre , Animales , Ratas , Masculino , Hipoxia/metabolismo , Hipoxia/fisiopatología , Humanos , Mal de Altura/metabolismo , Mal de Altura/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Adulto , Corazón/fisiopatología
2.
Sci Rep ; 14(1): 11585, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773195

RESUMEN

High-altitude cerebral edema (HACE) is a severe neurological condition that can occur at high altitudes. It is characterized by the accumulation of fluid in the brain, leading to a range of symptoms, including severe headache, confusion, loss of coordination, and even coma and death. Exosomes play a crucial role in intercellular communication, and their contents have been found to change in various diseases. This study analyzed the metabolomic characteristics of blood exosomes from HACE patients compared to those from healthy controls (HCs) with the aim of identifying specific metabolites or metabolic pathways associated with the development of HACE conditions. A total of 21 HACE patients and 21 healthy controls were recruited for this study. Comprehensive metabolomic profiling of the serum exosome samples was conducted using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS). Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to identify the metabolic pathways affected in HACE patients. Twenty-six metabolites, including ( +)-camphoric acid, choline, adenosine, adenosine 5'-monophosphate, deoxyguanosine 5'-monophosphate, guanosine, and hypoxanthine-9-ß-D-arabinofuranoside, among others, exhibited significant changes in expression in HACE patients compared to HCs. Additionally, these differentially abundant metabolites were confirmed to be potential biomarkers for HACE. KEGG pathway enrichment analysis revealed several pathways that significantly affect energy metabolism regulation (such as purine metabolism, thermogenesis, and nucleotide metabolism), estrogen-related pathways (the estrogen signaling pathway, GnRH signaling pathway, and GnRH pathway), cyclic nucleotide signaling pathways (the cGMP-PKG signaling pathway and cAMP signaling pathway), and hormone synthesis and secretion pathways (renin secretion, parathyroid hormone synthesis, secretion and action, and aldosterone synthesis and secretion). In patients with HACE, adenosine, guanosine, and hypoxanthine-9-ß-D-arabinofuranoside were negatively correlated with height. Deoxyguanosine 5'-monophosphate is negatively correlated with weight and BMI. Additionally, LPE (18:2/0:0) and pregnanetriol were positively correlated with age. This study identified potential biomarkers for HACE and provided valuable insights into the underlying metabolic mechanisms of this disease. These findings may lead to potential targets for early diagnosis and therapeutic intervention in HACE patients.


Asunto(s)
Biomarcadores , Edema Encefálico , Exosomas , Metabolómica , Humanos , Masculino , Femenino , Adulto , Metabolómica/métodos , Edema Encefálico/sangre , Edema Encefálico/metabolismo , Edema Encefálico/etiología , Biomarcadores/sangre , Exosomas/metabolismo , Espectrometría de Masas en Tándem , Mal de Altura/sangre , Mal de Altura/metabolismo , Persona de Mediana Edad , Redes y Vías Metabólicas , Metaboloma , Estudios de Casos y Controles , Altitud
3.
Biomed Pharmacother ; 175: 116793, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38776674

RESUMEN

High-altitude myocardial injury (HAMI) represents a critical form of altitude illness for which effective drug therapies are generally lacking. Notoginsenoside R1, a prominent constituent derived from Panax notoginseng, has demonstrated various cardioprotective properties in models of myocardial ischemia/reperfusion injury, sepsis-induced cardiomyopathy, cardiac fibrosis, and myocardial injury. The potential utility of notoginsenoside R1 in the management of HAMI warrants prompt investigation. Following the successful construction of a HAMI model, a series of experimental analyses were conducted to assess the effects of notoginsenoside R1 at dosages of 50 mg/Kg and 100 mg/Kg. The results indicated that notoginsenoside R1 exhibited protective effects against hypoxic injury by reducing levels of CK, CK-MB, LDH, and BNP, leading to improved cardiac function and decreased incidence of arrhythmias. Furthermore, notoginsenoside R1 was found to enhance Nrf2 nuclear translocation, subsequently regulating the SLC7A11/GPX4/HO-1 pathway and iron metabolism to mitigate ferroptosis, thereby mitigating cardiac inflammation and oxidative stress induced by high-altitude conditions. In addition, the application of ML385 has confirmed the involvement of Nrf2 nuclear translocation in the therapeutic approach to HAMI. Collectively, the advantageous impacts of notoginsenoside R1 on HAMI have been linked to the suppression of ferroptosis via Nrf2 nuclear translocation signaling.


Asunto(s)
Ferroptosis , Ginsenósidos , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Ginsenósidos/farmacología , Animales , Ferroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Masculino , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Mal de Altura/tratamiento farmacológico , Mal de Altura/metabolismo , Ratas , Altitud , Modelos Animales de Enfermedad
4.
Nat Commun ; 15(1): 3970, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730227

RESUMEN

High-altitude hypoxia acclimatization requires whole-body physiological regulation in highland immigrants, but the underlying genetic mechanism has not been clarified. Here we use sheep as an animal model for low-to-high altitude translocation. We generate multi-omics data including whole-genome sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq from multiple tissues as well as phenotypic data from 20 bio-indicators. We characterize transcriptional changes of all genes in each tissue, and examine multi-tissue temporal dynamics and transcriptional interactions among genes. Particularly, we identify critical functional genes regulating the short response to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the colon). We further identify TAD-constrained cis-regulatory elements, which suppress the transcriptional activity of most genes under hypoxia. Phenotypic and transcriptional evidence indicate that antenatal hypoxia could improve hypoxia tolerance in offspring. Furthermore, we provide time-series expression data of candidate genes associated with human mountain sickness (e.g., BMPR2) and high-altitude adaptation (e.g., HIF1A). Our study provides valuable resources and insights for future hypoxia-related studies in mammals.


Asunto(s)
Mal de Altura , Altitud , Regulación de la Expresión Génica , Hipoxia , Animales , Mal de Altura/genética , Mal de Altura/metabolismo , Ovinos , Hipoxia/genética , Hipoxia/metabolismo , Humanos , Aclimatación/genética , Transcripción Genética , Análisis de la Célula Individual , Femenino , Multiómica
5.
CNS Neurosci Ther ; 30(3): e14662, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38477221

RESUMEN

BACKGROUND: Intermittent hypoxia (IH) is emerging as a cost-effective nonpharmacological method for vital organ protection. We aimed to assess the effects of a short-term moderate intermittent hypoxia preconditioning protocol (four cycles of 13% hypoxia lasting for 10 min with 5-min normoxia intervals) on acute hypoxic injury induced by sustained hypoxic exposure (oxygen concentration of 11.8% for 6 h). METHODS: One hundred healthy volunteers were recruited and randomized to the IH group and the control group to receive IH or sham-IH preconditioning for 5 days, respectively, and then were sent to a hypoxic chamber for simulated acute high-altitude exposure (4500 m). RESULTS: The overall incidence of acute mountain sickness was 27% (27/100), with 14% (7/50) in the IH group and 40% (20/50) in the control group (p = 0.003). After 6-h simulated high-altitude exposure, the mean Lake Louise Score was lower in the IH group as compared to controls (1.30 ± 1.27 vs. 2.04 ± 1.89, p = 0.024). Mean peripheral oxygen saturations (SpO2 ) and intracranial pressure (ICP) measures after acute hypoxic exposure exhibited significant differences, with the IH group showing significantly greater SpO2 values (85.47 ± 5.14 vs. 83.10 ± 5.15%, p = 0.026) and lower ICP levels than the control group (115.59 ± 32.15 vs. 130.36 ± 33.83 mmH2 O, p = 0.028). IH preconditioning also showed greater effects on serum protein gene product 9.5 (3.89 vs. 29.16 pg/mL; p = 0.048) and C-reactive protein (-0.28 vs. 0.41 mg/L; p = 0.023). CONCLUSION: The short-term moderate IH improved the tolerance to hypoxia and exerted protection against acute hypoxic injury induced by exposure to sustained normobaric hypoxia, which provided a novel method and randomized controlled trial evidence to develop treatments for hypoxia-related disease.


Asunto(s)
Mal de Altura , Hipoxia , Humanos , Hipoxia/metabolismo , Mal de Altura/metabolismo , Mal de Altura/prevención & control , Enfermedad Aguda , Condicionamiento Psicológico , Oxígeno
6.
Phytomedicine ; 128: 155529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503156

RESUMEN

BACKGROUND/PURPOSE: Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba (R. crenulate), a famous and characteristic Tibetan medicine, has been demonstrated to exert an outstanding brain protection role in the treatment of high-altitude hypoxia disease. However, the metabolic effects of R. crenulate on high-altitude hypoxic brain injury (HHBI) are still incompletely understood. Herein, the anti-hypoxic effect and associated mechanisms of R. crenulate were explored through both in vivo and in vitro experiments. STUDY DESIGN/METHODS: The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE, 0.5, 1.0 and 2.0 g/kg) and salidroside (Sal, 25, 50 and 100 mg/kg) was given by gavage for 7 days. Pathological changes and neuronal apoptosis of mice hippocampus and cortex were evaluated using H&E and TUNEL staining, respectively. The effects of RCE and Sal on the permeability of blood brain barrier (BBB) were detected by Evans blue staining and NIR-II fluorescence imaging. Meanwhile, the ultrastructural BBB and cerebrovascular damages were observed using a transmission electron microscope (TEM). The levels of tight junction proteins Claudin-1, ZO-1 and occludin were detected by immunofluorescence. Additionally, the metabolites in mice serum and brain were determined using UHPLC-MS and MALDI-MSI analysis. The cell viability of Sal on hypoxic HT22 cells induced by CoCl2 was investigated by cell counting kit-8. The contents of LDH, MDA, SOD, GSH-PX and SDH were detected by using commercial biochemical kits. Meanwhile, intracellular ROS, Ca2+ and mitochondrial membrane potential were determined by corresponding specific labeled probes. The intracellular metabolites of HT22 cells were performed by the targeted metabolomics analysis of the Q300 kit. The cell apoptosis and necrosis were examined by YO-PRO-1/PI, Annexin V/PI and TUNEL staining. In addition, mitochondrial morphology was tested by Mito-tracker red with confocal microscopy and TEM. Real-time ATP production, oxygen consumption rate, and proton efflux rate were measured using a Seahorse analyzer. Subsequently, MCU, OPA1, p-Drp1ser616, p-AMPKα, p-AMPKß and Sirt1 were determined by immunofluorescent and western blot analyses. RESULTS: The results demonstrated that R. crenulate and Sal exert anti-hypoxic brain protection from inhibiting neuronal apoptosis, maintaining BBB integrity, increasing tight junction protein Claudin-1, ZO-1 and occludin and improving mitochondrial morphology and function. Mechanistically, R. crenulate and Sal alleviated HHBI by enhancing the tricarboxylic acid cycle to meet the demand of energy of brain. Additionally, experiments in vitro confirmed that Sal could ameliorate the apoptosis of HT22 cells, improve mitochondrial morphology and energy metabolism by enhancing mitochondrial respiration and glycolysis. Meanwhile, Sal-mediated MCU inhibited the activation of Drp1 and enhanced the expression of OPA1 to maintain mitochondrial homeostasis, as well as activation of AMPK and Sirt1 to enhance ATP production. CONCLUSION: Collectively, the findings suggested that RCE and Sal may afford a protective intervention in HHBI through maintaining BBB integrity and improving energy metabolism via balancing MCU-mediated mitochondrial homeostasis by activating the AMPK/Sirt1 signaling pathway.


Asunto(s)
Barrera Hematoencefálica , Metabolismo Energético , Extractos Vegetales , Rhodiola , Animales , Rhodiola/química , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Ratones , Extractos Vegetales/farmacología , Metabolismo Energético/efectos de los fármacos , Masculino , Apoptosis/efectos de los fármacos , Glucósidos/farmacología , Modelos Animales de Enfermedad , Fenoles/farmacología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Línea Celular , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mal de Altura/tratamiento farmacológico , Mal de Altura/metabolismo , Hipoxia/tratamiento farmacológico
7.
Indian J Pathol Microbiol ; 66(3): 577-583, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37530343

RESUMEN

Relevant research data shows that there is a certain degree of energy metabolism imbalance in highland residents. Protein phosphatase 4 (PP4) has been found as a new factor in the regulation of sugar and lipid metabolism. Here, we investigate the differential expression of PP4 at a simulated altitude of 4,500 m in the heart, lung, and brain tissues of rats. A hypoxic plateau rat model was established using an animal decompression chamber. A blood routine test was performed by an animal blood cell analyzer on rats cultured for different hypoxia periods at 4,500 m above sea level. Quantitative polymerase chain reaction (qPCR) and western blot were used to detect the changes of protein phosphatase 4 catalytic subunit (PP4C) gene and protein in heart, lung, and brain tissues. The PP4C gene with the highest expression level found in rats slowly entering the high altitude area (20 m-2200 m-7 d-4500 m-3 d) was about twice as high as the low elevation group (20 m above sea level). The simulated high-altitude hypoxia induced an increase of PP4C expression level in all tissues, and the expression in the lung tissue was twice as expressed as heart and brain tissue at high altitude (P < 0.05). These results suggest that the PP4 phosphatase complex is ubiquitously expressed in rat tissues and likely involved in adaptation to or disease associated with high-altitude hypoxia.


Asunto(s)
Mal de Altura , Ratas , Animales , Mal de Altura/metabolismo , Hipoxia/metabolismo , Pulmón , Corazón
8.
Sci Total Environ ; 894: 164998, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37353011

RESUMEN

Hypobaric hypoxia is often associated with the plateau environment and can lead to altitude sickness or death. The underlying cause is a lack of oxygen, which limits energy metabolism and leads to a compensatory stress response. Although glycolysis is commonly accepted as the primary energy source during clinical hypoxia, our preliminary experiments suggest that hypobaric hypoxia may depress glycolysis. To provide a more comprehensive understanding of energy metabolism under short-term hypobaric hypoxia, we exposed mice to a simulated altitude of 5000 m for 6 or 12 h. After the exposure, we collected blood and liver tissues to quantify the substrates, enzymes, and metabolites involved in glycolysis, lactic acid metabolism, the tricarboxylic acid cycle (TCA), and fatty acid ß-oxidation. We also performed transcriptome and enzymatic activity analyses of the liver. Our results show that 6 h of hypoxic exposure significantly increased blood glucose, decreased lactic acid and triglyceride concentrations, and altered liver enzyme activities of mice exposed to hypoxia. The key enzymes in the glycolytic, TCA, and fatty acid ß-oxidation pathways were primarily affected. Specifically, the activities of key glycolytic enzymes, such as glucokinase, decreased significantly, while the activities of enzymes in the TCA cycle, such as isocitrate dehydrogenase, increased significantly. Lactate dehydrogenase, pyruvate carboxylase, and alanine aminotransferase were upregulated. These changes were partially restored when the exposure time was extended to 12 h, except for further downregulation of phosphofructokinase and glucokinase. This study demonstrates that acute high altitude hypoxia upregulated the lactic acid/amino acid-pyruvate-TCA pathways and fatty acid oxidation, but downregulated glycolysis in the liver of mice. The results obtained in this study provide a theoretical framework for understanding the mechanisms underlying the pathogenesis of high-altitude sickness in humans. Additionally, these findings have potential implications for the development of prevention and treatment strategies for altitude sickness.


Asunto(s)
Mal de Altura , Ciclo del Ácido Cítrico , Ratones , Humanos , Animales , Mal de Altura/metabolismo , Ácido Láctico , Aminoácidos/metabolismo , Regulación hacia Arriba , Regulación hacia Abajo , Ácido Pirúvico , Glucoquinasa/metabolismo , Glucólisis/fisiología , Hipoxia , Altitud , Ácidos Grasos
9.
Eur J Sport Sci ; 23(10): 2002-2010, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37051668

RESUMEN

Hypoxia induced intestinal barrier injury, microbial translocation, and local/systemic inflammation may contribute to high-altitude associated gastrointestinal complications or symptoms of acute mountain sickness (AMS). Therefore, we tested the hypothesis that six-hours of hypobaric hypoxia increases circulating markers of intestinal barrier injury and inflammation. A secondary aim was to determine if the changes in these markers were different between those with and without AMS. Thirteen participants were exposed to six hours of hypobaric hypoxia, simulating an altitude of 4572 m. Participants completed two 30-minute bouts of exercise during the early hours of hypoxic exposure to mimic typical activity required by those at high altitude. Pre- and post-exposure blood samples were assessed for circulating markers of intestinal barrier injury and inflammation. Data below are presented as mean ± standard deviation or median [interquartile range]. Intestinal fatty acid binding protein (Δ251 [103-410] pg•mL-1; p = 0.002, d = 0.32), lipopolysaccharide binding protein (Δ2 ± 2.4 µg•mL-1; p = 0.011; d = 0.48), tumor necrosis factor-α (Δ10.2 [3-42.2] pg•mL-1; p = 0.005; d = 0.25), interleukin-1ß (Δ1.5 [0-6.7] pg•mL-1 p = 0.042; d = 0.18), and interleukin-1 receptor agonist (Δ3.4 [0.4-5.2] pg•mL-1p = 0.002; d = 0.23) increased from pre- to post-hypoxia. Six of the 13 participants developed AMS; however, the pre- to post-hypoxia changes for each marker were not different between those with and without AMS (p > 0.05 for all indices). These data provide evidence that high altitude exposures can lead to intestinal barrier injury, which may be an important consideration for mountaineers, military personnel, wildland firefighters, and athletes who travel to high altitudes to perform physical work or exercise.


Asunto(s)
Mal de Altura , Esfuerzo Físico , Humanos , Hipoxia , Mal de Altura/complicaciones , Mal de Altura/diagnóstico , Mal de Altura/metabolismo , Altitud , Inflamación
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 197-202, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36765499

RESUMEN

OBJECTIVE: To explore the pathogenesis of erythrocytosis by detecting the key enzymes of glucose metabolism and glucose transporter in bone marrow erythrocytes of chronic mountain sickness (CMS), and analyzing its correlation with hemoglobin. METHODS: Twenty CMS patients hospitalized in Qinghai Provincial People's Hospital from January 2019 to December 2020 were selected as CMS group. Twenty males with leukocyte count > 3.5×109/L who had accepted bone marrow aspiration and had normal result were taken as control group. The mRNA and protein expression of key enzymes and glucose transporter in glucose metabolism in bone marrow CD71+ erythrocytes were detected by real time qPCR and Western blot, respectively. Glucose, lactic acid and 2,3-diphosphoglycerate in the bone marrow supernatant and serum were tested by ELISA. The mRNA and protein expression of key enzymes and glucose transporter, glucose, lactic acid and 2,3-diphosphoglycerate of the two groups were compared. Pearson correlation was used to analyze the correlation between key enzymes, glucose transporter in glucose metabolism in bone marrow CD71+ erythrocytes and hemoglobin. RESULTS: The expression of HK2, GLUT1 and GLUT2 mRNA in the CMS group were higher than those in the control group (P<0.001), while the expression of HK1, OGDH and COX5B mRNA were not different. The expression of HK2, GLUT1 and GLUT2 protein in the CMS group were higher than those in the control group (P<0.05). The levels of glucose and lactic acid in the bone marrow supernatant and serum in the CMS group were not different from those in the control group, while the level of 2,3-diphosphoglycerate was higher (P<0.001). Both HK2 and GLUT2 proteins were positively correlated with hemoglobin (r=0.511, 0.717). CONCLUSION: CMS patients may increase glycolysis by increasing the expression of HK2, and promote the utilization of glucose through high expression of GLUT1 and GLUT2 to meet the need of energy supply.


Asunto(s)
Mal de Altura , Masculino , Humanos , Mal de Altura/metabolismo , Transportador de Glucosa de Tipo 1 , 2,3-Difosfoglicerato , Hemoglobinas , Enfermedad Crónica , ARN Mensajero , Fenotipo , Glucosa
11.
Drug Metab Rev ; 55(1-2): 107-125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36823775

RESUMEN

The blood-brain barrier is essential for maintaining the stability of the central nervous system and is also crucial for regulating drug metabolism, changes of blood-brain barrier's structure and function can influence how drugs are delivered to the brain. In high-altitude hypoxia, the central nervous system's function is drastically altered, which can cause disease and modify the metabolism of drugs in vivo. Changes in the structure and function of the blood-brain barrier and the transport of the drug across the blood-brain barrier under high-altitude hypoxia, are regulated by changes in brain microvascular endothelial cells, astrocytes, and pericytes, either regulated by drug metabolism factors such as drug transporters and drug-metabolizing enzymes. This article aims to review the effects of high-altitude hypoxia on the structure and function of the blood-brain barrier as well as the effects of changes in the blood-brain barrier on drug metabolism. We also hypothesized and explore the regulation and potential mechanisms of the blood-brain barrier and associated pathways, such as transcription factors, inflammatory factors, and nuclear receptors, in regulating drug transport under high-altitude hypoxia.


Asunto(s)
Mal de Altura , Barrera Hematoencefálica , Humanos , Barrera Hematoencefálica/metabolismo , Mal de Altura/metabolismo , Células Endoteliales/metabolismo , Hipoxia/metabolismo , Transporte Biológico
12.
Platelets ; 34(1): 2157381, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36597012

RESUMEN

High-altitude polycythemia (HAPC) can occur in individuals who are intolerant to high-altitude hypoxia. In patients with HAPC, erythrocytosis is often accompanied by a decrease in platelet count. Chronic hypoxia can increase the incidence of arteriovenous thrombosis and the risk of bleeding during antithrombotic treatment due to thrombocytopenia; therefore, understanding the cause of thrombocytopenia can reduce the risk of treatment-related bleeding. In this study, we examined platelet production and apoptosis to understand the cause of thrombocytopenia in patients with HAPC. The classification of myeloid-derived megakaryocytes (MKs) in HAPC patients was mainly granular MKs rather than mature MKs, suggesting impaired differentiation and maturation. However, the total number of MKs and newly generated reticulated platelets in the peripheral blood increased, indicating sufficient platelet generation in HAPC thrombocytopenia. Increased platelet apoptosis may be one of the causes of thrombocytopenia. Platelet activation and GP1bα pathway activation induced by thrombin and von Willebrand factor can lead to platelet apoptosis. Platelet production was not reduced in patients with HAPC, whereas platelet apoptosis was associated with thrombocytopenia. These findings provide a rationale for considering the bleeding risk in HAPC patient while treating thrombotic diseases.


What is the context?Platelets are essential in the process of blood clotting; hence, low platelet count increases the risk of bleeding. Thrombocytopenia is present in patients with high-altitude polycythemiaHypoxia can lead to platelet activation and increase in procoagulant factors, while at the same time increase the risk of thrombosis due to erythrocytosis and blood stasis.Antithrombotic therapy should be administered when thrombosis occurs in patients with high altitude polycythemia; however, due to the low platelet count, risk of bleeding must be considered.What is new?In this study, we found that platelet production was not decreased in patients with high-altitude polycythemia.One cause of thrombocytopenia is apoptosis, which is associated with platelet activation, especially GP1bα activation.Inhibition of GP1bα binding to ligand decreased the level of platelet apoptosis.What is the impact?This study provides novel insights into antithrombotic therapy for patients with high-altitude polycythemia complicated by thrombosis.Thrombocytopenia is associated with excessive apoptosis.Interfering with GP1bα targets may have a dual benefit, both in inhibiting thrombosis and avoiding thrombocytopenia.


Asunto(s)
Mal de Altura , Policitemia , Trombocitopenia , Humanos , Mal de Altura/complicaciones , Mal de Altura/metabolismo , Policitemia/complicaciones , Altitud , Hipoxia/complicaciones , Trombocitopenia/complicaciones
13.
J Bone Miner Res ; 38(4): 597-614, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36680558

RESUMEN

Chronic high-altitude hypoxia induces irreversible abnormalities in various organisms. Emerging evidence indicates that hypobaric hypoxia markedly suppresses bone mass and bone strength. However, few effective means have been identified to prevent such bone deficits. Here, we assessed the potential of pulsed electromagnetic fields (PEMFs) to noninvasively resist bone deterioration induced by hypobaric hypoxia. We observed that exogenous PEMF treatment at 15 Hz and 20 Gauss (Gs) improved the cancellous and cortical bone mass, bone microstructure, and skeletal mechano-properties in rats subjected to chronic exposure of hypobaric hypoxia simulating an altitude of 4500 m for 6 weeks by primarily modulating osteoblasts and osteoblast-mediated bone-forming activity. Moreover, our results showed that whereas PEMF stimulated the functional activity of primary osteoblasts in hypoxic culture in vitro, it had negligible effects on osteoclasts and osteocytes exposed to hypoxia. Mechanistically, the primary cilium was found to function as the major electromagnetic sensor in osteoblasts exposed to hypoxia. The polycystins PC-1/PC-2 complex was identified as the primary calcium channel in the primary cilium of hypoxia-exposed osteoblastic cells responsible for the detection of external PEMF signals, and thereby translated these biophysical signals into intracellular biochemical events involving significant increase in the intracellular soluble adenylyl cyclase (sAC) expression and subsequent elevation of cyclic adenosine monophosphate (cAMP) concentration. The second messenger cAMP inhibited the transcription of oxygen homeostasis-related hypoxia-inducible factor 1-alpha (HIF-1α), and thus enhanced osteoblast differentiation and improved bone phenotype. Overall, the present study not only advances our understanding of bone physiology at high altitudes, but more importantly, proposes effective means to ameliorate high altitude-induced bone loss in a noninvasive and cost-effective manner. © 2023 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Mal de Altura , Ratas , Animales , Mal de Altura/metabolismo , Campos Electromagnéticos , Cilios , Huesos , Hipoxia/complicaciones , Hipoxia/metabolismo , Osteoblastos/metabolismo , AMP Cíclico/metabolismo
14.
Curr Drug Metab ; 24(3): 152-161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36579391

RESUMEN

BACKGROUND: The special environment of high-altitude hypoxia not only changes the physiological state of the body but also affects the metabolic process of many drugs, which may affect the safety and efficacy of these drugs. The number of drugs is huge, so it is not wise to blindly repeat the pharmacokinetic studies of all of them on the plateau. Mastering the law of drug metabolism on the plateau is conducive to the comprehensive development of rational drug use on the plateau. Therefore, it is very important to determine the impacts and elucidate the mechanism of drug metabolism in hypobaric hypoxia conditions. METHODS: In this review, we searched published studies on changes in drug metabolism in hypoxia conditions to summarize and analyze the mechanisms by which hypoxia alters drug metabolism. RESULTS: Although the reported effects of high-altitude hypoxia on drug metabolism are sometimes controversial, metabolism kinetics for most of the tested drugs are found to be affected. Mechanism studies showed that the major reasons causing metabolism changes are: regulated drug-metabolizing enzymes expression and activity mediated by HIF-1, nuclear receptors and inflammatory cytokines, and change in direct or indirect effects of intestinal microflora on drug metabolism by itself or the host mediated by microflora-derived drug-metabolizing enzymes, metabolites, and immunoregulation. CONCLUSION: Altered enzyme expression and activity in the liver and altered intestinal microflora are the two major reasons to cause altered drug metabolism in hypoxia conditions.


Asunto(s)
Mal de Altura , Microbioma Gastrointestinal , Humanos , Mal de Altura/tratamiento farmacológico , Mal de Altura/metabolismo , Altitud , Hipoxia/metabolismo , Hígado/metabolismo
15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(6): 1269-1275, 2023 Nov 20.
Artículo en Chino | MEDLINE | ID: mdl-38162056

RESUMEN

Objective: To establish an animal model of high-altitude cerebral edema (HACE), to explore the altitude and oxygen partial pressure conditions that can lead to obvious clinical manifestations of HACE, and to lay the foundation for further research of the pathogenic mechanisms and intervention strategies of HACE. Methods: Male BALB/c mice of 8 weeks old were randomly assigned to Control and HACE groups. The Control group (n=10) was treated with normobaric and normoxic conditions, while the HACE groups were placed in hypobaric hypoxic (HH) chambers for the durations of 6 h, 12 h, 24 h, 48 h and 72 h, respectively, receiving treatments of simulated HH conditions at the altitudes of 4000 m (n=10 for each group receiving different durations of HH treatment), 5000 m (n=10 for each group receiving different durations of HH treatment), and 6000 m (n=10 for each group receiving different durations of HH treatment). HE staining was performed to observe the morphological changes of the brain tissue and the appropriate simulated altitude conditions were selected accordingly for the construction and evaluation of the best HACE model. The HACE model was evaluated in the following ways, the mouse brain was weighed and the cerebral edema was measured accordingly, Evans blue (EB) was injected to determine the permeability of the blood-brain barrier (BBB), and the cell apoptosis was determined by immunofluorescence staining. Results: There were no deaths in the groups treated with the HH conditions of the altitudes of 4000 m and 5000 m, while the mortality in the 6000 m altitude treatment groups was 12.2%. HE staining showed no significant changes in brain morphology or structure in the group receiving HH treatment for the altitude of 4000 m. A small amount of brain cell edema was observed in the groups receiving 48 h and 72 h of HH treatment for the altitude of 5000 m. The groups receiving HH treatment for the altitude of 6000 m demonstrated the most prominent modeling effect. HE staining showed increased volume and swelling of brain cells in all the 6000 m groups, especially in the 24 h, 48 h and 72 h treatment groups. In all the 6000 m groups, cell arrangement disorder, gap enlargement, and nuclear contraction were observed. Evaluation of the modeling effect demonstrated that, in the HACE mice model constructed with the HH conditions for the altitude of 6000 m, cerebral edema and EB permeability increased after 12 h HH treatment and there was no obvious apoptosis in the modeling groups receiving different durations of treatment. Conclusion: The HACE model can be established effectively by simulating conditions at the altitude of 6000 m (the atmospheric pressure being 47.19 kPa and the oxygen partial pressure being 9.73 kPa) with a HH chamber.


Asunto(s)
Mal de Altura , Edema Encefálico , Ratones , Animales , Masculino , Altitud , Edema Encefálico/etiología , Mal de Altura/metabolismo , Mal de Altura/patología , Encéfalo/metabolismo , Hipoxia/patología , Modelos Animales de Enfermedad , Oxígeno
16.
Cell Mol Biol (Noisy-le-grand) ; 68(6): 84-91, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36227670

RESUMEN

To investigate the oxidative stress and adaptive compensation of kidneys in rats in high-altitude hypoxia environments, 20 Wistar rats (3 months) were randomly and equally grouped. The rats in the test group were fed in a low-pressure oxygen chamber, and those in the control group (controls) were fed in a normal environment. On the 5th, 10th, 20th, and 30th day, the excretion of uric acid in rats was detected by a biochemical analyzer, the level of desmin protein in rat podocytes was detected by immunohistochemistry, and the activity of Na+-K+- ATPase in rat proximal tubular epithelial cells was measured by liquid scintillation method. The results showed that with the increased time, the level of uric acid in the blood of rats in the test group increased dramatically (P<0.05). On the 30th day, the blood uric acid content of the test group was 52.33µmol/L, and that of the control group was 38.43µmol/L. The blood uric acid content in the test group was dramatically increased relative to the control group. Immunohistochemistry showed that the desmin protein in podocytes of the test group (0.14) was considerably higher than that in the control group (P<0.05). The Na+-K+- ATPase activity of proximal renal tubular epithelial cells in the test group was 611.2 pmol pi/mg protein/h, which was considerably lower than the versus control group (P<0.05). In summary, in high altitude hypoxia environment, uric acid accumulated in the body, and renal filtration and excretion ability was limited.


Asunto(s)
Mal de Altura , Podocitos , Mal de Altura/metabolismo , Animales , Desmina/metabolismo , Desmina/farmacología , Hipoxia , Túbulos Renales Proximales/metabolismo , Oxígeno/metabolismo , Podocitos/metabolismo , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ácido Úrico/metabolismo , Ácido Úrico/farmacología
17.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293512

RESUMEN

Exposure to high altitudes generates a decrease in the partial pressure of oxygen, triggering a hypobaric hypoxic condition. This condition produces pathophysiologic alterations in an organism. In the lung, one of the principal responses to hypoxia is the development of hypoxic pulmonary vasoconstriction (HPV), which improves gas exchange. However, when HPV is exacerbated, it induces high-altitude pulmonary hypertension (HAPH). Another important illness in hypobaric hypoxia is high-altitude pulmonary edema (HAPE), which occurs under acute exposure. Several studies have shown that inflammatory processes are activated in high-altitude illnesses, highlighting the importance of the crosstalk between hypoxia and inflammation. The aim of this review is to determine the inflammatory pathways involved in hypobaric hypoxia, to investigate the key role of inflammation in lung pathologies, such as HAPH and HAPE, and to summarize different anti-inflammatory treatment approaches for these high-altitude illnesses. In conclusion, both HAPE and HAPH show an increase in inflammatory cell infiltration (macrophages and neutrophils), cytokine levels (IL-6, TNF-α and IL-1ß), chemokine levels (MCP-1), and cell adhesion molecule levels (ICAM-1 and VCAM-1), and anti-inflammatory treatments (decreasing all inflammatory components mentioned above) seem to be promising mitigation strategies for treating lung pathologies associated with high-altitude exposure.


Asunto(s)
Mal de Altura , Hipertensión Pulmonar , Infecciones por Papillomavirus , Edema Pulmonar , Humanos , Hipertensión Pulmonar/metabolismo , Molécula 1 de Adhesión Intercelular , Altitud , Edema Pulmonar/patología , Molécula 1 de Adhesión Celular Vascular , Factor de Necrosis Tumoral alfa , Interleucina-6 , Infecciones por Papillomavirus/complicaciones , Mal de Altura/metabolismo , Hipoxia/metabolismo , Edema/complicaciones , Citocinas , Inflamación/complicaciones , Oxígeno
18.
Arch Biochem Biophys ; 729: 109393, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36084697

RESUMEN

High-altitude cerebral edema (HACE), a potentially lethal disease, is associated with a time-dependent exposure to altitude-related hypobaric hypoxia (HH) and has reportedly been associated with microglia hyperactivation. Catechins are substances with good antioxidant properties, among which (-)-epigallocatechin gallate (EGCG) may play a neuroprotective role through the inhibition of microglia overactivation; however, the function of its analog- (-)-epicatechin gallate (ECG)-requires further elucidation. The aim of the present study was to investigate whether ECG prevented HACE by inhibiting HH-activated microglia. Primary microglia exposed to lipopolysaccharide (LPS)/ATP were co-treated with EGCG, ECG, and (-)-epigallocatechin, and ECG and EGCG exerted significant anti-inflammatory and neuroprotective effects. ECG inhibited the NF-κB pathway to prevent the activation of microglia induced by 1% O2. In addition, ECG ameliorated the increase in brain water content and aquaporin 4 expression induced by HH in mice. ECG also reduced the number of Iba1+ microglia in the brain, the release of proinflammatory factors, and the recruitment of microglia to blood vessels in HH-exposed mice. The outcomes of the present study revealed that ECG alleviated hypoxic hyperactivated microglia, reduced the neuroinflammation and blood-brain barrier permeability, and prevented HACE by inhibiting NF-κB signaling.


Asunto(s)
Mal de Altura , Edema Encefálico , Fármacos Neuroprotectores , Adenosina Trifosfato/metabolismo , Mal de Altura/complicaciones , Mal de Altura/metabolismo , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Acuaporina 4/metabolismo , Acuaporina 4/farmacología , Edema Encefálico/complicaciones , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/prevención & control , Catequina/análogos & derivados , Hipoxia/complicaciones , Hipoxia/metabolismo , Lipopolisacáridos/farmacología , Ratones , Microglía/metabolismo , FN-kappa B/metabolismo , Fármacos Neuroprotectores/metabolismo , Agua/metabolismo
19.
Oxid Med Cell Longev ; 2022: 4163188, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160703

RESUMEN

The earth land area is heterogeneous in terms of elevation; about 45% of its land area belongs to higher elevation with altitude above 500 meters compared to sea level. In most cases, oxygen concentration decreases as altitude increases. Thus, high-altitude hypoxic stress is commonly faced by residents in areas with an average elevation exceeding 2500 meters and those who have just entered the plateau. High-altitude hypoxia significantly affects advanced neurobehaviors including learning and memory (L&M). Hippocampus, the integration center of L&M, could be the most crucial target affected by high-altitude hypoxia exposure. Based on these points, this review thoroughly discussed the relationship between high-altitude hypoxia and L&M impairment, in terms of hippocampal neuron apoptosis and dysfunction, neuronal oxidative stress disorder, neurotransmitters and related receptors, and nerve cell energy metabolism disorder, which is of great significance to find potential targets for medical intervention. Studies illustrate that the mechanism of L&M damaged by high-altitude hypoxia should be further investigated based on the entire review of issues related to this topic.


Asunto(s)
Mal de Altura , Altitud , Mal de Altura/metabolismo , Humanos , Hipoxia/metabolismo , Aprendizaje por Laberinto , Oxígeno/farmacología
20.
Eur J Pharmacol ; 928: 175121, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35777443

RESUMEN

High altitude cerebral edema (HACE) is a potentially life-threatening disease encountered at high altitudes. However, effective methods for HACE prophylaxis are limited. Convincing evidence confirms that oxidative stress induced by hypobaric hypoxia (HH) is one of the main factors that account for the development of HACE. 5,6,7,8-Tetrahydroxyflavone (THF), a flavone with four consecutive OH groups in ring A, exhibited excellent antioxidant activity in vitro and could attenuate HH induced injury in vivo. The aim of this study was to investigate the protective effect of THF against HACE and its underlying mechanisms. THF administration significantly suppressed HH induced oxidative stress by reducing the formation of hydrogen peroxide and malondialdehyde, by increasing the levels of glutathione and superoxide dismutase in brain tissue. Simultaneously, THF administration inhibited inflammatory responses by decreasing the levels of tumor necrosis factor-α, interleukin-1ß, and interleukin-6 in serum and brain tissue. In addition, THF administration mitigated the energy metabolism disorder induced by HACE as evidenced by decreased levels of lactic acid, lactate dehydrogenase and pyruvate kinase as well as increased ATP levels and ATPase activities. Furthermore, THF administration decreased the expression of matrix metalloproteinase-9, aquaporin 4, hypoxia-inducible factor-1α and vascular endothelial growth factor, which attenuated blood-brain barrier (BBB) disruption and brain edema. Additionally, THF administration improved HACE induced cognitive dysfunction. These results show that THF is a promising agent in the prevention and treatment of HACE.


Asunto(s)
Mal de Altura , Edema Encefálico , Flavonas , Altitud , Mal de Altura/tratamiento farmacológico , Mal de Altura/metabolismo , Mal de Altura/prevención & control , Animales , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/prevención & control , Flavonas/farmacología , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Ratas , Factor A de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA