Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
2.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339168

RESUMEN

Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography-tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10-40 µM dose-dependently suppressed growth, whereas LW6 at 20 µM, but not at 2-10 µM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10-40 µM significantly promoted glucose uptake, with the strongest effect at 20 µM DIF-1, whereas LW6 at 2-20 µM significantly promoted glucose uptake, with the strongest effect at 10 µM LW6. Western blot analyses showed that LW6 (10 µM) and DIF-1 (20 µM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.


Asunto(s)
Glucosa , Malato Deshidrogenasa , Animales , Humanos , Ratones , Células 3T3-L1/efectos de los fármacos , Células 3T3-L1/metabolismo , Adenilato Quinasa/metabolismo , Dictyostelium/metabolismo , Glucosa/metabolismo , Células HeLa/efectos de los fármacos , Células HeLa/metabolismo , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/metabolismo , Mamíferos/metabolismo
3.
Biomolecules ; 12(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36291624

RESUMEN

Ischemia-reperfusion injury is the leading cause of acute kidney injury. Reactive oxygen species (ROS) production causes cell death or senescence. In cultures of primary human renal tubular epithelial cells (RPTECs) subjected to anoxia-reoxygenation, inhibition of the Krebs cycle at the level of malate dehydrogenase-2 (MDH-2) decreases hypoxia-inducible factor-1α and oxidative stress and protects from apoptotic or ferroptotic cell death. Inhibition of MDH-2 decreased reoxygenation-induced upregulation of p53 and p21, restored the levels of the proliferation marker Ki-67, and prevented the upregulation of the senescence marker beta-galactosidase and interleukin-1ß production. MDH-2 inhibition reduced the reoxygenation-induced upregulation of ATP, but the alterations of critical cell metabolism enzymes allowed enough ATP production to prevent cell energy collapse. Thus, inhibition of the Krebs cycle at the level of MDH-2 protects RPTECs from anoxia-reoxygenation-induced death or senescence. MDH-2 may be a promising pharmaceutical target against ischemia-reperfusion injury.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Malato Deshidrogenasa , Daño por Reperfusión , Humanos , Adenosina Trifosfato/metabolismo , Apoptosis , beta-Galactosidasa/metabolismo , Células Epiteliales/metabolismo , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-1beta/metabolismo , Antígeno Ki-67/metabolismo , Malato Deshidrogenasa/antagonistas & inhibidores , Preparaciones Farmacéuticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
4.
Bioorg Med Chem ; 50: 116458, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34687983

RESUMEN

Parasitic diseases remain a major public health concern for humans, claiming millions of lives annually. Although different treatments are required for these diseases, drug usage is limited due to the development of resistance and toxicity, which necessitate alternative therapies. It has been shown in the literature that parasitic lactate dehydrogenases (LDH) and malate dehydrogenases (MDH) have unique pharmacological selective and specificity properties compared to other isoforms, thus highlighting them as viable therapeutic targets involved in aerobic and anaerobic glycolytic pathways. LDH and MDH are important therapeutic targets for invasive parasites because they play a critical role in the progression and development of parasitic diseases. Any strategy to impede these enzymes would be fatal to the parasites, paving the way to develop and discover novel antiparasitic agents. This review aims to highlight the importance of parasitic LDH and MDH as therapeutic drug targets in selected obligate apicoplast parasites. To the best of our knowledge, this review presents the first comprehensive review of LDH and MDH as potential antiparasitic targets for drug development studies.


Asunto(s)
Antiparasitarios/farmacología , Desarrollo de Medicamentos , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/antagonistas & inhibidores , Animales , Antiparasitarios/síntesis química , Antiparasitarios/química , Cryptosporidium parvum/efectos de los fármacos , Cryptosporidium parvum/enzimología , Humanos , L-Lactato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium/efectos de los fármacos , Plasmodium/enzimología , Schistosoma/efectos de los fármacos , Schistosoma/enzimología , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/enzimología
5.
Bioorg Chem ; 115: 105258, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34392176

RESUMEN

Hsp90 (i.e., Heat shock protein 90) is a well-established therapeutic target for several diseases, ranging from misfolding-related disfunctions to cancer. In this framework, we have developed in recent years a family of benzofuran compounds that act as Hsp90 allosteric modulators. Such molecules can interfere with the stability of some relevant Hsp90 client oncoproteins, showing a low µM cytotoxic activity in vitro in cancer cell lines. Here we identify the target profile of these chemical probes by means of chemical proteomics, which established MDH2 (mitochondrial malate dehydrogenase) as an additional relevant cellular target that might help elucidate the molecular mechanism of their citotoxicity. Western blotting, DARTS (i.e., Drug Affinity Responsive Target Stability) and enzymatic assays data confirmed a dose-dependent interaction of MDH2 with several members of the benzofuran Hsp90 modulators family and a computational model allowed to interpret the observed interactions.


Asunto(s)
Antineoplásicos/farmacología , Benzofuranos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Malato Deshidrogenasa/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Antineoplásicos/química , Benzofuranos/química , Relación Dosis-Respuesta a Droga , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Malato Deshidrogenasa/metabolismo , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
6.
Cell Metab ; 33(5): 1027-1041.e8, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33770508

RESUMEN

Mitochondria have an independent genome (mtDNA) and protein synthesis machinery that coordinately activate for mitochondrial generation. Here, we report that the Krebs cycle intermediate fumarate links metabolism to mitobiogenesis through binding to malic enzyme 2 (ME2). Mechanistically, fumarate binds ME2 with two complementary consequences. First, promoting the formation of ME2 dimers, which activate deoxyuridine 5'-triphosphate nucleotidohydrolase (DUT). DUT fosters thymidine generation and an increase of mtDNA. Second, fumarate-induced ME2 dimers abrogate ME2 monomer binding to mitochondrial ribosome protein L45, freeing it for mitoribosome assembly and mtDNA-encoded protein production. Methylation of the ME2-fumarate binding site by protein arginine methyltransferase-1 inhibits fumarate signaling to constrain mitobiogenesis. Notably, acute myeloid leukemia is highly dependent on mitochondrial function and is sensitive to targeting of the fumarate-ME2 axis. Therefore, mitobiogenesis can be manipulated in normal and malignant cells through ME2, an unanticipated governor of mitochondrial biomass production that senses nutrient availability through fumarate.


Asunto(s)
Fumaratos/metabolismo , Malato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Animales , Línea Celular , Ciclo del Ácido Cítrico , ADN Mitocondrial/metabolismo , Dimerización , Humanos , Leucemia/patología , Leucemia/veterinaria , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Mitocondrias/genética , Unión Proteica , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Pirofosfatasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Ribosómicas/metabolismo , Timidina/metabolismo
7.
J Med Chem ; 64(7): 4109-4116, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33761256

RESUMEN

Small molecule colloidal aggregates adsorb and partially denature proteins, inhibiting them artifactually. Oddly, this inhibition is typically time-dependent. Two mechanisms might explain this: low concentrations of the colloid and enzyme might mean low encounter rates, or colloid-based protein denaturation might impose a kinetic barrier. These two mechanisms should have different concentration dependencies. Perplexingly, when enzyme concentration was increased, incubation times actually lengthened, inconsistent with both models and with classical chemical kinetics of solution species. We therefore considered molecular crowding, where colloids with lower protein surface density demand a shorter incubation time than more crowded colloids. To test this, we grew and shrank colloid surface area. As the surface area shrank, the incubation time lengthened, while as it increased, the converse was true. These observations support a crowding effect on protein binding to colloidal aggregates. Implications for drug delivery and for detecting aggregation-based inhibition will be discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coloides/metabolismo , Malato Deshidrogenasa/metabolismo , beta-Lactamasas/metabolismo , Adsorción , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Coloides/química , Pruebas de Enzimas , Fulvestrant/química , Cinética , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/química , Unión Proteica , Sorafenib/química , beta-Lactamasas/química
8.
Bioorg Chem ; 110: 104779, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33689977

RESUMEN

Hypoxia inducible factor-1 (HIF-1) is a pivotal transcription factor, which is strongly correlated with the induction of angiogenesis, tumor survival, metastasis, and cell proliferation, making it a pivotal therapeutic target for solid tumor therapeutic agents. Herein, a new series of multi-functional chemical probes were designed including principal groups, viz. adamantyl and indene, at various locations of the parent compound LW6. Molecular docking studies were performed on the designed compounds and their relationship with HIF-1α and malate dehydrogenase 2 (MDH2). Inhibition of MDH2 by our compounds was expected to decrease the NADH level. Indeed, treatment of the breast cancer cell line 4T1 led to a strong reduction of the NADH concentration. The greatest reduction in NADH production in mitochondria was observed with (E)-3-(4-((3r, 5r, 7r)-adamantan-1-yl) phenoxy)-N-(5-(piperidine-1-carbonyl)-1, 4-dihydroindeno [1, 2-c] pyrazol-3-yl) acrylamide (18: IC50 = 59 nM), and has the best inhibitory potential under hypoxic conditions (MCF-7: IC50 = 57 nM). This compound also gave one of the highest docking "higher than the score obtained with LW6 in parallel (-31.63 kcal/mol) in the initial docking runs (PDB Code: 4WLO). Other related compounds with good yields were also synthesized from docking results, and all the synthesized compounds (14, 18, 22, 26, 29, 30) were evaluated in vitro on human adenocarcinoma cell lines.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Indenos/farmacología , Malato Deshidrogenasa/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Pirazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Indenos/síntesis química , Indenos/química , Malato Deshidrogenasa/metabolismo , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
9.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998265

RESUMEN

Budding at the tumor invasive front has been correlated with the malignant properties of many cancers. Malic enzyme 1 (ME1) promotes the Warburg effect in cancer cells and induces epithelial-mesenchymal transition (EMT) in oral squamous cell carcinoma (OSCC). Therefore, we investigated the role of ME1 in tumor budding in OSCC. Tumor budding was measured in 96 human OSCCs by immunostaining for an epithelial marker (AE1/AE3), and its expression was compared with that of ME1. A significant correlation was observed between tumor budding and ME1 expression. The correlation increased with the progression of cancer. In human OSCC cells, lactate secretion decreased when lactate fermentation was suppressed by knockdown of ME1 and lactate dehydrogenase A or inhibition of pyruvate dehydrogenase (PDH) kinase. Furthermore, the extracellular pH increased, and the EMT phenotype was suppressed. In contrast, when oxidative phosphorylation was suppressed by PDH knockdown, lactate secretion increased, extracellular pH decreased, and the EMT phenotype was promoted. Induction of chemical hypoxia in OSCC cells by CoCl2 treatment resulted in increased ME1 expression along with HIF1α expression and promotion of the EMT phenotype. Hypoxic conditions also increased matrix metalloproteinases expression and decreased mitochondrial membrane potential, mitochondrial oxidative stress, and extracellular pH. Furthermore, the hypoxic treatment resulted in the activation of Yes-associated protein (YAP), which was abolished by ME1 knockdown. These findings suggest that cancer cells at the tumor front in hypoxic environments increase their lactate secretion by switching their energy metabolism from oxidative phosphorylation to glycolysis owing to ME1 overexpression, decrease in extracellular pH, and YAP activation. These alterations enhance EMT and the subsequent tumor budding. Tumor budding and ME1 expression are thus considered useful markers of OSCC malignancy, and ME1 is expected to be a relevant target for molecular therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma de Células Escamosas/genética , Regulación Neoplásica de la Expresión Génica , Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Malato Deshidrogenasa/genética , Neoplasias de la Boca/genética , Factores de Transcripción/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anciano , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Concentración de Iones de Hidrógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Metástasis Linfática , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/metabolismo , Masculino , Persona de Mediana Edad , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Fosforilación Oxidativa , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Simportadores/antagonistas & inhibidores , Simportadores/genética , Simportadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
10.
FEBS Lett ; 594(10): 1631-1644, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32232843

RESUMEN

Radical S-adenosylmethionine (SAM) domain-containing protein 2 (RSAD2; viperin) is a key enzyme in innate immune responses that is highly expressed in response to viral infection and inflammatory stimuli in many cell types. Recently, it was found that RSAD2 catalyses transformation of cytidine triphosphate (CTP) to its analogue 3'-deoxy-3',4'-didehydro-CTP (ddhCTP). The cellular function of this metabolite is unknown. Here, we analysed the extra- and intracellular metabolite levels in human induced pluripotent stem cell (hiPSC)-derived macrophages using high-resolution LC-MS/MS. The results together with biochemical assays and molecular docking simulations revealed that ddhCTP inhibits the NAD+ -dependent activity of enzymes including that of the housekeeping enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). We propose that ddhCTP regulates cellular metabolism in response to inflammatory stimuli such as viral infection, pointing to a broader function of RSAD2 than previously thought.


Asunto(s)
Citidina Trifosfato/metabolismo , Macrófagos/enzimología , NAD/metabolismo , Proteínas/metabolismo , Adenosina Difosfato/metabolismo , Sitios de Unión , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/antagonistas & inhibidores , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/metabolismo , Modelos Moleculares , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH
11.
World J Microbiol Biotechnol ; 36(2): 24, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31965331

RESUMEN

The study evaluated the antibacterial activity of chlorogenic acid (CA) against Salmonella Enteritidis S1, a foodborne pathogen in chilled fresh chicken. Its minimum inhibitory concentration for S. Enteritidis S1 was 2 mM. 1 MIC CA treatment reduced the viable count of S. Enteritidis S1 by 3 log cfu/g in chilled fresh chicken. Scanning electron microscopy examination indicated that CA induced the cell envelope damage of S. Enteritidis S1. Following this, 1-N-Phenylnaphthylamine assay and LPS content analysis indicated that CA induced the permeability of outer membrane (OM). Confocal laser scanning microscopy examination further demonstrated that CA acted on the inner membrane (IM). To support this, the release of intracellular protein and ATP after CA treatment was also observed. CA also suppressed the activities of malate dehydrogenase and succinate dehydrogenase, two main metabolic enzymes in TCA cycle and electron transport chain. Thus, damage of intracelluar and outer membranes as well as disruption of cell metabolism resulted in cell death eventually. The finding suggested that CA has the potential to be developed as a preservative to control S. Enteritidis associated foodborne diseases.


Asunto(s)
Antibacterianos/farmacología , Ácido Clorogénico/farmacología , Salmonella enteritidis/efectos de los fármacos , Animales , Proteínas Bacterianas/antagonistas & inhibidores , Membrana Celular/efectos de los fármacos , Pollos/microbiología , Recuento de Colonia Microbiana , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Malato Deshidrogenasa/antagonistas & inhibidores , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Rastreo , Salmonella enteritidis/enzimología , Salmonella enteritidis/crecimiento & desarrollo , Succinato Deshidrogenasa/antagonistas & inhibidores
12.
Physiol Plant ; 168(2): 278-288, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31152557

RESUMEN

NADPH is an essential cofactor in many physiological processes. Fruit ripening is caused by multiple biochemical pathways in which, reactive oxygen and nitrogen species (ROS/RNS) metabolism is involved. Previous studies have demonstrated the differential modulation of nitric oxide (NO) and hydrogen sulfide (H2 S) content during sweet pepper (Capsicum annuum L.) fruit ripening, both of which regulate NADP-isocitrate dehydrogenase activity. To gain a deeper understanding of the potential functions of other NADPH-generating components, we analyzed glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), which are involved in the oxidative phase of the pentose phosphate pathway (OxPPP) and NADP-malic enzyme (NADP-ME). During fruit ripening, G6PDH activity diminished by 38%, while 6PGDH and NADP-ME activity increased 1.5- and 2.6-fold, respectively. To better understand the potential regulation of these NADP-dehydrogenases by H2 S, we obtained a 50-75% ammonium-sulfate-enriched protein fraction containing these proteins. With the aid of in vitro assays, in the presence of H2 S, we observed that, while NADP-ME activity was inhibited by up to 29-32% using 2 and 5 mM Na2 S as H2 S donor, G6PDH and 6PGDH activities were unaffected. On the other hand, NO donors, S-nitrosocyteine (CysNO) and DETA NONOate also inhibited NADP-ME activity by 35%. These findings suggest that both NADP-ME and 6PGDH play an important role in maintaining the supply of NADPH during pepper fruit ripening and that H2 S and NO partially modulate the NADPH-generating system.


Asunto(s)
Capsicum/enzimología , Sulfuro de Hidrógeno/farmacología , Malato Deshidrogenasa/antagonistas & inhibidores , NADP , Óxido Nítrico/farmacología , Capsicum/efectos de los fármacos , Frutas/efectos de los fármacos , Frutas/enzimología , Glucosafosfato Deshidrogenasa , Fosfogluconato Deshidrogenasa , Proteínas de Plantas/antagonistas & inhibidores
13.
Small ; 15(27): e1900860, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31111667

RESUMEN

Widely used silver nanoparticles (AgNPs) are readily accessible to biological fluids and then surrounded by proteins. However, interactions between AgNPs and proteins are poorly understood. Two dehydrogenases, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and malate dehydrogenase (MDH), are chosen to investigate these interactions. Ag bound to thiol groups of these enzymes significantly decreases the number of free thiols available. Dose-dependent inhibition of enzyme activities is observed in both AgNPs and Ag+ treatments. Based on the concentration required to inhibit 50% activity, GAPDH and MDH are 24-30 fold more sensitive to Ag+ than to AgNPs suggesting that the measured 4.2% Ag+ containing AgNPs can be responsible for the enzymes inhibition. GAPDH, with a thiol group in its active site, is more sensitive to Ag than MDH, displaying many thiol groups but none in its active site, suggesting that thiol groups at the active site strongly determines the sensitivity of enzymes toward AgNPs. In contrast, the dramatic changes of circular dichroism spectra show that the global secondary structure of MDH under AgNPs treatment is more altered than that of GAPDH. In summary, this study shows that the thiol groups and their location on these dehydrogenases are crucial for the AgNPs effects.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Malato Deshidrogenasa/metabolismo , Nanopartículas del Metal/química , Plata/química , Compuestos de Sulfhidrilo/química , Animales , Ditiotreitol/farmacología , Dispersión Dinámica de Luz , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Hidrodinámica , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/química , Espectrometría de Masas , Nanopartículas del Metal/ultraestructura , Modelos Moleculares , Tamaño de la Partícula , Estructura Secundaria de Proteína , Conejos , Plata/farmacología , Electricidad Estática , Especificidad por Sustrato/efectos de los fármacos , Porcinos
14.
Cancer Res ; 79(8): 1884-1898, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30765601

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is driven by metabolic changes in pancreatic cells caused by oncogenic mutations and dysregulation of p53. PDAC cell lines and PDAC-derived xenografts grow as a result of altered metabolic pathways, changes in stroma, and autophagy. Selective targeting and inhibition of one of these may open avenues for the development of new therapeutic strategies. In this study, we performed a genome-wide siRNA screen in a PDAC cell line using endogenous autophagy as a readout and identified several regulators of autophagy that were required for autophagy-dependent PDAC cell survival. Validation of two promising candidates, MPP7 (MAGUK p55 subfamily member 7, a scaffolding protein involved in cell-cell contacts) and MDH1 (cytosolic Malate dehydrogenase 1), revealed their role in early stages of autophagy during autophagosome formation. MPP7 was involved in the activation of YAP1 (a transcriptional coactivator in the Hippo pathway), which in turn promoted autophagy, whereas MDH1 was required for maintenance of the levels of the essential autophagy initiator serine-threonine kinase ULK1, and increased in the activity upon induction of autophagy. Our results provide a possible explanation for how autophagy is regulated by MPP7 and MDH1, which adds to our understanding of autophagy regulation in PDAC. SIGNIFICANCE: This study identifies and characterizes MPP7 and MDH1 as novel regulators of autophagy, which is thought to be responsible for pancreatic cancer cell survival.


Asunto(s)
Autofagia , Carcinoma Ductal Pancreático/patología , Regulación Neoplásica de la Expresión Génica , Malato Deshidrogenasa/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/genética , Proteínas de la Membrana/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas , Proteínas Señalizadoras YAP
15.
Sci Rep ; 8(1): 14268, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30250042

RESUMEN

Cytosolic Malic Enzyme (ME1) provides reduced NADP for anabolism and maintenance of redox status. To examine the role of ME1 in tumor genesis of the gastrointestinal tract, we crossed mice having augmented intestinal epithelial expression of ME1 (ME1-Tg mice) with ApcMin/+ mice to obtain male ApcMin/+/ME1-Tg mice. ME1 protein levels were significantly greater within gut epithelium and adenomas of male ApcMin/+/ME1-Tg than ApcMin/+ mice. Male ApcMin/+/ME1-Tg mice had larger and greater numbers of adenomas in the small intestine (jejunum and ileum) than male ApcMin/+ mice. Male ApcMin/+/ME1-Tg mice exhibited greater small intestine crypt depth and villus length in non-adenoma regions, correspondent with increased KLF9 protein abundance in crypts and lamina propria. Small intestines of male ApcMin/+/ME1-Tg mice also had enhanced levels of Sp5 mRNA, suggesting Wnt/ß-catenin pathway activation. A small molecule inhibitor of ME1 suppressed growth of human CRC cells in vitro, but had little effect on normal rat intestinal epithelial cells. Targeting of ME1 may add to the armentarium of therapies for cancers of the gastrointestinal tract.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Carcinogénesis/genética , Neoplasias del Colon/genética , Tracto Gastrointestinal/metabolismo , Malato Deshidrogenasa/genética , Animales , Proliferación Celular/genética , Neoplasias del Colon/patología , Proteínas de Unión al ADN/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Tracto Gastrointestinal/patología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Mucosa Intestinal , Malato Deshidrogenasa/antagonistas & inhibidores , Ratones , Oncogenes , Ratas , Factores de Transcripción/genética
16.
IUBMB Life ; 70(11): 1076-1083, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30160039

RESUMEN

Reprogrammed metabolic profile is a biochemical fingerprint of cancerous cells, which represents one of the "hallmarks of cancer." The aberrant expression pattern of enzymatic machineries orchestrates metabolic activities into a platform that ultimately promotes cellular growth, survival, and proliferation. The NADP(+)-dependent mitochondrial malic enzyme 2 (ME2) has been widely appreciated due to its function as a provider of pyruvate and reducing power to the cell for biosynthesis of fatty acids and nucleotides along with maintenance of redox balance. Multiple lines of evidences have indicated that ME2 is a bonafide therapeutic target and novel biomarker which plays critical role during tumorigenesis. The objective of this review is to provide an update on the cancer-specific role of ME2 in order to explore its potential for therapeutic opportunities. Furthermore, we have discussed the potential of genetic and pharmacological inhibitors of ME2 in the light of previous research work for therapeutic advancements in cancer treatment. It is contemplated that additional investigations should focus on the use of ME2 inhibitors in combinational therapies as rational combinations of metabolic inhibitors and chemotherapy may have the ability to cure cancer. © 2018 IUBMB Life, 70(11):1076-1083, 2018.


Asunto(s)
Antineoplásicos/uso terapéutico , Malato Deshidrogenasa/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Humanos , Neoplasias/patología , Pronóstico
17.
FEMS Yeast Res ; 18(7)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30052989

RESUMEN

An oenological strain of Saccharomyces cerevisiae was previously shown to produce a 5-10 kDa peptidic fraction responsible for the inhibition of malolactic fermentation (MLF). In the present study, we aim to further purify the anti-MLF peptides of this fraction. The yeast fermented synthetic grape juice medium was fractionated by ammonium sulfate precipitation combined with ultrafiltration. The 5-10 kDa fraction recovered at a saturation degree of 60%-80% was the only fraction that inhibited both the bacterial growth and the malate consumption in vivo. It also inhibited the malolactic enzyme activity in vitro at a pH range between 3.5 and 6.7. Therefore, it was purified by both anion and cation exchange chromatography. The eluates that inhibited the malolactic enzyme activity in vitro were migrated on Tricine SDS-PAGE and the protein bands were excised and sequenced by LC-MS/MS. The sequencing revealed nine peptides originating from eight proteins of S. cerevisiae. Two GAPDH cationic fragments of 0.9 and 1.373 kDa having a pI of 10.5 and 11 respectively, Wtm2p and Utr2p anionic fragments of 2.42 kDa with a pI of 3.5 and 4 respectively were thought to contribute the most to the MLF inhibition.


Asunto(s)
Fermentación , Malato Deshidrogenasa/antagonistas & inhibidores , Malatos/metabolismo , Péptidos/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Fermentación/efectos de los fármacos , Proteínas Fúngicas/química , Concentración de Iones de Hidrógeno , Ácido Láctico/biosíntesis , Peso Molecular , Oenococcus/efectos de los fármacos , Oenococcus/crecimiento & desarrollo , Oenococcus/metabolismo , Péptidos/farmacología , Vitis/metabolismo
18.
PLoS One ; 13(4): e0195011, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29694407

RESUMEN

Malaria remains a major threat to human health, as strains resistant to current therapeutics are discovered. Efforts in finding new drug targets are hampered by the lack of sufficiently specific tools to provide target validation prior to initiating expensive drug discovery projects. Thus, new approaches that can rapidly enable drug target validation are of significant interest. In this manuscript we present the crystal structure of malate dehydrogenase from Plasmodium falciparum (PfMDH) at 2.4 Å resolution and structure-based mutagenic experiments interfering with the inter-oligomeric interactions of the enzyme. We report decreased thermal stability, significantly decreased specific activity and kinetic parameters of PfMDH mutants upon mutagenic disruption of either oligomeric interface. In contrast, stabilization of one of the interfaces resulted in increased thermal stability, increased substrate/cofactor affinity and hyperactivity of the enzyme towards malate production at sub-millimolar substrate concentrations. Furthermore, the presented data show that our designed PfMDH mutant could be used as specific inhibitor of the wild type PfMDH activity, as mutated PfMDH copies were shown to be able to self-incorporate into the native assembly upon introduction in vitro, yielding deactivated mutant:wild-type species. These data provide an insight into the role of oligomeric assembly in regulation of PfMDH activity and reveal that recombinant mutants could be used as probe tool for specific modification of the wild type PfMDH activity, thus offering the potential to validate its druggability in vivo without recourse to complex genetics or initial tool compounds. Such tool compounds often lack specificity between host or pathogen proteins (or are toxic in in vivo trials) and result in difficulties in assessing cause and effect-particularly in cases when the enzymes of interest possess close homologs within the human host. Furthermore, our oligomeric interference approach could be used in the future in order to assess druggability of other challenging human pathogen drug targets.


Asunto(s)
Antimaláricos/química , Descubrimiento de Drogas , Malato Deshidrogenasa/química , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Antimaláricos/farmacología , Sitios de Unión , Secuencia Conservada , Expresión Génica , Humanos , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/genética , Modelos Moleculares , Conformación Molecular , Mutación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Unión Proteica , Proteínas Recombinantes , Especificidad por Sustrato
19.
Int J Oncol ; 52(6): 1923-1933, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29620192

RESUMEN

The present study investigated the possible tumor-suppressing function of microRNA (miR)-612 and the underlying molecular mechanism of its action in bladder cancer in vitro and in vivo. Reverse transcription­quantitative polymerase chain reaction (RT­qPCR) was carried out to quantify the expression levels of miR­612 in bladder cancer tissues and cell lines. The data demonstrated that the level of miR­612 expression was significantly reduced in bladder cancer tissues and cell lines, as compared with that in non­cancerous tissues and cells. Reduced miR­612 expression was associated with advanced tumor, lymph node and metastasis stages, and with distant metastasis of bladder cancer. A functional study revealed that transfection of cells with an miR­612 mimic suppressed bladder cancer cell growth, colony formation, migration, invasion and epithelial-mesenchymal transition. Bioinformatics analysis identified that miR­612 targeted the expression of malic enzyme 1 (ME1), and this was confirmed by western blot and luciferase reporter assay results. Furthermore, the ME1 expression levels were inversely associated with miR­612 expression in bladder cancer tissue specimens. In addition, knockdown of ME1 expression using ME1 siRNA mimicked the effect of ectopic miR­612 overexpression in bladder cancer cells in terms of tumor cell growth, migration and invasion. By contrast, ME1 overexpression weakened the inhibitory effect of the miR­612 mimic in bladder cancer cells. In conclusion, the present study demonstrated that miR­612 may function as a tumor suppressor in bladder cancer by targeting ME1 expression.


Asunto(s)
Regulación hacia Abajo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , MicroARNs/genética , Neoplasias de la Vejiga Urinaria/patología , Regiones no Traducidas 3' , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Malato Deshidrogenasa/antagonistas & inhibidores , Masculino , Ratones , Estadificación de Neoplasias , Trasplante de Neoplasias , ARN Interferente Pequeño/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
20.
Cancer Sci ; 109(6): 2036-2045, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29601126

RESUMEN

Malic enzyme 1 (ME1) is a multifunctional protein involved in glycolysis, the citric acid cycle, NADPH production, glutamine metabolism, and lipogenesis. It is overexpressed in various cancers. We examined the expression of ME1 in 119 oral squamous cell carcinomas (OSCCs) using immunohistochemistry. Malic enzyme 1 expression was moderate to strong in 57 (48%) OSCCs and correlated with pT, pN, clinical stage, and histological grade. In 37 cases with prognostic evaluation, moderate to strong ME1 expression indicated a worse prognosis than did weak ME1 expression. Malic enzyme 1 knockdown or inactivation by lanthanide inhibited cell proliferation and motility and suppressed the epithelial-mesenchymal transition in HSC3 human OSCC cells. Knockdown of ME1 also shifted energy metabolism from aerobic glycolysis and lactate fermentation to mitochondrial oxidative phosphorylation, and the redox status from reductive to oxidative. In a mouse tumor model, lanthanide suppressed tumor growth and increased survival time. These findings reveal that ME1 is a valid target for molecular therapy in OSCC.


Asunto(s)
Carcinoma de Células Escamosas/enzimología , Citosol/enzimología , Malato Deshidrogenasa/biosíntesis , Neoplasias de la Boca/enzimología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Elementos de la Serie de los Lantanoides/farmacología , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Oligonucleótidos Antisentido/genética , Oxidación-Reducción/efectos de los fármacos , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA