Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 779
Filtrar
1.
PLoS One ; 19(8): e0308284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39106244

RESUMEN

In a national park in Northeast Thailand, agricultural land has been converted from natural forest by small-scale farmers for cassava agriculture. We hypothesise that long-termed cassava monoculture leads to the degradation of soil properties. To test the hypothesis, we conducted a five-year (2016-2020) study on the physical and chemical properties of soil in cassava farmland, and also examined the soil properties of its adjacent natural forests, as a control. The examined cassava farmland was converted from the natural forest during the five years from 2011 to 2015. The significant decrease in organic carbon and the increases in exchangeable potassium and bulk density were found in 2016, indicating that these soil properties varied quickly following the farmland conversion. On the other hand, the significant increase in soil nitrogen and the decrease in pH were found later in 2020, indicating that these soil properties were gradually altered by repeated agricultural activities, such as fertilizer application and trampling. In contrast, there were no significant differences in available phosphate, electrical conductivity, cation exchange capacity, and the soil texture (the fractions of sand, silt, and clay) among the forest and farmland soils. The cation exchange capacity was positively correlated to the fraction of clay, the organic carbon, and pH. The use of glyphosate and paraquat herbicides is prohibited within national parks in Thailand. However, in 2020, glyphosate was detected in farmland soil (up to 5.0 mg kg-1) during both the rainy and dry seasons, and glyphosate (up to 2.5 mg l-1) was detected in stream water from the farmland during the dry season at least in 2020. Soil degradation and herbicide pollution may carry a high risk of causing irreversible changes in terrestrial ecosystems. We discuss the root causes of this issue from perspectives of agricultural production, economy, and the environmental impact, and propose effective policy measures.


Asunto(s)
Agricultura , Herbicidas , Manihot , Suelo , Tailandia , Manihot/química , Manihot/crecimiento & desarrollo , Suelo/química , Herbicidas/análisis , Contaminantes del Suelo/análisis , Glicina/análogos & derivados , Glicina/análisis , Granjas , Conservación de los Recursos Naturales , Bosques , Concentración de Iones de Hidrógeno
2.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39126018

RESUMEN

Cassava starch solid biopolymer electrolyte (SBPE) films were prepared by a thermochemical method with different concentrations of lithium triflate (LiTFT) as a dopant salt. The process began with dispersing cassava starch in water, followed by heating to facilitate gelatinization; subsequently, plasticizers and LiTFT were added at differing concentrations. The infrared spectroscopy analysis (FTIR-ATR) showed variations in the wavenumber of some characteristic bands of starch, thus evidencing the interaction between the LiTFT salt and biopolymeric matrix. The short-range crystallinity index, determined by the ratio of COH to COC bands, exhibited the highest crystallinity in the salt-free SBPEs and the lowest in the SBPEs with a concentration ratio (Xm) of 0.17. The thermogravimetric analysis demonstrated that the salt addition increased the dehydration process temperature by 5 °C. Additionally, the thermal decomposition processes were shown at lower temperatures after the addition of the LiTFT salt into the SBPEs. The differential scanning calorimetry showed that the addition of the salt affected the endothermic process related to the degradation of the packing of the starch molecules, which occurred at 70 °C in the salt-free SBPEs and at lower temperatures (2 or 3 °C less) in the films that contained the LiTFT salt at different concentrations. The cyclic voltammetry analysis of the SBPE films identified the redox processes of the glucose units in all the samples, with observed differences in peak potentials (Ep) and peak currents (Ip) across various salt concentrations. Electrochemical impedance spectroscopy was used to establish the equivalent circuit model Rf-(Cdl/(Rct-(CPE/Rre))) and determine the electrochemical parameters, revealing a higher conduction value of 2.72 × 10-3 S cm-1 for the SBPEs with Xm = 17 and a lower conduction of 5.80 × 10-4 S cm-1 in the salt-free SBPEs. It was concluded that the concentration of LiTFT salt in the cassava starch SBPE films influences their morphology and slightly reduces their thermal stability. Furthermore, the electrochemical behavior is affected in terms of variations in the redox potentials of the glucose units of the biopolymer and in their ionic conductivity.


Asunto(s)
Conductividad Eléctrica , Electrólitos , Manihot , Almidón , Almidón/química , Manihot/química , Electrólitos/química , Termogravimetría , Biopolímeros/química , Mesilatos/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Rastreo Diferencial de Calorimetría
3.
Sci Rep ; 14(1): 17130, 2024 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054362

RESUMEN

Determination of pasting properties of high quality cassava flour using rapid visco analyzer is expensive and time consuming. The use of mobile near infrared spectroscopy (SCiO™) is an alternative high throughput phenotyping technology for predicting pasting properties of high quality cassava flour traits. However, model development and validation are necessary to verify that reasonable expectations are established for the accuracy of a prediction model. In the context of an ongoing breeding effort, we investigated the use of an inexpensive, portable spectrometer that only records a portion (740-1070 nm) of the whole NIR spectrum to predict cassava pasting properties. Three machine-learning models, namely glmnet, lm, and gbm, implemented in the Caret package in R statistical program, were solely evaluated. Based on calibration statistics (R2, RMSE and MAE), we found that model calibrations using glmnet provided the best model for breakdown viscosity, peak viscosity and pasting temperature. The glmnet model using the first derivative, peak viscosity had calibration and validation accuracy of R2 = 0.56 and R2 = 0.51 respectively while breakdown had calibration and validation accuracy of R2 = 0.66 and R2 = 0.66 respectively. We also found out that stacking of pre-treatments with Moving Average, Savitzky Golay, First Derivative, Second derivative and Standard Normal variate using glmnet model resulted in calibration and validation accuracy of R2 = 0.65 and R2 = 0.64 respectively for pasting temperature. The developed calibration model predicted the pasting properties of HQCF with sufficient accuracy for screening purposes. Therefore, SCiO™ can be reliably deployed in screening early-generation breeding materials for pasting properties.


Asunto(s)
Harina , Manihot , Espectroscopía Infrarroja Corta , Manihot/química , Espectroscopía Infrarroja Corta/métodos , Harina/análisis , Viscosidad , Calibración , Aprendizaje Automático
4.
Food Chem ; 457: 140214, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959683

RESUMEN

This study investigated the gelling properties, rheological behaviour, and microstructure of heat-induced, low-salt myofibrillar protein (MP) gels containing different levels (2%, 4%, 6%, and 8%, w/w) of cross-linked (CTS) or acetylated (ATS) tapioca starch. The results indicated that either CTS or ATS significantly enhanced the gel strength and water-holding capacity of low-salt MP gels (P < 0.05), an outcome verified by the rheological behaviour test results under different modes. Furthermore, iodine-staining images indicated that the MP-dominated continuous phase gradually transited to a starch-dominated phase with increasing CTS or ATS levels, and 4% was the critical point for this phase transition. In addition, hydrophobic interactions and disulphide bonds constituted the major intermolecular forces of low-salt MP gels, effectively promoting phase transition. In brief, modified tapioca starches possess considerable potential application value in low-salt meat products.


Asunto(s)
Geles , Manihot , Transición de Fase , Reología , Almidón , Geles/química , Almidón/química , Manihot/química , Animales , Productos de la Carne/análisis , Acetilación , Proteínas Musculares/química , Miofibrillas/química
5.
Int J Biol Macromol ; 274(Pt 1): 133366, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914385

RESUMEN

Pomegranate peel extract (PPE) hydrogel films filled with citric acid (CA) and ß-cyclodextrin-carboxymethyl tapioca starch (CMS) were designed mainly to prevent wound infections and speed up the healing process. FTIR and NMR studies corroborated the carboxymethylation of neat tapioca starch (NS). CMS exhibited superior swelling behavior than NS. The amount of CA and ß-CD controlled the physicochemical parameters of developed PPE/CA/ß-CD/CMS films. Optimized film (OF) exhibited acceptable swellability, wound fluid absorptivity, water vapor transmission rate, water contact angle, and mechanical properties. Biodegradable, biocompatible, and antibacterial films exhibited pH dependence in the release of ellagic acid for up to 24 h. In mice model, PPE/CA/ß-CD/CMS hydrogel film treatment showed promising wound healing effects, including increased collagen deposition, reduced inflammation, activation of the Wingless-related integration site (wnt) pathway leading to cell division, proliferation, and migration to the wound site. The expression of the WNT3A gene did not show any significant differences among all the studied groups. Developed PPE-loaded CA/ß-CD/CMS film promoted wound healing by epithelialization, granulation tissue thickness, collagen deposition, and angiogenesis, hence could be recommended as a biodegradable and antibacterial hydrogel platform to improve the cell proliferation during the healing of diabetic wounds.


Asunto(s)
Ácido Cítrico , Extractos Vegetales , Granada (Fruta) , Almidón , Cicatrización de Heridas , beta-Ciclodextrinas , Cicatrización de Heridas/efectos de los fármacos , Animales , Almidón/química , Almidón/análogos & derivados , Almidón/farmacología , Granada (Fruta)/química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacología , Ratones , Extractos Vegetales/química , Extractos Vegetales/farmacología , Concentración de Iones de Hidrógeno , Ácido Cítrico/química , Ácido Cítrico/farmacología , Manihot/química , Antibacterianos/farmacología , Antibacterianos/química , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Metilgalactósidos
6.
Environ Res ; 257: 119287, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823610

RESUMEN

Heavy metal pollution in soil has emerged as a major environmental concern. This can be attributed to human activities such as mining, modern agriculture, and industrialization. This study was conducted to determine how heavy metals spread from mine tailings to surrounding farmland. Metal absorption and accumulation were also investigated in the root and shoot biomass of tapioca crops grown in those farmlands. Metal concentrations in MTAS1 were 85.3 ± 1.2, 45.8 ± 1.5, 134.8 ± 1.7, 92.4 ± 2.2, and 78.95 ± 1.4 mg kg-1, respectively. Heavy metal concentrations in MTAS2 and MTAS3 were found to be 79.62 ± 1.6, 75.4 ± 1.5, 41.31 ± 1.1, 47.8 ± 1.6, 142.5 ± 2.1, 128.4 ± 1.4, 86.2 ± 1.9, 79.5 ± 1.3, and 83.4 ± 1.2 mg kg-1, respectively. Tapioca crop shoot and root biomass grown at these metal polluted sites absorbed and accumulated significant amounts of Cd, Cu, Zn, Pb, Ni, and Mn. Notably, the metal content of the tapioca crop's root and shoot biomass exceeded national standards.


Asunto(s)
Biomasa , Metales Pesados , Minería , Raíces de Plantas , Brotes de la Planta , Contaminantes del Suelo , Metales Pesados/análisis , Metales Pesados/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Manihot/crecimiento & desarrollo , Manihot/metabolismo , Manihot/química , Agricultura/métodos , Monitoreo del Ambiente
7.
Int J Biol Macromol ; 275(Pt 1): 133386, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914407

RESUMEN

Biodegradable starch foam trays offer an eco-friendly substitute for petroleum-based single-use packaging, notably polystyrene foams. However, they lack flexibility, tensile strength, and water-sensitivity, addressable through lignocellulosic reinforcement. This study aimed to develop biodegradable starch foam trays filled with different food-chain side streams for sustainable alternative packaging. Corncob, soybean straw, cassava peel, araucaria seed hull, yerba mate stalks and yerba mate leaves petiole were collected, dried and ground to <250 µm. The trays were filled with 13 % (w/w) of each food-chain side streams and produced by hot molding. The trays morphology, moisture, water activity (aw), thickness, bulk density, tensile strength, elongation at break, Young's modulus, bending strength, maximum deflection, and sorption isotherms were investigated. Reinforcements slightly increased the foams bulk density, reduced the tensile strength and maximum deflection and while bending strength increased from 0.20 MPa to 1.17-1.80 MPa. The elasticity modulus decreased by adding any filling, that resulted in ductility improvement; however, these packaging have moisture-sensitive material especially for aw higher than 0.52, which drives the use recommendation for dry products storage or shipping/transport. The biodegradable starch foam trays filled with side streams were successfully produced and offer excellent alternative to petroleum-based packaging low-density material with bending strength improved.


Asunto(s)
Almidón , Resistencia a la Tracción , Almidón/química , Agua/química , Embalaje de Alimentos/métodos , Manihot/química
8.
Food Chem ; 456: 139872, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38865818

RESUMEN

The release of hydrogen cyanide (HCN) after food ingestion can pose a serious health risk to consumers. This study aimed to simultaneously quantify four cyanogenic glycosides (lotaustralin, prunasin, taxiphyllin, and dhurrin) using liquid chromatography-tandem mass spectrometry. The analysis scope extended beyond agricultural products to various consumer foods to estimate dietary exposure to cyanogenic glycosides and assess its risk levels. The major exposure sources are cassava chips (lotaustralin), apples (seeds) (prunasin and dhurrin), and Prunus mume axis (taxiphyllin). In addition to quantifying specific cyanogenic glycosides, this study proposed the development of a preliminary risk assessment framework based on the dietary exposure assessment and the calculation of theoretical levels of HCN derived from cyanogenic glycoside concentrations. In the absence of established guidelines for the permissible intake of foods containing cyanogenic glycosides, this study provides initial guidance for assessing the risks associated with a range of commonly consumed foods.


Asunto(s)
Contaminación de Alimentos , Glicósidos , Cianuro de Hidrógeno , Manihot , Glicósidos/química , Glicósidos/análisis , Cianuro de Hidrógeno/análisis , Cianuro de Hidrógeno/química , Humanos , Contaminación de Alimentos/análisis , Manihot/química , República de Corea , Espectrometría de Masas en Tándem , Malus/química , Adulto , Prunus/química , Exposición Dietética/análisis , Medición de Riesgo , Adulto Joven
9.
Bioresour Technol ; 404: 130915, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823561

RESUMEN

This work proposes the pyrolysis of the cassava plant shoot system biomass and a comprehensive chemical characterization of the resulting bio-oil. The highest yields of liquid products were obtained at 600 °C, with 12.6 % bio-oil (organic fraction), which presented the lowest total acid number of 65.7 mg KOH g-1. The bio-oil produced at 500 °C exhibited the highest total phenolic content of approximately 41 % GAE, confirmed by GC/MS analysis (33.8 % of the total area). FT-Orbitrap MS analysis found hundreds of oxygenated constituents in the bio-oils, belonging to the O2-7 classes, as well as nitrogen compounds from the Ny and OxNy classes. Higher pyrolysis temperatures resulted in more oxygenated phenolics (O4-7) undergoing secondary degradation and deoxygenation reactions, generating O2-3 compounds. Additional classes affected were O3-5N2-3, while O1-2N1 presented more stable compounds. These findings show that cassava bio-oils are promising sources of renewable chemicals.


Asunto(s)
Manihot , Oxígeno , Brotes de la Planta , Pirólisis , Manihot/química , Brotes de la Planta/química , Oxígeno/metabolismo , Nitrógeno , Biocombustibles , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas/métodos , Compuestos de Nitrógeno/química , Aceites de Plantas , Polifenoles
10.
Int J Biol Macromol ; 272(Pt 2): 132865, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38844286

RESUMEN

The presence of salt can impact the fluid phase and gelatinization process of starch granules. The variation in viscosity and rheology models including the Herschel-Bulkley, the Casson model, and the power law, were determined by adding salts before and after starch ultrasonication. Non-isothermal kinetics can be utilized for the mathematical modeling of the gelatinization process and the evolution of the reaction. Unlike Na+ ions, Ca+2 ions notably elevate viscosity. The Casson model accurately predicts viscosity data. Results indicate that the addition of Na+ ions decreases yield stress by up to 60.4 %, while Ca+2 ions increase by up to 100.8 %. Adding Na+ ions decreases the required thermal energy by as much as 49.6 %, while the presence of Ca+2 ions can lead to a substantial increase of up to 337.1 % compared to control samples. The positive ∆G indicates a non-spontaneous gelatinization process. The addition of NaCl promotes a spontaneous reaction, while the addition of CaCl2 increases the Gibbs energy. The changes in entropy are minimal, implying minimal changes in starches' disorder structure.


Asunto(s)
Cloruro de Calcio , Manihot , Reología , Cloruro de Sodio , Almidón , Termodinámica , Almidón/química , Cinética , Cloruro de Sodio/química , Cloruro de Calcio/química , Manihot/química , Viscosidad , Gelatina/química
11.
Int J Biol Macromol ; 273(Pt 1): 132803, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848836

RESUMEN

Bionanocomposites offer a promising solution to the plastic waste crisis. Although tapioca starch shows potential as a bioplastic material, it is characterized by low mechanical properties, poor thermal stability, and high water absorption owing to its hydrophilic nature. To increase the flexibility of the material and reduce the transmission rate of oxygen and water vapor, additives such as fructose and titanium dioxide (TiO2) can be incorporated into the material. TiO2 nanoparticles are commonly utilized in agriculture to enhance nutrient release and promote plant growth. In this study, X-ray diffraction analysis revealed that TiO2 reduced crystal size while increasing the crystallinity of bionanocomposites. Fourier-transform infrared spectroscopy analysis revealed an absorption peak at 3397 cm-1, indicating hydrogen bonding between TiO2 and starch-OH groups, and a peak at 773 cm-1, indicating an increase in the intensity of Ti-O-Ti stretching vibrations with the incorporation of TiO2. Water absorption rate results confirmed that TiO2 addition enhanced bionanocomposite resistance to water vapor and moisture, evidenced by increased tensile strength from 0.11 to 0.49 MPa and Young's modulus from 2.48 to 5.26 MPa, as well as decreased elongation at break from 21.46 % to 2.36 % in bionanocomposites with TiO2. Furthermore, with TiO2 addition, the biodegradation rate of the bionanocomposites decreased, which is beneficial for enhancing plant nutrient content.


Asunto(s)
Embalaje de Alimentos , Fructosa , Manihot , Nanocompuestos , Almidón , Titanio , Nanocompuestos/química , Titanio/química , Almidón/química , Embalaje de Alimentos/métodos , Fructosa/química , Manihot/química , Fertilizantes , Resistencia a la Tracción , Agua/química , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
12.
Bioprocess Biosyst Eng ; 47(7): 1057-1070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38842769

RESUMEN

The treatment of agroindustrial wastewater using microbial fuel cells (MFCs) is a technological strategy to harness its chemical energy while simultaneously purifying the water. This manuscript investigates the organic load effect as chemical oxygen demand (COD) on the production of electricity during the treatment of cassava wastewater by means of a dual-chamber microbial fuel cell in batch mode. Additionally, specific conditions were selected to evaluate the semi-continuous operational mode. The dynamics of microbial communities on the graphite anode were also investigated. The maximum power density delivered by the batch MFC (656.4 µW m - 2 ) was achieved at the highest evaluated organic load (6.8 g COD L - 1 ). Similarly, the largest COD removal efficiency (61.9%) was reached at the lowest organic load (1.17 g COD L - 1 ). Cyanide degradation percentages (50-70%) were achieved across treatments. The semi-continuous operation of the MFC for 2 months revealed that the voltage across the cell is dependent on the supply or suspension of the organic load feed. The electrode polarization resistance was observed to decreases over time, possibly due to the enrichment of the anode with electrogenic microbial communities. A metataxonomic analysis revealed a significant increase in bacteria from the phylum Firmicutes, primarily of the genus Enterococcus.


Asunto(s)
Fuentes de Energía Bioeléctrica , Manihot , Aguas Residuales , Fuentes de Energía Bioeléctrica/microbiología , Manihot/química , Aguas Residuales/microbiología , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Electrodos , Purificación del Agua/métodos
13.
Sci Rep ; 14(1): 12098, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802489

RESUMEN

The aim of this study was to investigate the efficacy of a new therapeutic approach (cassava wax bath: CWB) compared with usual care (paraffin wax bath: PWB) in patients with plantar fasciitis (PF). Forty patients with PF were recruited into the study (CWB group, n = 20, PWB group, n = 20). Patients in the CWB group received cassava wax bath and patients in the PWB group received usual care (PWB). The primary outcome was pain intensity (PI). The secondary outcomes were the pressure pain threshold (PPT), pain frequency (PFr), foot and ankle ability measure (FAAM), and ankle dorsiflexion range of motion (ADROM). All outcomes were assessed before and after the five-week intervention, one month, and three months after the intervention period. After the intervention, statistically significant improvement was found in all outcomes after the intervention period and during the one month and three months follow-up study in both groups (P < 0.05). For all outcomes, no between-group differences were seen at any post-assessment time-point, except for PFr (P < 0.05). In conclusion, the findings of this study indicate that CWB was significantly superior to PWB in reducing PFr. For the other outcomes, CWB and PWB were both equally effective in reducing PI and increasing PPT, FAAM, and ADROM in patients with PF. Therefore, CWB might be considered as a novel useful therapeutic option for PF patients.Trial registration: Thai Clinical Trials Registry (TCTR) (Identification number: TCTR20220128002), First posted date: 28/01/2022.


Asunto(s)
Fascitis Plantar , Manihot , Humanos , Femenino , Masculino , Persona de Mediana Edad , Manihot/química , Método Doble Ciego , Adulto , Fascitis Plantar/terapia , Resultado del Tratamiento , Ceras/uso terapéutico , Dimensión del Dolor , Rango del Movimiento Articular , Baños/métodos
14.
Food Res Int ; 187: 114373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763649

RESUMEN

Effect of complexation of three medium-chain fatty acids (octanoic, decylic and lauric acid, OA, DA and LA, respectively) on structural characteristics, physicochemical properties and digestion behaviors of cassava starch (CS) was investigated. Current study indicated that LA was more easily to combine with CS (complex index 88.9%), followed by DA (80.9%), which was also consistent with their corresponding complexed lipids content. Following the investigation of morphology, short-range ordered structure, helical structure, crystalline/amorphous region and fractal dimension of the various complexes, all cassava starch-fatty acids complexes (CS-FAs) were characterized with a flaked morphology rather than a round morphology in native starch (control CS). X-ray diffraction demonstrated that all CS-FAs had a V-type crystalline structure, and nuclear magnetic resonance spectroscopy confirmed that the complexes made from different fatty acids displayed similar V6 or V7 type polymorphs. Interestingly, small-angle X-ray scattering analysis revealed that α value became greater following increased carbon chain length of fatty acids, indicating the formation of a more ordered fractal structure in the aggregates. Changes in rheological parameters G' and G'' indicated that starch complexed with fatty acids was more likely to form a gel network, but difference among three CS-FAs complexes was significant, which might be contributed to their corresponding hydrophobicity and hydrophilicity raised from individual fatty acids. Importantly, digestion indicated that CS-LA complexes had the lowest hydrolysis degree, followed by the greatest RS content, indicating the importance of chain length of fatty acids for manipulating the fine structure and functionality of the complexes.


Asunto(s)
Digestión , Ácidos Grasos , Ácidos Láuricos , Manihot , Almidón , Difracción de Rayos X , Manihot/química , Almidón/química , Ácidos Láuricos/química , Ácidos Grasos/química , Ácidos Decanoicos/química , Reología , Caprilatos/química , Espectroscopía de Resonancia Magnética
15.
Sci Rep ; 14(1): 12535, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821999

RESUMEN

Cassava root rot disease caused by the fungal pathogens Fusarium solani and Lasiodiplodia theobromae produces severe damages on cassava production. This research was conducted to produce and assess silver nanoparticles (AgNPs) synthesized by Trichoderma harzianum for reducing root rot disease. The results revealed that using the supernatants of T. harzianum on a silver nitrate solution changed it to reddish color at 48 h, indicating the formation of AgNPs. Further characterization was identified using dynamic light scattering (DLS) and scanning electron microscope (SEM). DLS supported that the Z-average size is at 39.79 nm and the mean zeta potential is at - 36.5 mV. SEM revealed the formation of monodispersed spherical shape with a diameter between 60-75 nm. The antibacterial action of AgNPs as an antifungal agent was demonstrated by an observed decrease in the size of the fungal colonies using an increasing concentration of AgNPs until the complete inhibition growth of L. theobromae and F. solani at > 58 µg mL-1 and at ≥ 50 µg mL-1, respectively. At in vitro conditions, the applied AgNPs caused a decrease in the percentage of healthy aerial hyphae of L. theobromae (32.5%) and of F. solani (70.0%) compared to control (100%). The SR-FTIR spectra showed the highest peaks in the first region (3000-2800 cm-1) associated with lipids and fatty acids located at 2962, 2927, and 2854 cm-1 in the AgNPs treated samples. The second region (1700-1450 cm-1) consisting of proteins and peptides revealed the highest peaks at 1658, 1641, and 1548 cm-1 in the AgNPs treated samples. The third region (1300-900 cm-1), which involves nucleic acid, phospholipids, polysaccharides, and carbohydrates, revealed the highest peaks at 1155, 1079, and 1027 cm-1 in the readings from the untreated samples. Finally, the observed root rot severity on cassava roots treated with AgNPs (1.75 ± 0.50) was significantly lower than the control samples (5.00 ± 0.00).


Asunto(s)
Manihot , Nanopartículas del Metal , Enfermedades de las Plantas , Raíces de Plantas , Plata , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Enfermedades de las Plantas/microbiología , Manihot/microbiología , Manihot/química , Raíces de Plantas/microbiología , Fusarium/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Hypocreales/metabolismo , Hypocreales/efectos de los fármacos , Trichoderma/metabolismo
16.
Int J Biol Macromol ; 269(Pt 2): 132054, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704063

RESUMEN

In this study, we analyzed the pectin structure within the pulp of cassava. Cassava pectin, derived from cassava pulp treatment at 120 °C for 90 min, was separated into four fractions (CP-P, CP-SD1, CP-SD2F, and CP-SD2R) based on variations in water solubility, electrical properties, and molecular weights. Sugar composition analysis demonstrated an abundance of homogalacturonan (HG) in CP-P and CP-SD2F, rhamnogalacturonan I (RG-I) in CP-SD2R, and neutral sugars in CP-SD1. Because RG-I possesses a complex structure, we analyzed CP-SD2R using various pectinolytic enzymes. Galactose was the major sugar in CP-SD2R accounting for 49 %, of which 65 % originated from arabinogalactan I, 9 % from galactose and galactooligosaccharides, 5 % from arabinogalactan II, and 11 % from galactoarabinan. Seventy-four percent of arabinose in CP-SD2R was present as galactoarabinan. The methylation (DM) and acetylation (DAc) degrees of cassava pectin were 11 and 15 %, respectively. The HG and RG-I regions exhibited DAc values of 5 and 44 %, respectively, signifying the high DAc of RG-I compared to HG. Information derived from the structural analysis of cassava pectin will enable efficient degradation of pectin and cellulose, leading to the use of cassava pulp as a raw material for biorefineries.


Asunto(s)
Manihot , Pectinas , Manihot/química , Pectinas/química , Fraccionamiento Químico , Peso Molecular , Poligalacturonasa/química , Poligalacturonasa/metabolismo , Metilación , Solubilidad
17.
Int J Biol Macromol ; 268(Pt 1): 131464, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702248

RESUMEN

Global concerns over environmental damage caused by non-biodegradable single-use packaging have sparked interest in developing biomaterials. The food packaging industry is a major contributor to non-degradable plastic waste. This study investigates the impact of incorporating different concentrations of polyvinyl alcohol (PVA) and yerba mate extract as a natural antioxidant into carboxymethyl cassava starch films to possibly use as active degradable packaging to enhance food shelf life. Films with starch and PVA blends (SP) at different ratios (SP radios of 100:0, 90:10, 80:20 and 70:30) with and without yerba mate extract (Y) were successfully produced through extrusion and thermoforming. The incorporation of up to 20 wt% PVA improved starch extrusion processing and enhanced film transparency. PVA played a crucial role in improving the hydrophobicity, tensile strength and flexibility of the starch films but led to a slight deceleration in their degradation in compost. In contrast, yerba mate extract contributed to better compost degradation of the blend films. Additionally, it provided antioxidant activity, particularly in hydrophilic and lipophilic food simulants, suggesting its potential to extend the shelf life of food products. Starch-PVA blend films with yerba mate extract emerged as a promising alternative for mechanically resistant and active food packaging.


Asunto(s)
Antioxidantes , Embalaje de Alimentos , Manihot , Extractos Vegetales , Alcohol Polivinílico , Almidón , Embalaje de Alimentos/métodos , Alcohol Polivinílico/química , Almidón/química , Almidón/análogos & derivados , Antioxidantes/química , Manihot/química , Extractos Vegetales/química , Ilex paraguariensis/química , Resistencia a la Tracción , Interacciones Hidrofóbicas e Hidrofílicas , Fenómenos Mecánicos
18.
Phytochemistry ; 224: 114143, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38762153

RESUMEN

Cassava (Manihot esculenta Crantz), a crucial global tuber crop, encounters significant economic losses attributed to postharvest physiological deterioration (PPD). The PPD phenomenon in cassava is closely related to the accumulation of reactive oxygen species (ROS), and amino acids play a pivotal role in regulating signaling pathways and eliminating ROS. In this study, the storage performance of eight cassava varieties were conducted. Cassava cultivar SC5 showed the best storage performance among the eight cassava varieties, but the edible cassava cultivar SC9 performed much worse. Comparative analysis of free amino acids was conducted in eight cassava varieties, revealing changes in proline, aspartic acid, histidine, glutamic acid, threonine, and serine. Exogenous supplementation of these six amino acids was performed to inhibit PPD of SC9. Proline was confirmed as the key amino acid for inhibiting PPD. Treatment with optimal exogenous proline of 5 g/L resulted in a 17.9% decrease in the deterioration rate compared to untreated cassava. Accompanied by a decrease in H2O2 content and an increase in catalase, superoxide dismutase and ascorbate peroxidase activity. Proline treatment proved to be an effective approach to alleviate cell oxidative damage, inhibit PPD in cassava, and prolong shelf life.


Asunto(s)
Antioxidantes , Manihot , Prolina , Manihot/química , Prolina/farmacología , Prolina/metabolismo , Prolina/química , Antioxidantes/farmacología , Antioxidantes/química , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología
19.
J Food Sci ; 89(6): 3687-3699, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767926

RESUMEN

The vibrating superfine mill (VSM) is a machine that belongs to the micronization technique. In this study, VSM was employed to produce micronized tapioca starch by varying micronization times (15, 30, 45, and 60 min). The structural and physicochemical properties of the micronized starch were then examined. Scanning electron microscopy studies revealed that micronized starch was partially gelatinized, and the granule size dramatically increased when micronization time increased. X-ray diffraction patterns showed that the relative crystallinity was decreased from 24.67% (native) to 4.13% after micronization treatment for 15 min and slightly decreased after that. The solubility of micronized starch significantly increased as the micronization time increased, which was associated with the destruction of the starch crystalline structure. Differential scanning calorimetry investigations confirmed that micronized starch was "partly gelatinized," and the degree of gelatinization increased to 81.27% when the micronization time was 60 min. The weight-average molar mass was reduced by 15.0% (15 min), 30.9% (30 min), 55.7% (45 min), and 70.5% (60 min), respectively, indicating that the molecular structure was seriously degraded. The results demonstrated that the physicochemical changes of micronized starch granules were related to the destruction of the starch structure. These observations would provide details on micronized starch and its potential applications. PRACTICAL APPLICATION: These observations would provide details on micronized starch and its potential applications. Moreover, we believe that when the structures of starches were known, it is probable that the effect of VSM on the structural and physicochemical properties change of other starches might be predicted by adjusting the processing time.


Asunto(s)
Rastreo Diferencial de Calorimetría , Manihot , Microscopía Electrónica de Rastreo , Solubilidad , Almidón , Difracción de Rayos X , Almidón/química , Manihot/química , Microscopía Electrónica de Rastreo/métodos , Gelatina/química , Tamaño de la Partícula , Manipulación de Alimentos/métodos , Fenómenos Químicos
20.
Environ Sci Pollut Res Int ; 31(25): 37663-37680, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38780849

RESUMEN

Improving energy content and hydrophobic nature of woody biomass can be pursued through torrefaction. This gives torrefied biomass with a low bulk density, potentially increasing storage and transport costs. To overcome this issue, densifying the torrefied biomass is necessary. However, poor binding of particles makes densification challenging without using a binder. Therefore, the aim of this study was to investigate the physicochemical characteristics and techno-economic aspects of torrefied rubberwood biomass (TRWB) when pelletized using various cassava-based binders at different blending ratios. The selected binders included cassava starch (CS), cassava pulp (CP), and cassava chip (CC). Each binder at 5%, 10%, or 15% (wt.) was mixed with TRWB and water before pelletizing using a flat die machine. The results revealed that pelletizing TRWB with different cassava-based binders at various blending ratios influenced the physicochemical characteristics of the TRWB pellets, particularly dimensions, bulk density, fuel and atomic ratios, and energy content. The TRWB pellets demonstrated energy densities in the range of 7.95-11.39 GJ/m3, and their mechanical durability and fine content fell within acceptable ranges. The TRWB pellets maintained their shape during 120 min of water soaking, with water absorption levels varying by binder dose. The pelletizing ability, material, and energy costs of TRWB pellets depend on binder type and dose. CP can be applied as a binder for pelletizing torrefied rubberwood biomass. However, the mechanical durability of the product needs to be above the user requirement or standard.


Asunto(s)
Biomasa , Manihot , Madera , Manihot/química , Madera/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA