Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.169
Filtrar
1.
Theranostics ; 14(10): 3810-3826, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994034

RESUMEN

Rationale: Surgical resection is a primary treatment for solid tumors, but high rates of tumor recurrence and metastasis post-surgery present significant challenges. Manganese (Mn2+), known to enhance dendritic cell-mediated cancer immunotherapy by activating the cGAS-STING pathway, has potential in post-operative cancer management. However, achieving prolonged and localized delivery of Mn2+ to stimulate immune responses without systemic toxicity remains a challenge. Methods: We developed a post-operative microenvironment-responsive dendrobium polysaccharide hydrogel embedded with Mn2+-pectin microspheres (MnP@DOP-Gel). This hydrogel system releases Mn2+-pectin microspheres (MnP) in response to ROS, and MnP shows a dual effect in vitro: promoting immunogenic cell death and activating immune cells (dendritic cells and macrophages). The efficacy of MnP@DOP-Gel as a post-surgical treatment and its potential for immune activation were assessed in both subcutaneous and metastatic melanoma models in mice, exploring its synergistic effect with anti-PD1 antibody. Result: MnP@DOP-Gel exhibited ROS-responsive release of MnP, which could exert dual effects by inducing immunogenic cell death of tumor cells and activating dendritic cells and macrophages to initiate a cascade of anti-tumor immune responses. In vivo experiments showed that the implanted MnP@DOP-Gel significantly inhibited residual tumor growth and metastasis. Moreover, the combination of MnP@DOP-Gel and anti-PD1 antibody displayed superior therapeutic potency in preventing either metastasis or abscopal brain tumor growth. Conclusions: MnP@DOP-Gel represents a promising drug-free strategy for cancer post-operative management. Utilizing this Mn2+-embedding and ROS-responsive delivery system, it regulates surgery-induced immune responses and promotes sustained anti-tumor responses, potentially increasing the effectiveness of surgical cancer treatments.


Asunto(s)
Dendrobium , Hidrogeles , Manganeso , Ratones Endogámicos C57BL , Microesferas , Polisacáridos , Animales , Ratones , Hidrogeles/química , Manganeso/química , Polisacáridos/química , Polisacáridos/farmacología , Dendrobium/química , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Melanoma/inmunología , Melanoma/tratamiento farmacológico , Melanoma/terapia , Inmunoterapia/métodos , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Línea Celular Tumoral , Femenino , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Especies Reactivas de Oxígeno/metabolismo , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Melanoma Experimental/tratamiento farmacológico
2.
Molecules ; 29(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998912

RESUMEN

Managing chronic non-healing wounds presents a significant clinical challenge due to their frequent bacterial infections. Mesoporous silica-based materials possess robust wound-healing capabilities attributed to their renowned antimicrobial properties. The current study details the advancement of mesoporous silicon-loaded MnO and CaO molecules (HMn-Ca) against bacterial infections and chronic non-healing wounds. HMn-Ca was synthesized by reducing manganese chloride and calcium chloride by urotropine solution with mesoporous silicon as the template, thereby transforming the manganese and calcium ions on the framework of mesoporous silicon. The developed HMn-Ca was investigated using scanning electron microscopy (SEM), transmission electron microscope (TEM), ultraviolet-visible (UV-visible), and visible spectrophotometry, followed by the determination of Zeta potential. The production of reactive oxygen species (ROS) was determined by using the 3,3,5,5-tetramethylbenzidine (TMB) oxidation reaction. The wound healing effectiveness of the synthesized HMn-Ca is evaluated in a bacterial-infected mouse model. The loading of MnO and CaO inside mesoporous silicon enhanced the generation of ROS and the capacity of bacterial capture, subsequently decomposing the bacterial membrane, leading to the puncturing of the bacterial membrane, followed by cellular demise. As a result, treatment with HMn-Ca could improve the healing of the bacterial-infected wound, illustrating a straightforward yet potent method for engineering nanozymes tailored for antibacterial therapy.


Asunto(s)
Compuestos de Manganeso , Nanopartículas , Óxidos , Especies Reactivas de Oxígeno , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ratones , Nanopartículas/química , Óxidos/química , Óxidos/farmacología , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Porosidad , Especies Reactivas de Oxígeno/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/química , Compuestos de Calcio/química , Compuestos de Calcio/farmacología , Oxidación-Reducción , Antibacterianos/farmacología , Antibacterianos/química , Manganeso/química , Manganeso/farmacología , Pruebas de Sensibilidad Microbiana
3.
Nat Commun ; 15(1): 5518, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951539

RESUMEN

Determining short-lived intermediate structures in chemical reactions is challenging. Although ultrafast spectroscopic methods can detect the formation of transient intermediates, real-space structures cannot be determined directly from such studies. Time-resolved serial femtosecond crystallography (TR-SFX) has recently proven to be a powerful method for capturing molecular changes in proteins on femtosecond timescales. However, the methodology has been mostly applied to natural proteins/enzymes and limited to reactions promoted by synthetic molecules due to structure determination challenges. This work demonstrates the applicability of TR-SFX for investigations of chemical reaction mechanisms of synthetic metal complexes. We fix a light-induced CO-releasing Mn(CO)3 reaction center in porous hen egg white lysozyme (HEWL) microcrystals. By controlling light exposure and time, we capture the real-time formation of Mn-carbonyl intermediates during the CO release reaction. The asymmetric protein environment is found to influence the order of CO release. The experimentally-observed reaction path agrees with quantum mechanical calculations. Therefore, our demonstration offers a new approach to visualize atomic-level reactions of small molecules using TR-SFX with real-space structure determination. This advance holds the potential to facilitate design of artificial metalloenzymes with precise mechanisms, empowering design, control and development of innovative reactions.


Asunto(s)
Manganeso , Muramidasa , Muramidasa/química , Manganeso/química , Cristalografía por Rayos X , Porosidad , Complejos de Coordinación/química , Modelos Moleculares , Animales , Monóxido de Carbono/química , Factores de Tiempo , Pollos
4.
Chem Commun (Camb) ; 60(51): 6528-6531, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38836405

RESUMEN

Using different prebiotically plausible activating reagents, the RNA ligation yield was significantly increased in the presence of Mn(II). The mechanism of the activation reaction has been investigated using 5'-AMP as an analogue.


Asunto(s)
Manganeso , ARN , Manganeso/química , ARN/química , Prebióticos
5.
Luminescence ; 39(6): e4807, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38890121

RESUMEN

ZnAl2O4 with a typical spinel structure is highly expected to be a novel rare-earth-free ion-activated oxide phosphor with red emission, which holds high actual meaning for advancing phosphor-converted light-emitting diode (pc-LED) lighting. Among the rare-earth-free activators, Mn4+ ions have emerged as one of the most promising activators. Considering the price advantage of MnCO3 generating Mn2+ ions and the charge compensation effect potentially obtaining Mn4+ ions from Mn2+ ions, this research delves into a collection of ZnAl2O4:Mn2+(Mn4+), x Li+ (x = 0%-40%) phosphors with Li+ as co-dopant and MnCO3 as Mn2+ dopant source prepared by a high temperature solid-state reaction method. The lattice structure was investigated using X-ray diffraction (XRD), photoluminescence (PL), and photoluminescence excitation (PLE) spectroscopy. Results suggest a relatively high probability of Li+ ions occupying Zn2+ lattice sites. Furthermore, Li+ ion doping was assuredly found to facilitate the oxidization of Mn2+ to Mn4+, leading to a shift of luminescence peak from 516 to 656 nm. An intriguing phenomenon that the emission color changed with the Li+ doping content was also observed. Meanwhile, the luminescence intensity and quantum yield (QY) at different temperatures, as well as the relevant thermal quenching mechanism, were determined and elucidated detailedly.


Asunto(s)
Litio , Luminiscencia , Manganeso , Manganeso/química , Litio/química , Cationes/química , Sustancias Luminiscentes/química , Sustancias Luminiscentes/síntesis química , Mediciones Luminiscentes , Óxidos/química , Difracción de Rayos X , Zinc/química
6.
J Nanobiotechnology ; 22(1): 374, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926723

RESUMEN

BACKGROUND: Hypoxia-activated prodrugs present new opportunities for safe and effective tumor drug resistance therapy due to their high selectivity for hypoxic cells. However, the uneven distribution of oxygen in solid tumor and insufficient hypoxia in the tumor microenvironment greatly limit its therapeutic efficacy. RESULTS: In this paper, a novel AQ4N-Mn(II)@PDA coordination nanoplatform was designed and functionalized with GMBP1 to target drug-resistant tumor cells. Its excellent photothermal conversion efficiency could achieve local high-temperature photothermal therapy in tumors, which could not only effectively exacerbate tumor hypoxia and thus improve the efficacy of hypoxia-activated chemotherapy of AQ4N but also significantly accelerate Mn2+-mediated Fenton-like activity to enhance chemodynamic therapy. Moreover, real-time monitoring of blood oxygen saturation through photoacoustic imaging could reflect the hypoxic status of tumors during treatment. Furthermore, synergistic treatment effectively inhibited tumor growth and improved the survival rate of mice bearing orthotopic drug-resistant tumors. CONCLUSIONS: This study not only provided a new idea for PTT combined with hypoxia-activated chemotherapy and CDT for drug-resistant tumors but also explored a vital theory for real-time monitoring of hypoxia during treatment.


Asunto(s)
Resistencia a Antineoplásicos , Terapia Fototérmica , Animales , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Humanos , Terapia Fototérmica/métodos , Ratones Endogámicos BALB C , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Microambiente Tumoral/efectos de los fármacos , Ratones Desnudos , Profármacos/farmacología , Profármacos/química , Hipoxia Tumoral/efectos de los fármacos , Manganeso/química , Femenino , Neoplasias/tratamiento farmacológico , Antraquinonas
7.
J Inorg Biochem ; 258: 112635, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852294

RESUMEN

Morin (MRN), an intriguing bioflavonol, has received increasing interest for its antioxidant properties, as have its metal complexes (Mz+-MRN). Understanding their antioxidant behavior is critical to assess their pharmaceutical, nutraceutical potential, and therapeutic impact in the design of advanced antioxidant drugs. To this end, knowing the speciation of different H+-MRN and Mz+-MRN is pivotal to understand and compare their antioxidant ability. In this work, the protonation constant values of MRN under physiological ionic strength and temperature conditions (I = 0.15 mol L-1 and t = 37 °C), determined by UV-vis spectrophotometric titrations, are introduced. Thus, a reliable speciation model on H+-MRN species in aqueous solution is presented, which exhibits five stable forms depending on pH, supplemented by quantum-mechanical calculations useful to determine the proton affinities of each functional group and corresponding deprotonation order. Furthermore, potentiometry and UV-vis spectrophotometry have been exploited to determine the thermodynamic interaction parameters of MRN with different metal cations (Mg2+, Mn2+, Zn2+, Al3+). The antioxidant ability of H+-MRN and Mz+-MRN has been evaluated by the 2,2'-diphenyl-1-benzopyran-4-one (DPPH) method, and the Zn2+-MRN system has proven to afford the most potent antioxidant effect. Ab initio molecular dynamics simulations of Mz+-MRN species at all possible chelation sites and under explicit water solvation allowed for the fine characterization not only of the metal chelation modalities of MRN in explicit water, but also of the role played by the local water environment around the metal cations. Those microscopic patterns reveal to be informative on the different antioxidant capabilities recorded experimentally.


Asunto(s)
Antioxidantes , Complejos de Coordinación , Flavonoides , Zinc , Flavonoides/química , Antioxidantes/química , Complejos de Coordinación/química , Zinc/química , Magnesio/química , Aluminio/química , Manganeso/química , Termodinámica , Flavonas
8.
Environ Sci Pollut Res Int ; 31(29): 42342-42356, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872036

RESUMEN

The Electrolytic Manganese Residue (EMR) is a by-product of the electrolytic manganese metal (EMM) industry, containing high concentrations of potential pollutants such as NH4+-N and soluble Mn2+. These components pose a serious threat to the ecological environment. To explore accurate, efficient, and harmless treatment methods for EMR, this study proposes a low-temperature thermochemical approach. The orthogonal experiment design investigates the effects of reaction temperature, reaction time, quicklime (CaO), sodium carbonate (Na2CO3), sodium phosphate (Na3PO4) (Reviewer #3), and water consumption on manganese solidified and ammonia removal from EMR. The results indicate that optimal conditions are a reaction temperature of 60 ℃ (Reviewer #3) and a reaction time of 10 min. CaO precipitates Mn2+ as manganese hydroxide (Mn(OH)2) (Reviewer #3), achieving effective manganese solidified and ammonia removal. The addition of Na2CO3 causes Mn2+ to form manganesecarbonate (MnCO3) (Reviewer #3)precipitate, while Na3PO4 makes Mn2+ form Manganese phosphate trihydrate (Mn3(PO4)2·3H2O) (Reviewer #3). Increased water consumption enhances the interaction adequacy between ions. Under optimal conditions (CaO 10%, Na2CO3 1%, Na3PO4 0.5%, and 80% water consumption), the removal rate of ammonium ions reaches 98.5%, and the solidification rate of soluble Mn2+ is 99.9%. The order of influence on ammonium ion removal is CaO > water consumption > Na3PO4 > Na2CO3. Therefore, this study provides a new method for low-cost process disposal and efficient harmless treatment of EMR (Reviewer #3).


Asunto(s)
Manganeso , Manganeso/química , Temperatura , Amoníaco/química , Electrólisis
9.
Int J Biol Macromol ; 272(Pt 1): 132922, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38844292

RESUMEN

Converting lignin into specific aromatic chemicals for utilization through depolymerization of lignin is an effective way to achieve high-value applications. There are many depolymerization methods that can do this, but there are problems such as harsh reaction conditions, low depolymerization efficiency and uncontrollable target products that need to be solved. This study reports a novel system for the oxidative depolymerization of alkali lignin using Fe- and Mn- modified TS-1 as a catalyst to assist in the highly selective production of vanillin. We also proposed a possible reaction pathway for the oxidative depolymerization of alkali lignin to produce vanillin catalyzed by Fe-Mn/TS-1 catalyst. The catalytic effects of TS-1, Fe/TS-1, and Fe-Mn/TS-1 catalysts on the oxidative depolymerization of lignin to produce phenolic monomers and vanillin were investigated. The results show that the modified catalysts can effectively improve the efficiency of linkage bond breaking in lignin, especially the ß-O-4 bond, in which the inter-band transitions of Fe and Mn play an important role. The synergistic effect of the bimetallic-loaded catalyst (Fe-Mn/TS-1) could catalyze the oxidative depolymerization of lignin more efficiently than the monometallic-loaded catalyst (Fe/TS-1). This lignin oxidative depolymerization system produced 40.59 wt% bio-oil including 12.24 wt% phenolic monomers and 16.17 wt% re-lignin after the addition of Fe-Mn/TS-1 catalyst, owning the highest phenolic monomer yield. Surprisingly, this lignin oxidative depolymerization system exhibited high yield for vanillin (8.36 wt%) production. These results demonstrated that the Fe-Mn/TS-1 catalytic system has potential to produce vanillin from lignin under mild conditions.


Asunto(s)
Benzaldehídos , Hierro , Lignina , Manganeso , Oxidación-Reducción , Polimerizacion , Zeolitas , Lignina/química , Benzaldehídos/química , Manganeso/química , Catálisis , Hierro/química , Zeolitas/química
10.
Luminescence ; 39(6): e4799, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38858760

RESUMEN

In this study, tellurium-doped and undoped metal oxide nanoparticles (NPs) (ZnO, Mn3O4, SnO2) are compared, and a practical method for their synthesis is presented. Nanocomposites were created using the coprecipitation process, and comparisons between the three material categories under study were made using a range of characterization methods. The produced materials were subjected to structural, morphological, elemental composition, and functional group analyses using XRD, FESEM in combination with EDS, and FTIR. The optical characteristics in terms of cutoff wavelength were evaluated using UV-visible spectroscopy. Catalyzing the breakdown of methylene blue (MB) dye, the isolated nanocomposites demonstrated very consistent behavior when utilized as catalysts. Regarding both doped and undoped ZnO NPs, the maximum percentage of degradation was found to be 98% when exposed to solar Escherichia coli and Staphylococcus aureus, which stand for gram-positive and gram-negative bacteria, respectively, and were chosen as model strains for both groups using the disk diffusion technique in the context of in vitro antibacterial testing. Doped and undoped ZnO NPs exhibited greater antibacterial efficacy, with significant inhibition zones measuring 31.5 and 37.8 mm, compared with other metal oxide NPs.


Asunto(s)
Antibacterianos , Escherichia coli , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Telurio , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Telurio/química , Telurio/farmacología , Staphylococcus aureus/efectos de los fármacos , Catálisis , Nanopartículas del Metal/química , Escherichia coli/efectos de los fármacos , Procesos Fotoquímicos , Azul de Metileno/química , Azul de Metileno/farmacología , Óxido de Zinc/química , Óxido de Zinc/farmacología , Manganeso/química , Manganeso/farmacología , Estaño/química , Estaño/farmacología , Tamaño de la Partícula , Óxidos/química , Óxidos/farmacología
11.
J Hazard Mater ; 474: 134827, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850953

RESUMEN

In our work, a gravity-driven ceramic membrane bioreactor (GDCMBR) was developed to remove Mn2+ and NH3-N simultaneously through the birnessite water purification layer in-situ construction on the ceramic membrane due to chemical pre-oxidation (powdered activated carbon (PAC)-MnOx). Considering the trade-off of biofouling and water production, the daily intermittent short-term vertical aeration mode was involving to balance this contradiction with the excellent water purification and improved membrane permeability. And the GDCMBR permeability of operation flux was improved for 5-7 LHM with intermittent short-term vertical aeration. Furthermore, only ∼7 % irreversible membrane resistance (Rir) also confirmed the improved membrane permeability with intermittent short-term vertical aeration. And some manganese oxidizing bacteria (MnOB) and ammonia oxidizing bacteria (AOB) species at genus level were identified during long-term operation with the contact circulating flowing raw water, resulting in the better Mn2+ and NH3-N removal efficiency. Additionally, the nano-flower-like birnessite water purification layer was verified in ceramsite@PAC-MnOx coupled GDCMBR, which evolute into a porous flake-like structure with the increasing intermittent short-term aeration duration. Therefore, the sustainable and effective intermittent short-term aeration mode in ceramsite@PAC-MnOx coupled GDCMBR could improve the membrane permeability with the satisfactory groundwater purification efficiency, as well as providing an energy-efficient strategy for membrane technologies applications in water supply safety.


Asunto(s)
Amoníaco , Cerámica , Manganeso , Membranas Artificiales , Permeabilidad , Cerámica/química , Manganeso/química , Amoníaco/química , Amoníaco/metabolismo , Purificación del Agua/métodos , Reactores Biológicos , Carbón Orgánico/química , Óxidos/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Nitrógeno/química , Nitrógeno/metabolismo , Compuestos de Manganeso/química , Gravitación , Bacterias/metabolismo
12.
Biomater Sci ; 12(14): 3622-3632, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38855985

RESUMEN

Chemodynamic therapy (CDT) has outstanding potential as a combination therapy to treat cancer. However, the effectiveness of CDT in the treatment of solid tumors is limited by the overexpression of glutathione (GSH) in the tumor microenvironment (TME). GSH overexpression diminishes oxidative stress and attenuates chemotherapeutic drug-induced apoptosis in cancer cells. To counter these effects, a synergistic CDT/chemotherapy cancer treatment, involving the use of a multifunctional bioreactor of hollow manganese dioxide (HMnO2) loaded with cisplatin (CDDP), was developed. Metal nanoenzymes that can auto-degrade to produce Mn2+ exhibit Fenton-like, GSH-peroxidase-like activity, which effectively depletes GSH in the TME to attenuate the tumor antioxidant capacity. In an acidic environment, Mn2+ catalyzed the decomposition of intra-tumor H2O2 into highly toxic ·OH as a CDT. HMnO2 with large pores, pore volume, and surface area exhibited a high CDDP loading capacity (>0.6 g-1). Treatment with CDDP-loaded HMnO2 increased the intratumor Pt-DNA content, leading to the up-regulation of γ-H2Aχ and an increase in tumor tissue damage. The decreased GSH triggered by HMnO2 auto-degradation protected Mn2+-generated ·OH from scavenging to amplify oxidative stress and enhance the efficacy of CDT. The nanoenzymes with encapsulated chemotherapeutic agents deplete GSH and remodel the TME. Thus, tumor CDT/chemotherapy combination therapy is an effective therapeutic strategy.


Asunto(s)
Antineoplásicos , Cisplatino , Glutatión , Compuestos de Manganeso , Manganeso , Óxidos , Glutatión/metabolismo , Cisplatino/farmacología , Cisplatino/química , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Manganeso/química , Animales , Óxidos/química , Óxidos/farmacología , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología
13.
ACS Appl Bio Mater ; 7(7): 4760-4771, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38916249

RESUMEN

Laccase is an oxidase of great industrial interest due to its ability to catalyze oxidation processes of phenols and persistent organic pollutants. However, it is susceptible to denaturation at high temperatures, sensitive to pH, and unstable in the presence of high concentrations of solvents, which is a issue for industrial use. To solve this problem, this work develops the synthesis in an aqueous medium of a new Mn metalloenzyme with laccase oxidase mimetic catalytic activity. Geobacillus thermocatenulatus lipase (GTL) was used as a scaffold enzyme, mixed with a manganese salt at 50 °C in an aqueous medium. This leads to the in situ formation of manganese(IV) oxide nanowires that interact with the enzyme, yielding a GTL-Mn bionanohybrid. On the other hand, its oxidative activity was evaluated using the ABTS assay, obtaining a catalytic efficiency 300 times higher than that of Trametes versicolor laccase. This new Mn metalloenzyme was 2 times more stable at 40 °C, 3 times more stable in the presence of 10% acetonitrile, and 10 times more stable in 20% acetonitrile than Novozym 51003 laccase. Furthermore, the site-selective immobilized GTL-Mn showed a much higher stability than the soluble form. The oxidase-like activity of this Mn metalloenzyme was successfully demonstrated against other substrates, such as l-DOPA or phloridzin, in oligomerization reactions.


Asunto(s)
Lacasa , Manganeso , Lacasa/metabolismo , Lacasa/química , Manganeso/química , Ensayo de Materiales , Geobacillus/enzimología , Tamaño de la Partícula , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/metabolismo , Lipasa/metabolismo , Lipasa/química
14.
J Med Chem ; 67(13): 11242-11253, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38935616

RESUMEN

We report the [natMn/52Mn]Mn(II) complexes of the macrocyclic chelators PYAN [3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane] and CHXPYAN [(41R,42R,101R,102R)-3,5,9,11-tetraaza-1,7(2,6)-dipyridina-4,10(1,2)-dicyclohexanacyclododecaphane]. The X-ray crystal structures of Mn-PYAN and Mn-CHXPYAN evidence distorted octahedral geometries through coordination of the nitrogen atoms of the macrocycles. Cyclic voltammetry studies evidence reversible processes due to the Mn(II)/Mn(III) pair, indicating that the complexes are resistant to oxidation. CHXPYAN forms a more thermodynamically stable and kinetically inert Mn(II) complex than PYAN. Radiochemical studies with the radioactive isotope manganese-52 (52Mn, t1/2 = 5.6 days) evidenced better radiochemical yields for CHXPYAN than for PYAN. Both [52Mn]Mn(II) complexes remained stable in mouse and human serum, so in vivo stability studies were carried out. Positron emission tomography/computed tomography scans and biodistribution assays indicated that [52Mn]Mn-PYAN has a distribution pattern similar to that of [52Mn]MnCl2, showing persistent radioactivity accumulation in the kidneys. Conversely, [52Mn]Mn-CHXPYAN remained stable in vivo, clearing quickly from the liver and kidneys.


Asunto(s)
Quelantes , Compuestos Macrocíclicos , Manganeso , Tomografía de Emisión de Positrones , Animales , Ratones , Tomografía de Emisión de Positrones/métodos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/farmacocinética , Manganeso/química , Quelantes/química , Quelantes/síntesis química , Cristalografía por Rayos X , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacocinética , Distribución Tisular , Modelos Moleculares , Radiofármacos/química , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Estabilidad de Medicamentos
15.
Environ Sci Technol ; 58(27): 12179-12188, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38913078

RESUMEN

Extensive research has been conducted on the utilization of a metal-based catalyst to activate peracetic acid (PAA) for the degradation of micropollutants (MPs) in water. Mn(II) is a commonly employed catalyst for homogeneous advanced oxidation processes (AOPs), but its catalytic performance with PAA is poor. This study showed that the environmentally friendly chelator ethylenediamine-N,N'-disuccinic acid (EDDS) could greatly facilitate the activation of Mn(II) in PAA for complete atrazine (ATZ) degradation. In this process, the EDDS enhanced the catalytic activity of manganese (Mn) and prevented disproportionation of transient Mn species, thus facilitating the decay of PAA and mineralization of ATZ. By employing electron spin resonance detection, quenching and probe tests, and 18O isotope-tracing experiments, the significance of high-valent Mn-oxo species (Mn(V)) in the Mn(II)-EDDS/PAA system was revealed. In particular, the involvement of the Mn(III) species was essential for the formation of Mn(V). Mn(III) species, along with singlet oxygen (1O2) and acetyl(per)oxyl radicals (CH3C(O)O•/CH3C(O)OO•), also contributed partially to ATZ degradation. Mass spectrometry and density functional theory methods were used to study the transformation pathway and mechanism of ATZ. The toxicity assessment of the oxidative products indicated that the toxicity of ATZ decreased after the degradation reaction. Moreover, the system exhibited excellent interference resistance toward various anions and humid acid (HA), and it could selectively degrade multiple MPs.


Asunto(s)
Manganeso , Ácido Peracético , Manganeso/química , Ácido Peracético/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Etilenodiaminas/química
16.
Phys Chem Chem Phys ; 26(27): 18606-18613, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38919033

RESUMEN

A Protein Data Bank (PDB) survey has revealed noncovalent contacts involving Mn centres and protein residues. Their geometrical features are in line with the interaction between low electron density sites located along the Mn-O/N coordination bonds (σ-holes) and the lone pairs belonging to TYR, SER or HIS residues, known as a matere bond (MaB). Calculations at the PBE0-D3/def2-TZVP level of theory were used to investigate the strength and shed light on the physical nature of the interaction. We expect the results presented herein will be useful for those scientists working in the fields of bioinorganic chemistry, particulary in protein-metal docking, by providing new insights into transition metal⋯Lewis base interactions as well as a retrospective point of view to further understand the structural and functional implications of this key transition metal ion.


Asunto(s)
Bases de Datos de Proteínas , Teoría Funcional de la Densidad , Manganeso , Manganeso/química , Proteínas/química
17.
ACS Appl Mater Interfaces ; 16(27): 34450-34466, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38941284

RESUMEN

Radiosensitizers play a pivotal role in enhancing radiotherapy (RT). One of the challenges in RT is the limited accumulation of nanoradiosensitizers and the difficulty in activating antitumor immunity. Herein, a smart strategy was used to achieve in situ aggregation of nanomanganese adjuvants (MnAuNP-C&B) to enhance RT-induced antitumor immunity. The aggregated MnAuNP-C&B system overcomes the shortcomings of small-sized nanoparticles that easily flow back into blood vessels and diffuse into surrounding tissues, and it also prolongs the retention time of nanomanganese within cancer cells and tumors. The MnAuNP-C&B system significantly enhances the radiosensitization effect in RT. Additionally, the pH-responsive disassembly of MnAuNP-C&B triggers the release of Mn2+, further promoting RT-induced activation of the STING pathway and eliciting robust antitumor immunity. Overall, our study presents a smart strategy wherein in situ aggregation of nanomanganese effectively inhibits tumor growth through radiosensitization and the activation of antitumor immunity.


Asunto(s)
Fármacos Sensibilizantes a Radiaciones , Animales , Ratones , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Humanos , Manganeso/química , Línea Celular Tumoral , Nanopartículas/química , Nanopartículas/uso terapéutico , Femenino , Ratones Endogámicos BALB C , Neoplasias/radioterapia , Neoplasias/inmunología , Antineoplásicos/química , Antineoplásicos/farmacología
18.
J Environ Sci (China) ; 145: 180-192, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844318

RESUMEN

A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese (Mn2+) and ammonium (NH4+-N). Three different combinations of oxidants (KMnO4 and K2FeO4) and reductants (MnSO4 and FeCl2) were used during the start-up period. Filter R3 started up by KMnO4 and FeCl2 (Mn7+→MnOx) exhibited excellent catalytic property, and the NH4+-N and Mn2+ removal efficiency reached over 80% on the 10th and 35th days, respectively. Filter R1 started up by K2FeO4 and MnSO4 (MnOx←Mn2+) exhibited the worst catalytic property. Filter R2 started up by KMnO4 and MnSO4 (Mn7+→MnOx←Mn2+) were in between. According to Zeta potential results, the Mn-based oxides (MnOx) formed by Mn7+→MnOx performed the highest pHIEP and pHPZC. The higher the pHIEP and pHPZC, the more unfavorable the cation adsorption. However, it was inconsistent with its excellent Mn2+ and NH4+-N removal abilities, implying that catalytic oxidation played a key role. Combined with XRD and XPS analysis, the results showed that the MnOx produced by the reduction of KMnO4 showed early formation of buserite crystals, high degree of amorphous, high content of Mn3+ and lattice oxygen with the higher activity to form defects. The above results showed that MnOx produced by the reduction of KMnO4 was more conducive to the formation of active species for catalytic oxidation of NH4+-N and Mn2+ removal. This study provides new insights on the formation mechanisms of the active MnOx that could catalytic oxidation of NH4+-N and Mn2+.


Asunto(s)
Compuestos de Amonio , Filtración , Manganeso , Óxidos , Manganeso/química , Óxidos/química , Compuestos de Amonio/química , Filtración/métodos , Contaminantes Químicos del Agua/química , Permanganato de Potasio/química , Compuestos de Manganeso/química , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Compuestos de Potasio/química , Adsorción , Compuestos Férricos/química , Compuestos de Hierro
19.
Int J Nanomedicine ; 19: 5045-5056, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832334

RESUMEN

Background: Chemodynamic therapy (CDT) is a new treatment approach that is triggered by endogenous stimuli in specific intracellular conditions for generating hydroxyl radicals. However, the efficiency of CDT is severely limited by Fenton reaction agents and harsh reaction conditions. Methods: Bimetallic PtMn nanocubes were rationally designed and simply synthesized through a one-step high-temperature pyrolysis process by controlling both the nucleation process and the subsequent crystal growth stage. The polyethylene glycol was modified to enhance biocompatibility. Results: Benefiting from the alloying of Pt nanocubes with Mn doping, the structure of the electron cloud has changed, resulting in different degrees of the shift in electron binding energy, resulting in the increasing of Fenton reaction activity. The PtMn nanocubes could catalyze endogenous hydrogen peroxide to toxic hydroxyl radicals in mild acid. Meanwhile, the intrinsic glutathione (GSH) depletion activity of PtMn nanocubes consumed GSH with the assistance of Mn3+/Mn2+. Upon 808 nm laser irradiation, mild temperature due to the surface plasmon resonance effect of Pt metal can also enhance the Fenton reaction. Conclusion: PtMn nanocubes can not only destroy the antioxidant system via efficient reactive oxygen species generation and continuous GSH consumption but also propose the photothermal effect of noble metal for enhanced Fenton reaction activity.


Asunto(s)
Glutatión , Manganeso , Platino (Metal) , Especies Reactivas de Oxígeno , Animales , Platino (Metal)/química , Platino (Metal)/farmacología , Especies Reactivas de Oxígeno/metabolismo , Glutatión/química , Humanos , Manganeso/química , Manganeso/farmacología , Terapia Fototérmica/métodos , Ratones , Nanopartículas del Metal/química , Peróxido de Hidrógeno/química , Línea Celular Tumoral , Radical Hidroxilo/química , Antineoplásicos/química , Antineoplásicos/farmacología , Hierro/química
20.
Water Res ; 259: 121876, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852391

RESUMEN

This study investigated the coexistence and contamination of manganese (Mn(II)) and arsenite (As(III)) in groundwater and examined their oxidation behavior under different equilibrating parameters, including varying pH, bicarbonate (HCO3-) concentrations, and sodium hypochlorite (NaClO) oxidant concentrations. Results showed that if the molar ratio of NaClO: As(III) was >1, the oxidation of As(III) could be achieved within a minute with an extremely high oxidation rate of 99.7 %. In the binary system, the removal of As(III) prevailed over Mn(II). The As(III) oxidation efficiency increased from 59.8 ± 0.6 % to 70.8 ± 1.9 % when pH rose from 5.7 to 8.0. The oxidation reaction between As(III) and NaClO releases H+ ions, decreasing the pH from 6.77 to 6.19 and reducing the removal efficiency of Mn(II). The presence of HCO3- reduced the oxidation rate of Mn(II) from 63.2 % to 13.9 % within four hours. Instead, the final oxidation rate of Mn(II) increased from 68.1 % to 87.7 %. This increase can be attributed to HCO3- ions competing with the free Mn(II) for the adsorption sites on the sediments, inhibiting the formation of H+. Moreover, kinetic studies revealed that the oxidation reaction between Mn(II) and NaClO followed first-order kinetics based on their R2 values. The significant factors affecting the Mn(II) oxidation efficiency were the initial concentration of NaClO and pH. Applying an artificial neural network (ANN) model for data analysis proved to be an effective tool for predicting Mn(II) oxidation rates under different experimental conditions. The actual Mn(II) oxidation data and the predicted values obtained from the ANN model showed significant consistency. The training and validation data sets yielded R2 values of 0.995 and 0.992, respectively. Moreover, the ANN model highlights the importance of pH and NaClO concentrations in influencing the oxidation rate of Mn(II).


Asunto(s)
Arsenitos , Manganeso , Redes Neurales de la Computación , Oxidación-Reducción , Manganeso/química , Arsenitos/química , Cinética , Halogenación , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Purificación del Agua , Bicarbonatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA