Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 622
Filtrar
1.
BMC Oral Health ; 24(1): 633, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811903

RESUMEN

BACKGROUND: In this study, the antimicrobial activity of three different cleanser tablets on S. mutans and C. albicans adhesion to PMMA, polyamide and 3D printed resin was investigated. METHODS: 40 samples were prepared for PMMA (SR Triplex Hot), polyamide (Deflex) and 3D printed resin (PowerResins Denture) materials and divided into four subgroups for cleansers (Aktident™, Protefix™, Corega™ tablets and distilled water) (n = 5). After the surface preparations were completed, the samples were immersed separately in tubes containing the prepared microorganism suspension and incubated at 37˚C for 24 h. After the incubation, the samples were kept in the cleanser solutions. The samples were then transferred to sterile saline tubes. All the tubes were vortexed and 10 µl was taken from each of them. Sheep blood agar was inoculated for colony counting. The inoculated plates were incubated for 48 h for S. mutans and 24 h for C. albicans. After incubation, colonies observed on all plates were counted. Statistical analyses were done with three-way ANOVA and Tukey's multiple comparison test. RESULTS: Polyamide material registered the highest colony count of S. mutans, whereas PMMA registered the lowest. Significant differences in S. mutans adherence (p = 0.002) were found between the three denture base materials, but no such difference in C. albicans adherence (p = 0.221) was identified between the specimens. All three cleanser tablets eliminated 98% of S. mutans from all the material groups. In all these groups, as well, the antifungal effect of Corega™ on C. albicans was significantly higher than those of the other two cleanser tablets. CONCLUSIONS: According to the study's results, it may be better to pay attention to surface smoothness when using polyamide material to prevent microorganism retention. Cleanser tablets are clinically recommended to help maintain hygiene in removable denture users, especially Corega tablets that are more effective on C. albicans.


Asunto(s)
Candida albicans , Bases para Dentadura , Limpiadores de Dentadura , Polimetil Metacrilato , Streptococcus mutans , Candida albicans/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Bases para Dentadura/microbiología , Limpiadores de Dentadura/farmacología , Polimetil Metacrilato/química , Nylons/farmacología , Comprimidos , Recuento de Colonia Microbiana , Materiales Dentales/farmacología , Adhesión Bacteriana/efectos de los fármacos , Antiinfecciosos/farmacología , Ensayo de Materiales
2.
Dent Mater ; 40(6): 941-950, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719709

RESUMEN

OBJECTIVE: Bisphenol A glycidyl methacrylate (Bis-GMA) is of great importance for dental materials as the preferred monomer. However, the presence of bisphenol-A (BPA) core in Bis-GMA structure causes potential concerns since it is associated with endocrine diseases, developmental abnormalities, and cancer lesions. Therefore, it is desirable to develop an alternative replacement for Bis-GMA and explore the intrinsic relationship between monomer structure and resin properties. METHODS: Here, the betulin maleic diester derivative (MABet) was synthesized by a facile esterification reaction using plant-derived betulin and maleic anhydride as raw materials. Its chemical structure was confirmed by 1H and 13C NMR spectra, FT-IR spectra, and HR-MS, respectively. The as-synthesized MABet was then used as polymerizable comonomer to partially or completely substitute Bis-GMA in a 50:50 Bis-GMA: TEGDMA resin (5B5T) to formulate dental restorative resins. These were then determined for the viscosity behavior, light transmittance, real-time degree of conversion, residual monomers, mechanical performance, cytotoxicity, and antibacterial activity against Streptococcus mutans (S. mutans) in detail. RESULTS: Among all experimental resins, increasing the MABet concentration to 50 wt% made the resultant 5MABet5T resin have a maximum in viscosity and appear dark yellowish after polymerization. In contrast, the 1MABet4B5T resin with 10 wt% MABet possessed comparable shear viscosity and polymerization conversion (46.6 ± 1.0% in 60 s), higher flexural and compressive strength (89.7 ± 7.8 MPa; 345.5 ± 14.4 MPa) to those of the 5B5T control (48.5 ± 0.6%; 65.7 ± 6.7 MPa; 223.8 ± 57.1 MPa). This optimal resin also had significantly lower S. mutans colony counts (0.35 ×108 CFU/mL) than 5B5T (7.6 ×108 CFU/mL) without affecting cytocompatibility. SIGNIFICANCE: Introducing plant-derived polymerizable MABet monomer into dental restorative resins is an effective strategy for producing antibacterial dental materials with superior physicochemical property.


Asunto(s)
Antibacterianos , Bisfenol A Glicidil Metacrilato , Ensayo de Materiales , Streptococcus mutans , Triterpenos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Triterpenos/química , Triterpenos/farmacología , Streptococcus mutans/efectos de los fármacos , Bisfenol A Glicidil Metacrilato/química , Viscosidad , Materiales Dentales/química , Materiales Dentales/farmacología , Materiales Dentales/síntesis química , Polimerizacion , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacología , Resinas Compuestas/química , Resinas Compuestas/síntesis química , Resinas Compuestas/farmacología , Polietilenglicoles/química , Espectroscopía Infrarroja por Transformada de Fourier , Ácido Betulínico
3.
J Dent ; 145: 105033, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38697505

RESUMEN

OBJECTIVES: This study aimed to enhance gingival fibroblast function and to achieve antibacterial activity around the implant abutment by using a zinc (Zn)-containing bioactive glass (BG) coating. METHODS: 45S5 BG containing 0, 5, and 10 wt.% Zn were coated on zirconia disks. The release of silica and Zn ions in physiological saline and their antibacterial effects were measured. The effects of BG coatings on human gingival fibroblasts (hGFs) were assessed using cytotoxicity assays and by analyzing the gene expression of various genes related to antioxidant enzymes, wound healing, and fibrosis. RESULTS: BG coatings are capable of continuous degradation and simultaneous ion release. The antibacterial effect of BG coatings increased with the addition of Zn, while the cytotoxicity remained unchanged compared to the group without coatings. BG coating enhances the expression of angiogenesis genes, while the Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CONCLUSIONS: The antibacterial effect of BG improved with the increase in Zn concentration, without inducing cytotoxicity. BG coating enhances the expression of angiogenesis genes, and Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CLINICAL SIGNIFICANCE: Adding 10 wt% Zn to BG could enhance the environment around implant abutments by providing antibacterial, antioxidant, and anti-fibrotic effects, having potential for clinical use.


Asunto(s)
Antibacterianos , Cerámica , Pilares Dentales , Fibroblastos , Encía , Vidrio , Propiedades de Superficie , Zinc , Circonio , Circonio/farmacología , Circonio/química , Humanos , Zinc/farmacología , Fibroblastos/efectos de los fármacos , Antibacterianos/farmacología , Encía/citología , Encía/efectos de los fármacos , Vidrio/química , Cerámica/farmacología , Cerámica/química , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Antioxidantes/farmacología , Ensayo de Materiales , Colágeno , Cicatrización de Heridas/efectos de los fármacos , Materiales Dentales/farmacología , Materiales Dentales/química , Células Cultivadas
4.
J Dent ; 145: 104984, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38583645

RESUMEN

OBJECTIVES: To incorporate the nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) into denture base materials: heat-cured (HC) and 3D printed (3DP) resins, at concentrations of 2.5 %, 5 %, and 10 %; and to evaluate the antimicrobial activity in two multi-species biofilm: (1) Candida albicans, Candida glabrata, and Streptococcus mutans, (2) Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus, and the wettability. METHODS: The AgVO3 was added to the HC powder, and printed samples were coated with 3DP with AgVO3 incorporated. After biofilm formation, the antimicrobial activity was evaluated by colony forming units per milliliter (CFU/mL), metabolic activity, and epifluorescence microscopy. Wettability was assessed by the contact angles with water and artificial saliva. RESULTS: In biofilm (1), HC-5 % and HC-10 % showed activity against S. mutans, HC-10 % against C. glabrata, and HC-10 % and 3DP-10 % had higher CFU/mL of C. albicans. 3DP-5 % had lower metabolic activity than the 3DP control. In biofilm (2), HC-10 % reduced S. aureus and P. aeruginosa, and HC-5 %, 3DP-2.5 %, and 3DP-5 % reduced S. aureus. 3DP incorporated with AgVO3, HC-5 %, and HC-10 % reduced biofilm (2) metabolic activity. 3DP-5 % and 3DP-10 % increased wettability with water and saliva. CONCLUSION: HC-10 % was effective against C. glabrata, S. mutans, P. aeruginosa, and S. aureus, and HC-5 % reduced S. mutans and S. aureus. For 3DP, 2.5 % and 5 % reduced S. aureus. The incorporation of AgVO3 into both resins reduced the metabolic activity of biofilms but had no effect on C. albicans. The wettability of the 3DP with water and saliva increased with the addition of AgVO3. CLINICAL SIGNIFICANCE: The incorporation of silver vanadate into the denture base materials provides antimicrobial efficacy and can prevent the aggravation of oral and systemic diseases. The incorporation of nanomaterials into printed resins is challenging and the coating is an alternative to obtain the inner denture base with antimicrobial effect.


Asunto(s)
Biopelículas , Candida albicans , Bases para Dentadura , Nanopartículas del Metal , Pseudomonas aeruginosa , Plata , Staphylococcus aureus , Streptococcus mutans , Vanadatos , Humectabilidad , Biopelículas/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Candida albicans/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Vanadatos/farmacología , Vanadatos/química , Pseudomonas aeruginosa/efectos de los fármacos , Plata/farmacología , Plata/química , Bases para Dentadura/microbiología , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Candida glabrata/efectos de los fármacos , Impresión Tridimensional , Ensayo de Materiales , Humanos , Nanoestructuras , Compuestos de Plata/farmacología , Compuestos de Plata/química , Materiales Dentales/química , Materiales Dentales/farmacología
5.
Photodiagnosis Photodyn Ther ; 46: 104019, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395246

RESUMEN

BACKGROUND: Streptococcus mutans and Candida albicans are associated with caries recurrence. Therefore, this study evaluated the combination of a Ru(II)-loaded resin-based dental material (RDM) and antimicrobial photodynamic therapy (aPDT) against a dual-species biofilm of S. mutans and C. albicans. METHODS: An aPDT protocol was established evaluating Ru(II)'s photocatalytic activity and antimicrobial potential under blue LED irradiation (440-460 nm, 22.55 mW/cm2) at different energy densities (0.00, 6.25, 20.25, 40.50 J/cm2). This evaluation involved singlet oxygen quantification and determination of minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). The biofilm was grown (72 h) on resin disks prepared with Ru(II)-doped RDM (0.00, 0.56, or 1.12 %) and samples were exposed to aPDT or dark conditions. The biofilm was then harvested to analyze cell viability (CFU counts) and formation of soluble and insoluble exopolysaccharides. RESULTS: The photocatalytic activity of Ru(II) was concentration and energy density dependent (p < 0.05), and MIC/MBC values were reduced for the microorganisms after LED irradiation (40.5 J/cm2); therefor, this energy density was chosen for aPDT. Although incorporation of Ru(II) into RDM reduced the biofilm growth compared to Ru(II)-free RDM for both species in dark conditions (p < 0.05), aPDT combined with an Ru(II)-loaded RDM (0.56 or 1.12 %) potentialized CFU reductions (p < 0.05). Conversely, only 1.12 % Ru(II) with LED irradiation showed lower levels of both soluble and insoluble exopolysaccharides compared to Ru(II)-free samples in dark conditions (p < 0.05). CONCLUSIONS: When the Ru(II)-loaded RDM was associated with blue LED, aPDT reduced cell viability and lower soluble and insoluble exopolysaccharides were found in the cariogenic dual-species biofilm.


Asunto(s)
Biopelículas , Candida albicans , Pruebas de Sensibilidad Microbiana , Fotoquimioterapia , Fármacos Fotosensibilizantes , Rutenio , Streptococcus mutans , Fotoquimioterapia/métodos , Biopelículas/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Candida albicans/efectos de los fármacos , Rutenio/farmacología , Rutenio/química , Materiales Dentales/farmacología , Oxígeno Singlete , Caries Dental/tratamiento farmacológico , Resinas Compuestas/farmacología , Resinas Compuestas/química
6.
J Dent ; 142: 104861, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38278316

RESUMEN

OBJECTIVE: Secondary caries is a primary cause of early restoration failure. While primary dental caries has been extensively researched, our knowledge about the impact of secondary caries on dental restorations is relatively limited. In this study, we examined how different clinically relevant microbially-influenced environments impact the degradation of nano-filled (FIL) and micro-hybrid (AEL) dental composites. METHODS: Material strength of two commercial dental composites was measured following incubation in aqueous media containing: i) cariogenic (Streptococcus mutans) and non-cariogenic bacteria (Streptococcus sanguinis) grown on sucrose or glucose, ii) abiotic mixtures of artificial saliva and sucrose and glucose fermentation products (volatile fatty acids and ethanol) in proportions known to be produced by these microorganisms, and iii) abiotic mixtures of artificial saliva and esterase, a common oral extracellular enzyme. RESULTS: Nano-filled FIL composite strength decreased in all three types of incubations, while micro-hybrid AEL composite strength only decreased significantly in biotic incubations. The strength of both composites was statistically significantly decreased in all biotic incubations containing both cariogenic and non-cariogenic bacteria beyond that induced by either abiotic mixtures of fermentation products or esterase alone. Finally, there were no statistically significant differences in composite strength decrease among the tested biotic conditions. CONCLUSIONS: The results show that conditions created during the growth of both cariogenic and non-cariogenic oral Streptococci substantially reduce commercial composite strength, and this effect warrants further study to identify the mechanism(s). CLINICAL SIGNIFICANCE: Dental biofilms of oral Streptococci bacteria significantly affect the mechanical strength of dental restorations.


Asunto(s)
Caries Dental , Humanos , Caries Dental/microbiología , Saliva Artificial/farmacología , Streptococcus , Streptococcus mutans , Materiales Dentales/farmacología , Biopelículas , Esterasas/farmacología , Sacarosa/farmacología , Glucosa
7.
J Mech Behav Biomed Mater ; 150: 106280, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043260

RESUMEN

OBJECTIVE: To investigate whether urethane dimethacrylate (UDMA) -based dental restorative materials biodegrade in the presence of Streptococcus mutans (S. mutans) and whether the monomers affect the adhesion and proliferation of S. mutans in turn. METHODS: Cholesterol esterase and pseudocholinesterase-like activities in S. mutans were detected using p-nitrophenyl substrate. Two UDMA-based CAD/CAM resin-ceramic composites, Lava Ultimate (LU) and Vita Enamic (VE), and a light-cured UDMA resin block were co-cultured with S. mutans for 14 days. Their surfaces were characterized by scanning electron microscopy and laser microscopy, and the byproducts of biodegradation were examined by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). Then, the antimicrobial components (silver nanoparticles with quaternary ammonium salts) were added to the UDMA resin block to detect whether the biodegradation was restrained. Finally, the effect of UDMA on biofilm formation and virulence expression of S. mutans was assessed. RESULTS: Following a 14-day immersion, the LU and UDMA resin blocks' surface roughness increased. The LU and VE groups had no UDMA or its byproducts discovered, according to the UPLC-MS/MS data, whereas the light-cured UDMA block group had UDMA, urethane methacrylate (UMA), and urethane detected. The addition of antimicrobial agents showed a significant reduction in the release of UDMA. Biofilm staining experiments showed that UDMA promoted the growth of S. mutans biofilm and quantitative real-time polymerase chain reaction results indicated that 50 µg/mL UDMA significantly increase the expression of gtfB, comC, comD, comE, and gbpB genes within the biofilm. CONCLUSIONS: UDMA in the light-cured resin can be biodegraded to produce UMA and urethane under the influence of S. mutans. The formation of early biofilm can be promoted and the expression of cariogenic genes can be up-regulated by UDMA. CLINICAL SIGNIFICANCE: This study focuses for the first time on whether UDMA-based materials can undergo biodegradation and verifies from a genetic perspective that UDMA can promote the formation of S. mutans biofilms, providing a reference for the rational use of UDMA-based materials in clinical practice.


Asunto(s)
Nanopartículas del Metal , Streptococcus mutans , Cromatografía Liquida , Plata , Espectrometría de Masas en Tándem , Resinas Compuestas/química , Metacrilatos/farmacología , Poliuretanos/farmacología , Biopelículas , Cerámica , Proliferación Celular , Ensayo de Materiales , Materiales Dentales/farmacología , Propiedades de Superficie
8.
Int J Biol Macromol ; 254(Pt 1): 127848, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37924905

RESUMEN

The urgent need for eco-friendly and cost-effective cellulose paper substrates in thermal management for biomedical electronic devices has driven the exploration of agro-waste materials. In this study, jackfruit peduncle waste was utilized as a precursor to produce a hybrid of AgNPs-tempo-mediated oxidation cellulose strands (AgNPs-TOCS) through acid hydrolysis, TEMPO oxidation, and an in-situ generation process. The resulting hybrid AgNPs-TOCS composite exhibited a cylindrical cellulose structure with a diameter of 27.3 µm, on which spherical AgNPs with a diameter of 16.3 nm were embedded. This hybrid AgNPs-TOCS displayed an impressive inhibition zone diameter against E. coli bacteria (15.2 nm) and exhibited excellent thermal stability up to 269 °C. Furthermore, the AgNPs-TOCS composite paper substrate was fabricated using non-solvent techniques, and its mechanical, thermal, and electrical properties were investigated. This composite paper substrate exhibits good tensile strength (65 ± 2 MPa), in-plane thermal conductivity (5.8 ± 0.2 W/(m·K)), and electrical resistivity (0.0575 KΩ·m). These findings strongly suggest that this type of composite paper substrate holds promise for applications in thermal management within the field of biomedical electronics.


Asunto(s)
Artocarpus , Nanopartículas del Metal , Celulosa/química , Antibacterianos/farmacología , Plata/química , Escherichia coli , Nanopartículas del Metal/química , Materiales Dentales/farmacología
9.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176004

RESUMEN

Secondary caries is one of the leading causes of resin-based dental restoration failure. It is initiated at the interface of an existing restoration and the restored tooth surface. It is mainly caused by an imbalance between two processes of mineral loss (demineralization) and mineral gain (remineralization). A plethora of evidence has explored incorporating several bioactive compounds into resin-based materials to prevent bacterial biofilm attachment and the onset of the disease. In this review, the most recent advances in the design of remineralizing compounds and their functionalization to different resin-based materials' formulations were overviewed. Inorganic compounds, such as nano-sized amorphous calcium phosphate (NACP), calcium fluoride (CaF2), bioactive glass (BAG), hydroxyapatite (HA), fluorapatite (FA), and boron nitride (BN), displayed promising results concerning remineralization, and direct and indirect impact on biofilm growth. The effects of these compounds varied based on these compounds' structure, the incorporated amount or percentage, and the intended clinical application. The remineralizing effects were presented as direct effects, such as an increase in the mineral content of the dental tissue, or indirect effects, such as an increase in the pH around the material. In some of the reported investigations, inorganic remineralizing compounds were combined with other bioactive agents, such as quaternary ammonium compounds (QACs), to maximize the remineralization outcomes and the antibacterial action against the cariogenic biofilms. The reviewed literature was mainly based on laboratory studies, highlighting the need to shift more toward testing the performance of these remineralizing compounds in clinical settings.


Asunto(s)
Caries Dental , Metacrilatos , Humanos , Metacrilatos/química , Fosfatos de Calcio/química , Compuestos de Amonio Cuaternario/farmacología , Biopelículas , Minerales/farmacología , Resinas de Plantas , Caries Dental/tratamiento farmacológico , Caries Dental/prevención & control , Antibacterianos/farmacología , Materiales Dentales/farmacología
10.
J Dent ; 134: 104549, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37196686

RESUMEN

OBJECTIVE: To evaluate the adhesion of Streptococcus mutans (S. mutans) and related surface properties of ion-releasing resin-based composite (RBC) restorative materials. METHODS: Two ion-releasing RBCs, Activa (ACT) and Cention-N (CN), were compared to a conventional RBC (Z350) and a resin-modified glass ionomer cement (Fuji-II-LC). Ten disk-shaped specimens were fabricated for each material (n = 40). After standardized surface polishing procedure, the surface properties of the specimens were evaluated using surface roughness measurements by a profilometer and hydrophobicity using water contact angle measurements. To assess bacterial adhesion, the number of S. mutans bacteria was calculated from colony-forming units (CFU). Confocal laser scanning microscope analysis was done for qualitative & quantitative assessment. The data were analyzed using One-way ANOVA followed by Tukey's post-hoc test to compare the mean values of surface roughness, water contact angle and CFU values. To compare the mean dead cell percentage Kruskal-Wallis rank test and Conover test were used. A p-value of ≤ 0.05 was used to report the statistical significance. RESULTS: Z350 and ACT had the smoothest surfaces, followed by CN, and the roughest surface was seen in FUJI-II-LC. The lowest water contact angles were seen in CN, and Z350, and the highest were in ACT. S. mutans counts were the highest in ACT and the lowest in Z350 and CN. CN and Fuji-II-LC registered the highest percentage of dead bacterial cells, while the lowest were in ACT. SIGNIFICANCE: Surface properties did not significantly influence bacterial adhesion. More S. mutans bacteria accumulated on ACT than on the nanofilled composite and on CN. CN had antibacterial effects against Streptococcus mutans biofilms.


Asunto(s)
Resinas Compuestas , Streptococcus mutans , Resinas Compuestas/farmacología , Ensayo de Materiales , Materiales Dentales/farmacología , Biopelículas , Adhesión Bacteriana , Propiedades de Superficie , Agua
11.
J Indian Prosthodont Soc ; 23(2): 184-191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37102545

RESUMEN

Context: To promote better biological response and osseointegration continuous research is going on to modify the titanium (Ti) implant surface for successful implant treatment modality. Aims: This study aims to evaluate the osteogenic cell growth upon the uncoated Ti discs and boron nitride (BN) coated Ti to assess osseointegration and clinical success of dental implants. Settings and Design: This is an descriptive experimental study which includes coating of uncoated titanium alloy suraface with boron nitride in the form of hexagonal boron nitride sheets. Than comparative evaluation of osteogenic cell growth upon both coated and uncoated titanium surfaces was done using specific cell growth determinants. Materials and Methods: In this descriptive experimental study, both BN-coated and uncoated Ti discs were assessed for osteogenic cell growth using 3-(4, 5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide assay, 4',6-diamidino-2-phenylindole, is a fluorescent stain assay, and cell adhesion assay. Statistical Analysis Used: As this study is a descriptive experimental analysis between two variables only so there is no need of statistical analysis or p-value. Results: Overall good cell adhesion, cell differentiation, and cell proliferation occurred in the BN-coated Ti discs as compared to uncoated Ti discs. Conclusions: To promote osseointegration of dental implants, surface coating with BN proved to be an effective approach toward better osseointegration and long-duration success of dental implants as a single unit or implant-supported prosthesis BN which is a biocompatible graphene material with advantages in chemical and thermal stability. BN promoted better osteogenic cell adhesion, differentiation, and proliferation. Hence, it can be used as a new promising Ti implant surface-coating material.


Asunto(s)
Implantes Dentales , Titanio/farmacología , Materiales Biocompatibles Revestidos/farmacología , Materiales Dentales/farmacología , Proliferación Celular
12.
J Dent ; 133: 104486, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36997083

RESUMEN

OBJECTIVES: The aim of this study was to compare the antibacterial effect of different fluoride-containing and bioactive restorative materials, and their effect on the expression of specific biofilm-associated genes and therefore the caries process. MATERIALS AND METHODS: The restorative materials utilized in this study included: 1. Filtek Z250, 2. Fuji II LC, 3. Beautifil II, 4. ACTIVA, and 5. Biodentine. For each material, disc-shaped specimens were prepared. The inhibitory effects against Streptococcus mutans, Lactobacillus acidophilus, and Leptotrichia shahii were tested. After incubation for 24 h and 1 week, colony-forming units (CFUs) were enumerated. From the plates dedicated for biomass quantification and RNA purification, the target glucosyltransferase B (gtfB) and glucan-binding protein B (gbpB) genes were chosen for S. mutans. For L. acidophilus, a gene involved in exopolysaccharide synthesis (epsB) was chosen. RESULTS: Except for Filtek Z250, all four materials showed statistically significant inhibitory effects on the biofilms of all three species. When biofilms were grown in the presence of the same four materials, the expression of S. mutans gtfB and gbpB genes, was significantly reduced. For L. acidophilus, the decrease in the expression of gtfB gene in the presence of ACTIVA was the highest change seen. The epsB gene expression also decreased. Compared to fluoride-releasing materials, bioactive materials had more inhibitory effect against L. acidophilus, both at 24 h and 1 week. CONCLUSIONS: Both fluoride releasing and bioactive materials exhibited a significant inhibitory effect on the biofilm growth. The expression of the targeted biofilm-associated genes was downregulated by both material groups. CLINICAL SIGNIFICANCE: The findings from this study give insight into the antibacterial effect of fluoride-containing and bioactive materials which would help to reduce the chances for secondary caries and therefore increase the lifetime of dental restorations placed for patients.


Asunto(s)
Caries Dental , Fluoruros , Humanos , Fluoruros/farmacología , Materiales Dentales/farmacología , Streptococcus mutans , Biopelículas , Caries Dental/microbiología , Expresión Génica , Antibacterianos/farmacología
13.
Odontology ; 111(3): 580-599, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36547737

RESUMEN

3 mol% yttria-stabilized zirconia ceramics have been gaining attention as promising restorative materials that are extensively used in dental implant applications. However, implant failure due to bacterial infection and its bioinert surface slow osseointegration in vivo, which are significant issues in clinical applications. In this work, surface modification was achieved using a continuous wave carbon dioxide laser at a wavelength of 10.6 µm in an air atmosphere. Changes in the surface characteristics were evaluated using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and 2D roughness and hardness tests. The bioactivity of the laser-treated samples was studied by examining their behavior when immersed in the SBF solution. The formation of the hydroxyapatite phase on the laser-treated sample was much more uniform than that of its untreated counterparts. The antibacterial properties of surface-treated zirconia ceramics against Streptococcus mutans and Escherichia coli bacteria were rigorously examined. These results indicate that the laser-induced nanoscale grooves significantly improved antibacterial activity by creating hydrophobic surfaces. The cellular response was evaluated for 7 days on microtextures on the zirconia surfaces and an untreated sample with MC3T3-E1 pre-osteoblast cell line cultured under basal conditions. Surface topography was revealed to improve the cellular response with increased metabolic activity compared to the untreated sample and showed modulation of cell morphology for the entire time. These results suggest that laser modification can be an appropriate non-contact method for designing nanoscale microtextures to improve the biological response and antibacterial behavior of zirconia ceramics in restorative dentistry.


Asunto(s)
Implantes Dentales , Láseres de Gas , Propiedades de Superficie , Materiales Dentales/farmacología , Materiales Dentales/química , Circonio/farmacología , Circonio/química , Cerámica/farmacología , Cerámica/química , Ensayo de Materiales , Microscopía Electrónica de Rastreo
14.
ACS Appl Mater Interfaces ; 15(1): 697-710, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36571180

RESUMEN

Apatite coatings with high stability can effectively improve the surface bioactivity and osteogenic activity of implant materials. In clinical practice, the ability of apatite coatings to bond with the substrate is critical to the effect of implants. Here, we propose a strategy to construct a three-dimensional (3D) nanoporous structure on the surface of a poly(phthalazinone ether nitrile ketone) (PPENK) substrate and introduce a polydopamine (PDA) coating with grafted phosphonate groups to enhance the overall deposition of a bone-like apatite coating in the 3D nanoporous structure during mineralization. This method leads to a mechanical interlocking between the apatite coating and the substrate, which increases the stability of the apatite coating. The apatite coating confers a better bioactive surface to PPENK and also promotes osteogenic differentiation and adhesion of MC3T3-E1 osteoblasts in vitro. The samples are then implanted into rat femurs to characterize in vivo osseointegration. Micro-CT data and histological staining of tissue sections reveal that PPENK with a stable apatite coating induces less fibrous capsule formation and no inflammatory response and promotes osteogenic differentiation and bone-bonding strength. This enhances the long-term use of PPENK implant materials and shows great potential for clinical application as orthopedic implants.


Asunto(s)
Apatitas , Oseointegración , Ratas , Animales , Osteogénesis , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Prótesis e Implantes , Materiales Dentales/farmacología , Propiedades de Superficie , Titanio/química
15.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555541

RESUMEN

The fibroblast-rich gingival tissue is usually in contact with or adjacent to cytotoxic polymer-based dental restoration materials. The objective of this study was to determine whether the antioxidant amino acid, N-acetyl cysteine (NAC), reduces the toxicity of dental restorative materials. Human oral fibroblasts were cultured with bis-acrylic, flowable composite, bulk-fill composite, self-curing acrylic, and titanium alloy test specimens. Cellular behavior and function were analyzed on and around the materials. Impregnation of the bulk-fill composite and self-curing acrylic with NAC reduced their toxicity, improving the attachment, growth, and function of human oral fibroblasts on and around the materials. These mitigating effects were NAC dose dependent. However, NAC impregnation of the bis-acrylic and flowable composite was ineffective, with no cells attaching to nor around the materials. Although supplementing the culture medium with NAC also effectively improved fibroblast behaviors, direct impregnation of materials with NAC was more effective than supplementing the cultures. NAC-mediated improvements in fibroblast behavior were associated with reduced production of reactive oxygen species and oxidized glutathione together with increased glutathione reserves, indicating that NAC effectively directly scavenged ROS from materials and reinforced the cellular antioxidant defense system. These results establish a proof of concept of NAC-mediated improvements in biocompatibility in the selected dental restorative materials.


Asunto(s)
Acetilcisteína , Antioxidantes , Humanos , Acetilcisteína/metabolismo , Antioxidantes/farmacología , Glutatión/metabolismo , Encía/metabolismo , Polímeros , Resinas Compuestas/farmacología , Ensayo de Materiales , Materiales Dentales/farmacología
16.
Sci Rep ; 12(1): 18691, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333357

RESUMEN

Oral biofilms are directly linked to one of the most common chronic human diseases, dental caries. Resin-based dental materials have significant potential to replace amalgam, however they lack sufficient antimicrobial power. This innovative study investigates a curcumin-loaded dental resin which can be utilized in an antimicrobial photodynamic therapy (aPDT) approach. The study evaluated the effects of curcumin loading on resin physicochemical, mechanical, and adhesive properties, as well as the antimicrobial response associated with blue light activation. Preliminary tests involving degree of conversion (DC) and sample integrity determined the optimal loading of curcumin to be restricted to 0.05 and 0.10 wt%. These optimal loadings were tested for flexural strength (FS), water sorption (WS) and solubility (SL), shear bond strength to dentin (SBS), and viability of Streptococcus mutans under 14.6 J/cm2 blue light or dark conditions, in 6 h and 24 h biofilms. The results demonstrated that 0.10 wt% curcumin had minimal impact on either FS or SBS, but detectably increased WS and SL. A 2 log10 (CFU/mL) reduction in S. mutans after light application in both 6 h and 24 h biofilms were corroborated by CLSM imaging and highlighted the significant potential of this novel aPDT approach with resin-based dental materials.


Asunto(s)
Antiinfecciosos , Curcumina , Caries Dental , Fotoquimioterapia , Humanos , Metacrilatos/química , Curcumina/farmacología , Caries Dental/tratamiento farmacológico , Streptococcus mutans , Fotoquimioterapia/métodos , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Resinas Sintéticas/química , Materiales Dentales/farmacología , Ensayo de Materiales
17.
J Am Dent Assoc ; 153(12): 1114-1120, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36272816

RESUMEN

BACKGROUND: This narrative review addresses dental restorative materials with sustained antibacterial action, especially those containing quaternary ammonium compounds. Secondary caries occurs around restorations, causing further loss of mineral and breakdown of the restoration. Lesions adjacent to restorations account for more than 40% of needed restorations. Restorative materials with antibacterial properties will potentially solve this problem. TYPES OF STUDIES REVIEWED: Several groups are researching composite restorative materials that incorporate antibacterial agents. These agents are mostly exhausted over time. Newer studies involve materials that incorporate antibacterial microparticles that remain active and do not leach out. RESULTS: One such antibacterial agent, quaternary ammonium coupled with inorganic silica into minute particles (QASi), has been studied in the laboratory and in humans. QASi particles incorporated into dental materials retain their antibacterial action over time without leaching or loss of activity. A clinical in situ study in humans using dental composite containing QASi resulted in highly significantly less demineralization in the adjacent enamel than the control composite material. CONCLUSIONS AND PRACTICAL IMPLICATIONS: Dental restorative materials that contain QASi have sustained antibacterial properties, have mechanical properties comparable to those of presently marketed materials, and have been cleared by the US Food and Drug Administration. Clinical studies have shown that composites incorporating QASi have the potential to markedly reduce the occurrence of caries around restorations. Because caries around restorations is a major problem, restorative materials with sustained antibacterial properties will have an important effect in reducing secondary caries around restorations.


Asunto(s)
Caries Dental , Compuestos de Amonio Cuaternario , Humanos , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/uso terapéutico , Resinas Compuestas/farmacología , Resinas Compuestas/uso terapéutico , Caries Dental/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Esmalte Dental , Materiales Dentales/farmacología , Materiales Dentales/uso terapéutico , Restauración Dental Permanente
18.
J Dent ; 127: 104296, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36116542

RESUMEN

OBJECTIVES: To assess whether the dissolution products of S53P4 bioactive glass (BG) affect cellular response of macrophages and clinically relevant peri­implant cell populations to dental implant particles in vitro. Cells chosen were human gingival fibroblasts (HGFs), osteoblasts and bone marrow derived stromal cells (HBMSCs). METHODS: Melt-derived S53P4 bioactive glass were prepared. HGFs, Saos-2 human osteoblastic cell line, HBMSCs and macrophages, derived from THP-1 human monocytic cell line, were cultured in the presence of particles from commercially pure titanium (Ti-CP4), grade 5 titanium alloy (Ti-6Al-4V), titanium-zirconium alloy (Ti-15Zr) or zirconia (Zr) (with respective diameters of 34.1 ± 3.8, 33.3 ± 4.4, 97.8 ± 8.2 and 71.3 ± 6.1 µm) with or without S53P4 dissolution products (conditioned media contained 327.30 ± 2.01 ppm Ca, 51.34 ± 0.41 ppm P and 61.48 ± 1.17 ppm Si, pH 8.01 ± 0.21). Inflammatory and macrophage polarisation markers including TNF-ɑ, IL-1, IL-6 and CD206 were quantified using enzyme-linked immunosorbent assay (ELISA). RESULTS: The presence of Ti-6Al-4V implant particles significantly induced the expression of pro-inflammatory markers in all tested cell types. S53P4 BG dissolution products regressed the particle induced up-regulation of pro-inflammatory markers and, appeared to suppress M1 macrophage polarisation. CONCLUSIONS: Implant particles, Ti-6Al-4V in particular, resulted in significant inflammatory responses from cells. S53P4 BG may possess anti-inflammatory properties and potentially mediate macrophage polarisation behaviour. CLINICAL SIGNIFICANCE: The findings highlight that the use and benefits of BG is a promising field of study. Authors believe more collective efforts are required to fully understand the reliability, efficiency and exact mechanisms of action of BG in the search for new generation of treatment modalities in dentistry.


Asunto(s)
Aleaciones , Titanio , Humanos , Titanio/farmacología , Reproducibilidad de los Resultados , Propiedades de Superficie , Materiales Dentales/farmacología , Materiales Biocompatibles , Antiinflamatorios
19.
Caries Res ; 56(3): 215-225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35981515

RESUMEN

Bioactive restorative materials are being developed to either influence the de/remineralization balance of the dental hard tissues locally or to release components that interact with the oral microbiota. Surface prereacted glass (S-PRG, Shofu, Japan) is a material that may influence both processes. S-PRG releases fluoride, which can interact with the de/remineralization process, and a range of other compounds that may influence the oral microbiota. In the current study, several experiments were performed to investigate the potential of S-PRG to influence both the growth and lactic acid production of saliva-derived polymicrobial biofilms. Biofilm formation was studied using the Amsterdam Active Attachment model. An eluate of the S-PRG particles was tested by adding it to the growth medium or by exposing the biofilms to it for 1 h. The effect of S-PRG particles was tested by adding the particles to the growth medium. The current experiments showed that the presence of S-PRG eluate in the medium influenced biofilm growth and lactic acid production even at low concentrations. The composition of the biofilms changed in the presence of S-PRG eluate, even at concentrations of S-PRG eluate at which biofilm viability was not affected. Treatment of developing biofilms with S-PRG eluate did neither show an effect on biofilm viability nor on lactic acid production. The addition of S-PRG particles to the growth medium resulted in both a lower biofilm viability and lower lactic acid production, indicating that the release of ions from the particles was fast enough to influence biofilm formation. From the current experiments, it can be concluded that S-PRG has the potential to influence biofilm growth, but the presence of the released ions during biofilm formation is required to show an effect.


Asunto(s)
Biopelículas , Saliva , Humanos , Fluoruros/farmacología , Materiales Dentales/farmacología , Ácido Láctico
20.
Acta Biomater ; 150: 58-66, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35933103

RESUMEN

Dental caries is a biofilm-mediated, diet-modulated, multifactorial and dynamic disease that affects more than 90% of adults in Western countries. The current treatment for decayed tissue is based on using materials to replace the lost enamel or dentin. More than 500 million dental restorations are placed annually worldwide, and materials used for these purposes either directly or indirectly interact with dentin and pulp tissues. The development and understanding of the effects of restorative dental materials are based on different in-vitro and in-vivo tests, which have been evolving with time. In this review, we first discuss the characteristics of the tooth and the dentin-pulp interface that are unique for materials testing. Subsequently, we discuss frequently used in-vitro tests to evaluate the biocompatibility of dental materials commonly used for restorative procedures. Finally, we present our perspective on the future directions for biological research on dental materials using tissue engineering and organs on-a-chip approaches. STATEMENT OF SIGNIFICANCE: Dental caries is still the most prevalent infectious disease globally, requiring more than 500 million restorations to be placed every year. Regrettably, the failure rates of such restorations are still high. Those rates are partially based on the fact that current platforms to test dental materials are somewhat inaccurate in reproducing critical components of the complex oral microenvironment. Thus, there is a collective effort to develop new materials while evolving the platforms to test them. In this context, the present review critically discusses in-vitro models used to evaluate the biocompatibility of restorative dental materials and brings a perspective on future directions for tissue-engineered and organs-on-a-chip platforms for testing new dental materials.


Asunto(s)
Caries Dental , Dentina , Adulto , Resinas Compuestas , Materiales Dentales/farmacología , Restauración Dental Permanente , Humanos , Dispositivos Laboratorio en un Chip , Ensayo de Materiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA