Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Biofabrication ; 16(4)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39255833

RESUMEN

The transplantation of islet beta cells offers an alternative to heterotopic islet transplantation for treating type 1 diabetes mellitus (T1DM). However, the use of systemic immunosuppressive drugs in islet transplantation poses significant risks to the body. To address this issue, we constructed an encapsulated hybrid scaffold loaded with islet beta cells. This article focuses on the preparation of the encapsulated structure using 3D printing, which incorporates porcine pancreas decellularized extracellular matrix (dECM) to the core scaffold. The improved decellularization method successfully preserved a substantial proportion of protein (such as Collagen I and Laminins) architecture and glycosaminoglycans in the dECM hydrogel, while effectively removing most of the DNA. The inclusion of dECM enhanced the physical and chemical properties of the scaffold, resulting in a porosity of 83.62% ± 1.09% and a tensile stress of 1.85 ± 0.16 MPa. In teams of biological activity, dECM demonstrated enhanced proliferation, differentiation, and expression of transcription factors such as Ki67, PDX1, and NKX6.1, leading to improved insulin secretion function in MIN-6 pancreatic beta cells. In the glucose-stimulated insulin secretion experiment on day 21, the maximum insulin secretion from the encapsulated structure reached 1.96 ± 0.08 mIU ml-1, representing a 44% increase compared to the control group. Furthermore, conventional capsule scaffolds leaverage the compatibility of natural biomaterials with macrophages to mitigate immune rejection. Here, incorporating curcumin into the capsule scaffold significantly reduced the secretion of pro-inflammatory cytokine (IL-1ß, IL-6, TNF-α, IFN-γ) secretion by RAW264.7 macrophages and T cells in T1DM mice. This approach protected pancreatic islet cells against immune cell infiltration mediated by inflammatory factors and prevented insulitis. Overall, the encapsulated scaffold developed in this study shows promise as a natural platform for clinical treatment of T1DM.


Asunto(s)
Curcumina , Matriz Extracelular Descelularizada , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Andamios del Tejido , Animales , Diabetes Mellitus Tipo 1/terapia , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Andamios del Tejido/química , Curcumina/farmacología , Curcumina/química , Ratones , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Porcinos , Trasplante de Islotes Pancreáticos , Cápsulas/química , Insulina/metabolismo , Diabetes Mellitus Experimental/terapia , Línea Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/química
2.
Molecules ; 29(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39339380

RESUMEN

Cancer stem cells (CSCs) are most likely the main cause of lung cancer formation, metastasis, drug resistance, and genetic heterogeneity. Three-dimensional (3D) ex vivo cell culture models can facilitate stemness improvement and CSC enrichment. Considering the critical role of extracellular matrix (ECM) on CSC properties, the present study developed a thermo-responsive hydrogel using the porcine decellularized lung for 3D cell culture, and the cell-laden hydrogel culturing model was used to explore the CSC characteristics and potential utilization in CSC-specific drug evaluation. Results showed that the lung dECM hydrogel (LEH) was composed of the main ECM components and displayed excellent cellular compatibility. In addition, lung cancer cells 3D cultured in LEH displayed the overexpression of metastasis-related genes and enhanced migration properties, as compared with those in two-dimensional (2D) conditions. Notably, the CSC features, including the expression level of stemness-associated genes, colony formation capability, drug resistance, and the proportion of cancer stem-like cells (CD133+), were also enhanced in 3D cells. Furthermore, the attenuation effect of epigallocatechin gallate (EGCG) on CSC properties in the 3D model was observed, confirming the potential practicability of the 3D culture on CSC-targeted drug screening. Overall, our results suggest that the fabricated LEH is an effective and facile platform for 3D cell culture and CSC-specific drug evaluation.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Hidrogeles , Neoplasias Pulmonares , Células Madre Neoplásicas , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Técnicas de Cultivo Tridimensional de Células/métodos , Animales , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Matriz Extracelular Descelularizada/farmacología , Matriz Extracelular Descelularizada/química , Pulmón/metabolismo , Pulmón/patología , Pulmón/citología , Porcinos , Catequina/análogos & derivados , Catequina/farmacología , Catequina/química , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos
3.
Acta Biomater ; 186: 85-94, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39134130

RESUMEN

Bone extracellular matrix (ECM) has been shown to mimic aspects of the tissue's complex microenvironment, suggesting its potential role in promoting bone repair. However, current ECM-based therapies suffer from limitations such as inefficient scale-up, lack of mechanical integrity, and sub-optimal efficacy. Here, we fabricated hydrogels from decellularized ECM (dECM) from wild type (WT) and thrombospondin-2 knock-out (TSP2KO) mouse bones. TSP2KO bone ECM hydrogel was found to have distinct mechanical properties and collagen fibril assembly from WT. Furthermore, TSP2KO hydrogel promoted mesenchymal stem cell (MSC) attachment, spreading, and invasion in vitro. Similarly, it promoted formation of tube-like structures by human umbilical vein endothelial cells (HUVECs). When applied to a murine calvarial defect model, TSP2KO hydrogel enhanced repair, in part, due to increased angiogenesis. Our study suggests the pro-angiogenic therapeutic potential of TSP2KO bone ECM hydrogel in bone repair. STATEMENT OF SIGNIFICANCE: The study describes the first successful preparation of a novel hydrogel made from decellularized bones from wild-type mice and mice lacking thrombospondin-2 (TSP2). Hydrogels from TSP2 knock-out (TSP2KO) bones have unique characteristics in structure and biomechanics. These gels interacted well with cells in vitro and helped repair damaged bone in a mouse model. Therefore, TSP2KO bone-derived hydrogel has translational potential for accelerating repair of bone defects that are otherwise difficult to heal. This study not only creates a new material with promise for accelerated healing, but also validates tunability of native biomaterials by genetic engineering.


Asunto(s)
Matriz Extracelular , Células Endoteliales de la Vena Umbilical Humana , Hidrogeles , Trombospondinas , Animales , Humanos , Ratones , Huesos/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hidrogeles/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones Noqueados , Neovascularización Fisiológica/efectos de los fármacos , Trombospondinas/metabolismo , Trombospondinas/genética
4.
Biomater Adv ; 165: 214003, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39213958

RESUMEN

Extracellular matrix sponge plays a positive role in the wound healing process, but requires proper structural strength and biological properties. In order to solve the problem of lyophilized dissolution of placenta-derived sponge, glutaraldehyde was selected for use in the lyophilized crosslinking process to improve the necessary mechanical properties of the placental decellularization matrix sponge. In this work, the effects of three cross-linking methods of glutaraldehyde (Fumigation/Slurry/Soak) on the physical and biological characteristics of lyophilised sponges derived from placental acellular matrix was investigated. The results revealed that the sponges prepared by all three cross-linking methods exhibited excellent blood coagulation ability and stability. The fumigation cross-linked sponges had good mechanical properties of soft and elastic, and safe cytotoxicity, which were more compatible with the requirements of wound dressing. The slurry cross-linking process was uneven due to the stacked matrix materials, resulting in obvious cracks and easy to break when stretching. The soak crosslinking can obtain a higher degree of crosslinking, which leads to the poor antibacterial performance and the harder sponge scaffold with larger elastic modulus and smaller tensile ratio. In general, fumigation cross-linking is more suitable for the preparation of acellular sponge derived from placenta materials which can maintain basic mechanical properties and biological validity.


Asunto(s)
Reactivos de Enlaces Cruzados , Glutaral , Placenta , Glutaral/química , Placenta/citología , Femenino , Reactivos de Enlaces Cruzados/química , Embarazo , Animales , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Humanos , Andamios del Tejido/química , Liofilización/métodos , Coagulación Sanguínea/efectos de los fármacos , Resistencia a la Tracción , Matriz Extracelular/química , Ensayo de Materiales
5.
Colloids Surf B Biointerfaces ; 244: 114175, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39216442

RESUMEN

Decellularized extracellular matrix (dECM) hydrogels are engineered constructs that are widely-used in the field of regenerative medicine. However, the development of ECM-based hydrogels for bone tissue engineering requires enhancement in its osteogenic properties. For this purpose, we initially employed bone-derived dECM hydrogel (dECM-Hy) in combination with calcium phosphate cement (CPC) paste to improve the biological and structural properties of the dECM hydrogel. A decellularization protocol for bovine bone was developed to prepare dECM-Hy, and the mechanically-tuned dECM/CPC-Hy was built based on both rheological and mechanical characteristics. The dECM/CPC-Hy displayed a double swelling ratio and compressive strength. An interconnected structure with distinct hydroxyapatite crystals was evident in dECM/CPC-Hy. The expression levels of Alp, Runx2 and Ocn genes were upregulated in dECM/CPC-Hy compared to the dECM-Hy. A 14-day follow-up of the rats receiving subcutaneous implanted dECM-Hy, dECM/CPC-Hy and mesenchymal stem cells (MSCs)-embedded (dECM/CPC/MSCs-Hy) showed no toxicity, inflammatory factor expression or pathological changes. Radiography and computed tomography (CT) of the calvarial defects revealed new bone formation and elevated number of osteoblasts-osteocytes and osteons in dECM/CPC-Hy and dECM/CPC/MSCs-Hy compared to the control groups. These findings indicate that the dECM/CPC-Hy has substantial potential for bone tissue engineering.


Asunto(s)
Cementos para Huesos , Regeneración Ósea , Fosfatos de Calcio , Células Madre Mesenquimatosas , Animales , Fosfatos de Calcio/química , Regeneración Ósea/efectos de los fármacos , Bovinos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratas , Cementos para Huesos/química , Cementos para Huesos/farmacología , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Osteogénesis/efectos de los fármacos , Ratas Sprague-Dawley , Ingeniería de Tejidos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Matriz Extracelular/química , Matriz Extracelular/metabolismo
6.
ACS Appl Bio Mater ; 7(7): 4747-4759, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39005189

RESUMEN

Current engineered synthetic scaffolds fail to functionally repair and regenerate ruptured native tendon tissues, partly because they cannot satisfy both the unique biological and biomechanical properties of these tissues. Ideal scaffolds for tendon repair and regeneration need to provide porous topographic structures and biological cues necessary for the efficient infiltration and tenogenic differentiation of embedded stem cells. To obtain crimped and porous scaffolds, highly aligned poly(l-lactide) fibers were prepared by electrospinning followed by postprocessing. Through a mild and controlled hydrogen gas foaming technique, we successfully transformed the crimped fibrous mats into three-dimensional porous scaffolds without sacrificing the crimped microstructure. Porcine derived decellularized tendon matrix was then grafted onto this porous scaffold through fiber surface modification and carbodiimide chemistry. These biofunctionalized, crimped, and porous scaffolds supported the proliferation, migration, and tenogenic induction of tendon derived stem/progenitor cells, while enabling adhesion to native tendons. Together, our data suggest that these biofunctionalized scaffolds can be exploited as promising engineered scaffolds for the treatment of acute tendon rupture.


Asunto(s)
Materiales Biocompatibles , Ensayo de Materiales , Regeneración , Tendones , Andamios del Tejido , Andamios del Tejido/química , Tendones/citología , Animales , Porcinos , Porosidad , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos , Proliferación Celular/efectos de los fármacos , Tamaño de la Partícula , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Poliésteres/química
7.
Acta Biomater ; 185: 190-202, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059731

RESUMEN

Limited treatments and a lack of appropriate animal models have spurred the study of scaffolds to mimic lung disease in vitro. Decellularized human lung and its application in extracellular matrix (ECM) hydrogels has advanced the development of these lung ECM models. Controlling the biochemical and mechanical properties of decellularized ECM hydrogels continues to be of interest due to inherent discrepancies of hydrogels when compared to their source tissue. To optimize the physiologic relevance of ECM hydrogel lung models without sacrificing the native composition we engineered a binary fabrication system to produce a Hybridgel composed of an ECM hydrogel reinforced with an ECM cryogel. Further, we compared the effect of ECM-altering disease on the properties of the gels using elastin poor Chronic Obstructive Pulmonary Disease (COPD) vs non-diseased (ND) human lung source tissue. Nanoindentation confirmed the significant loss of elasticity in hydrogels compared to that of ND human lung and further demonstrated the recovery of elastic moduli in ECM cryogels and Hybridgels. These findings were supported by similar observations in diseased tissue and gels. Successful cell encapsulation, distribution, cytotoxicity, and infiltration were observed and characterized via confocal microscopy. Cells were uniformly distributed throughout the Hybridgel and capable of survival for 7 days. Cell-laden ECM hybridgels were found to have elasticity similar to that of ND human lung. Compositional investigation into diseased and ND gels indicated the conservation of disease-specific elastin to collagen ratios. In brief, we have engineered a composited ECM hybridgel for the 3D study of cell-matrix interactions of varying lung disease states that optimizes the application of decellularized lung ECM materials to more closely mimic the human lung while conserving the compositional bioactivity of the native ECM. STATEMENT OF SIGNIFICANCE: The lack of an appropriate disease model for the study of chronic lung diseases continues to severely inhibit the advancement of treatments and preventions of these otherwise fatal illnesses due to the inability to recapture the biocomplexity of pathologic cell-ECM interactions. Engineering biomaterials that utilize decellularized lungs offers an opportunity to deconstruct, understand, and rebuild models that highlight and investigate how disease specific characteristics of the extracellular environment are involved in driving disease progression. We have advanced this space by designing a binary fabrication system for a ECM Hybridgel that retains properties from its source material required to observe native matrix interactions. This design simulates a 3D lung environment that is both mechanically elastic and compositionally relevant when derived from non-diseased tissue and pathologically diminished both mechanically and compositionally when derived from COPD tissue. Here we describe the ECM hybridgel as a model for the study of cell-ECM interactions involved in COPD.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/patología , Pulmón/patología , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Matriz Extracelular/química , Modelos Biológicos , Criogeles/química , Animales
8.
Tissue Cell ; 90: 102475, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059134

RESUMEN

Decellularized cortical bone powder derived from adult animals has been shown to induce bone remodeling. Furthermore, it is increasingly evident that the extracellular matrix (ECM) within decellularized tissues differs depending on the source tissue and the age of the animal, leading to distinct effects on cells. In this study, we prepared powders from decellularized fetal and adult porcine bone tissues and conducted biological analyses to determine if the decellularized tissue could induce adipose-derived stem cell differentiation. Decellularized fetal tissues and adult cortical bone were converted into powder by cryomilling, but decellularized adult bone marrow and cartilage were not powdered through this process. In vitro assessments revealed that decellularized fetal tissues, decellularized adult cartilage extract, and decellularized fetal cartilage powder can induce osteoblast differentiation. This study suggests that decellularized fetal bone tissues and adult cartilage contain ECM components that can induce osteoblast differentiation. Additionally, it highlights the utility of decellularized fetal cartilage powder for bone reconstruction.


Asunto(s)
Cartílago , Diferenciación Celular , Matriz Extracelular , Feto , Osteogénesis , Animales , Cartílago/citología , Cartílago/metabolismo , Matriz Extracelular/metabolismo , Porcinos , Feto/citología , Huesos/citología , Osteoblastos/citología , Osteoblastos/metabolismo , Matriz Extracelular Descelularizada/farmacología
9.
Acta Biomater ; 184: 81-97, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908416

RESUMEN

The use of decellularized extracellular matrix products in tissue regeneration is quite alluring yet practically challenging due to the limitations of its availability, harsh processing techniques, and host rejection. Scaffolds obtained by either incorporating extracellular matrix (ECM) material or coating the surface can resolve these challenges to some extent. However, these scaffolds lack the complex 3D network formed by proteins and growth factors observed in natural ECM. This study introduces an approach utilizing 3D nanofiber scaffolds decorated with dECM to enhance cellular responses and promote tissue regeneration. Notably, the dECM can be customized according to specific cellular requirements, offering a tailored environment for enhanced therapeutic outcomes. Two types of 3D expanded scaffolds, namely radially aligned scaffolds (RAS) and laterally expanded scaffolds (LES) fabricated by the gas-foaming expansion were utilized. To demonstrate the proof-of-concept, human dermal fibroblasts (HDFs) seeded on these scaffolds for up to 8 weeks, resulted in uniform and highly aligned cells which deposited ECM on the scaffolds. These cellular components were then removed from the scaffolds through decellularization (e.g., SDS treatment and freeze-thaw cycles). The dECM-decorated 3D expanded nanofiber scaffolds can direct and support cell alignment and proliferation along the underlying fibers upon recellularization. An in vitro inflammation assay indicates that dECM-decorated LES induces a lower immune response than dECM-decorated RAS. Further, subcutaneous implantation of dECM-decorated RAS and LES shows higher cell infiltration and angiogenesis within 7 and 14 days than RAS and LES without dECM decoration. Taken together, dECM-decorated 3D expanded nanofiber scaffolds hold great potential in tissue regeneration and tissue modeling. STATEMENT OF SIGNIFICANCE: Decellularized ECM scaffolds have attained widespread attention in biomedical applications due to their intricate 3D framework of proteins and growth factors. Mimicking such a complicated architecture is a clinical challenge. In this study, we developed natural ECM-decorated 3D electrospun nanofiber scaffolds with controlled alignments to mimic human tissue. Fibroblasts were cultured on these scaffolds for 8 weeks to deposit natural ECM and decellularized by either freeze-thawing or detergent to obtain decellularized ECM scaffolds. These scaffolds were tested in both in-vitro and in-vivo conditions. They displayed higher cellular attributes with lower immune response making them a good grafting tool in tissue regeneration.


Asunto(s)
Matriz Extracelular Descelularizada , Fibroblastos , Nanofibras , Regeneración , Andamios del Tejido , Andamios del Tejido/química , Nanofibras/química , Humanos , Fibroblastos/citología , Fibroblastos/metabolismo , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Animales , Ingeniería de Tejidos/métodos , Matriz Extracelular/química , Proliferación Celular/efectos de los fármacos , Ratones
10.
Adv Mater ; 36(34): e2400306, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38762768

RESUMEN

To date, strategies aiming to modulate cell to extracellular matrix (ECM) interactions during organoid derivation remain largely unexplored. Here renal decellularized ECM (dECM) hydrogels are fabricated from porcine and human renal cortex as biomaterials to enrich cell-to-ECM crosstalk during the onset of kidney organoid differentiation from human pluripotent stem cells (hPSCs). Renal dECM-derived hydrogels are used in combination with hPSC-derived renal progenitor cells to define new approaches for 2D and 3D kidney organoid differentiation, demonstrating that in the presence of these biomaterials the resulting kidney organoids exhibit renal differentiation features and the formation of an endogenous vascular component. Based on these observations, a new method to produce kidney organoids with vascular-like structures is achieved through the assembly of hPSC-derived endothelial-like organoids with kidney organoids in 3D. Major readouts of kidney differentiation and renal cell morphology are assessed exploiting these culture platforms as new models of nephrogenesis. Overall, this work shows that exploiting cell-to-ECM interactions during the onset of kidney differentiation from hPSCs facilitates and optimizes current approaches for kidney organoid derivation thereby increasing the utility of these unique cell culture platforms for personalized medicine.


Asunto(s)
Diferenciación Celular , Hidrogeles , Riñón , Neovascularización Fisiológica , Organoides , Organoides/citología , Hidrogeles/química , Humanos , Animales , Porcinos , Riñón/citología , Diferenciación Celular/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Células Madre Pluripotentes/citología , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Angiogénesis
11.
Cell Biochem Funct ; 42(4): e4038, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736214

RESUMEN

The generation of insulin-producing cells (IPCs) is an attractive approach for replacing damaged ß cells in diabetic patients. In the present work, we introduced a hybrid platform of decellularized amniotic membrane (dAM) and fibrin encapsulation for differentiating adipose tissue-derived stem cells (ASCs) into IPCs. ASCs were isolated from healthy donors and characterized. Human AM was decellularized, and its morphology, DNA, collagen, glycosaminoglycan (GAG) contents, and biocompatibility were evaluated. ASCs were subjected to four IPC differentiation methods, and the most efficient method was selected for the experiment. ASCs were seeded onto dAM, alone or encapsulated in fibrin gel with various thrombin concentrations, and differentiated into IPCs according to a method applying serum-free media containing 2-mercaptoethanol, nicotinamide, and exendin-4. PDX-1, GLUT-2 and insulin expression were evaluated in differentiated cells using real-time PCR. Structural integrity and collagen and GAG contents of AM were preserved after decellularization, while DNA content was minimized. Cultivating ASCs on dAM augmented their attachment, proliferation, and viability and enhanced the expression of PDX-1, GLUT-2, and insulin in differentiated cells. Encapsulating ASCs in fibrin gel containing 2 mg/ml fibrinogen and 10 units/ml thrombin increased their differentiation into IPCs. dAM and fibrin gel synergistically enhanced the differentiation of ASCs into IPCs, which could be considered an appropriate strategy for replacing damaged ß cells.


Asunto(s)
Tejido Adiposo , Diferenciación Celular , Fibrina , Insulina , Células Madre , Humanos , Diferenciación Celular/efectos de los fármacos , Fibrina/química , Fibrina/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células Madre/metabolismo , Células Madre/citología , Insulina/metabolismo , Células Cultivadas , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/metabolismo , Matriz Extracelular Descelularizada/farmacología , Amnios/citología , Amnios/metabolismo , Amnios/química
12.
Acta Biomater ; 181: 202-221, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38692468

RESUMEN

Dental pulp is the only soft tissue in the tooth which plays a crucial role in maintaining intrinsic multi-functional behaviors of the dentin-pulp complex. Nevertheless, the restoration of fully functional pulps after pulpitis or pulp necrosis, termed endodontic regeneration, remained a major challenge for decades. Therefore, a bioactive and in-situ injectable biomaterial is highly desired for tissue-engineered pulp regeneration. Herein, a decellularized matrix hydrogel derived from porcine dental pulps (pDDPM-G) was prepared and characterized through systematic comparison against the porcine decellularized nerve matrix hydrogel (pDNM-G). The pDDPM-G not only exhibited superior capabilities in facilitating multi-directional differentiation of dental pulp stem cells (DPSCs) during 3D culture, but also promoted regeneration of pulp-like tissues after DPSCs encapsulation and transplantation. Further comparative proteomic and transcriptome analyses revealed the differential compositions and potential mechanisms that endow the pDDPM-G with highly tissue-specific properties. Finally, it was realized that the abundant tenascin C (TNC) in pDDPM served as key factor responsible for the activation of Notch signaling cascades and promoted DPSCs odontoblastic differentiation. Overall, it is believed that pDDPM-G is a sort of multi-functional and tissue-specific hydrogel-based material that holds great promise in endodontic regeneration and clinical translation. STATEMENT OF SIGNIFICANCE: Functional hydrogel-based biomaterials are highly desirable for endodontic regeneration treatments. Decellularized extracellular matrix (dECM) preserves most extracellular matrix components of its native tissue, exhibiting unique advantages in promoting tissue regeneration and functional restoration. In this study, we prepared a porcine dental pulp-derived dECM hydrogel (pDDPM-G), which exhibited superior performance in promoting odontogenesis, angiogenesis, and neurogenesis of the regenerating pulp-like tissue, further showed its tissue-specificity compared to the peripheral nerve-derived dECM hydrogel. In-depth proteomic and transcriptomic analyses revealed that the activation of tenascin C-Notch axis played an important role in facilitating odontogenic regeneration. This biomaterial-based study validated the great potential of the dental pulp-specific pDDPM-G for clinical applications, and provides a springboard for research strategies in ECM-related regenerative medicine.


Asunto(s)
Pulpa Dental , Hidrogeles , Regeneración , Células Madre , Pulpa Dental/citología , Animales , Hidrogeles/química , Porcinos , Regeneración/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Diferenciación Celular/efectos de los fármacos , Endodoncia Regenerativa/métodos , Humanos , Ingeniería de Tejidos/métodos
13.
J Mater Chem B ; 12(22): 5513-5524, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38745541

RESUMEN

BACKGROUND: In the domain of plastic surgery, nasal cartilage regeneration is of significant importance. The extracellular matrix (ECM) from porcine nasal septum cartilage has shown potential for promoting human cartilage regeneration. Nonetheless, the specific biological inductive factors and their pathways in cartilage tissue engineering remain undefined. METHODS: The decellularized matrix derived from porcine nasal septum cartilage (PN-DCM) was prepared using a grinding method. Human umbilical cord mesenchymal stem cells (HuMSCs) were cultured on these PN-DCM scaffolds for 4 weeks without exogenous growth factors to evaluate their chondroinductive potential. Subsequently, proteomic analysis was employed to identify potential biological inductive factors within the PN-DCM scaffolds. RESULTS: Compared to the TGF-ß3-cultured pellet model serving as a positive control, the PN-DCM scaffolds promoted significant deposition of a Safranin-O positive matrix and Type II collagen by HuMSCs. Gene expression profiling revealed upregulation of ACAN, COL2A1, and SOX9. Proteomic analysis identified potential chondroinductive factors in the PN-DCM scaffolds, including CYTL1, CTGF, MGP, ITGB1, BMP7, and GDF5, which influence HuMSC differentiation. CONCLUSION: Our findings have demonstrated that the PN-DCM scaffolds promoted HuMSC differentiation towards a nasal chondrocyte phenotype without the supplementation of exogenous growth factors. This outcome is associated with the chondroinductive factors present within the PN-DCM scaffolds.


Asunto(s)
Diferenciación Celular , Condrogénesis , Células Madre Mesenquimatosas , Tabique Nasal , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Tabique Nasal/citología , Tabique Nasal/química , Animales , Porcinos , Células Cultivadas , Andamios del Tejido/química , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Ingeniería de Tejidos , Cordón Umbilical/citología
14.
Biomater Adv ; 161: 213883, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762928

RESUMEN

Maintaining the viability of damaged pulp is critical in clinical dentistry. Pulp capping, by placing dental material over the exposed pulp, is a main approach to promote pulp-dentin healing and mineralized tissue formation. The dental materials are desired to impact on intricate physiological mechanisms in the healing process, including early regulation of inflammation, immunity, and cellular events. In this study, we developed an injectable dental pulp-derived decellularized matrix (DPM) hydrogel to modulate macrophage responses and promote dentin repair. The DPM derived from porcine dental pulp has high collagen retention and low DNA content. The DPM was solubilized by pepsin digestion (named p-DPM) and subsequently injected through a 25G needle to form hydrogel facilely at 37 °C. In vitro results demonstrated that the p-DPM induced the M2-polarization of macrophages and the migration, proliferation, and dentin differentiation of human dental pulp stem cells from deciduous teeth (SHEDs). In a mouse subcutaneous injection test, the p-DPM hydrogel was found to facilitate cell recruitment and M2 polarization during the early phase of implantation. Additionally, the acute pulp restoration in rat models proved that injectable p-DPM hydrogel as a pulp-capping agent had excellent efficacy in dentin regeneration. This study demonstrates that the DPM promotes dentin repair by modulating macrophage responses, and has a potential for pulp-capping applications in dental practice.


Asunto(s)
Pulpa Dental , Dentina , Hidrogeles , Macrófagos , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Humanos , Dentina/efectos de los fármacos , Dentina/química , Hidrogeles/química , Ratones , Ratas , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Porcinos , Diferenciación Celular/efectos de los fármacos , Regeneración/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/citología , Cicatrización de Heridas/efectos de los fármacos
15.
Macromol Biosci ; 24(8): e2400035, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38685795

RESUMEN

3D bioprinting allows rapid automated fabrication and can be applied for high throughput generation of biomimetic constructs for in vitro drug screening. Decellularized extracellular matrix (dECM) hydrogel is a popular biomaterial choice for tissue engineering and studying carcinogenesis as a tumor microenvironmental mimetic. This study proposes a method for high throughput bioprinting with decellularized adipose tissue (DAT) based hydrogels for 3D breast cancer modeling. A comparative analysis of decellularization protocol using detergent-based and detergent-free decellularization methods for caprine-origin adipose tissue is performed, and the efficacy of dECM hydrogel for 3D cancer modeling is assessed. Histological, biochemical, morphological, and biological characterization and analysis showcase the cytocompatibility of DAT hydrogel. The rheological property of DAT hydrogel and printing process optimization is assessed to select a bioprinting window to attain 3D breast cancer models. The bioprinted tissues are characterized for cellular viability and tumor cell-matrix interactions. Additionally, an approach for breast cancer modeling is shown by performing rapid high throughput bioprinting in a 96-well plate format, and in vitro drug screening using 5-fluorouracil is performed on 3D bioprinted microtumors. The results of this study suggest that high throughput bioprinting of cancer models can potentially have downstream clinical applications like multi-drug screening platforms and personalized disease models.


Asunto(s)
Tejido Adiposo , Bioimpresión , Neoplasias de la Mama , Hidrogeles , Impresión Tridimensional , Neoplasias de la Mama/patología , Hidrogeles/química , Bioimpresión/métodos , Humanos , Femenino , Tejido Adiposo/citología , Animales , Ingeniería de Tejidos/métodos , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Fluorouracilo/farmacología , Fluorouracilo/química , Cabras , Andamios del Tejido/química , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral
16.
Acta Biomater ; 180: 295-307, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38642787

RESUMEN

Kidney regeneration is hindered by the limited pool of intrinsic reparative cells. Advanced therapies targeting renal regeneration have the potential to alleviate the clinical and financial burdens associated with kidney disease. Delivery systems for cells, extracellular vesicles, or growth factors aimed at enhancing regeneration can benefit from vehicles enabling targeted delivery and controlled release. Hydrogels, optimized to carry biological cargo while promoting regeneration, have emerged as promising candidates for this purpose. This study aims to develop a hydrogel from decellularized kidney extracellular matrix (DKECM) and explore its biocompatibility as a biomaterial for renal regeneration. The resulting hydrogel crosslinks with temperature and exhibits a high concentration of extracellular matrix. The decellularization process efficiently removes detergent residues, yielding a pathogen-free biomaterial that is non-hemolytic and devoid of α-gal epitope. Upon interaction with macrophages, the hydrogel induces differentiation into both pro-inflammatory and anti-inflammatory phenotypes, suggesting an adequate balance to promote biomaterial functionality in vivo. Renal progenitor cells encapsulated in the DKECM hydrogel demonstrate higher viability and proliferation than in commercial collagen-I hydrogels, while also expressing tubular cells and podocyte markers in long-term culture. Overall, the injectable biomaterial derived from porcine DKECM is anticipated to elicit minimal host reaction while fostering progenitor cell bioactivity, offering a potential avenue for enhancing renal regeneration in clinical settings. STATEMENT OF SIGNIFICANCE: The quest to improve treatments for kidney disease is crucial, given the challenges faced by patients on dialysis or waiting for transplants. Exciting new therapies combining biomaterials with cells can revolutionize kidney repair. In this study, researchers created a hydrogel from pig kidney. This gel could be used to deliver cells and other substances that help in kidney regeneration. Despite coming from pigs, it's safe for use in humans, with no harmful substances and reduced risk of immune reactions. Importantly, it promotes a balanced healing response in the body. This research not only advances our knowledge of kidney repair but also offers hope for more effective treatments for kidney diseases.


Asunto(s)
Matriz Extracelular Descelularizada , Hidrogeles , Riñón , Ingeniería de Tejidos , Hidrogeles/química , Animales , Ingeniería de Tejidos/métodos , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Porcinos , Matriz Extracelular/química , Humanos , Células Madre/citología , Células Madre/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
17.
Cells ; 13(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667303

RESUMEN

Skeletal muscle degeneration is responsible for major mobility complications, and this muscle type has little regenerative capacity. Several biomaterials have been proposed to induce muscle regeneration and function restoration. Decellularized scaffolds present biological properties that allow efficient cell culture, providing a suitable microenvironment for artificial construct development and being an alternative for in vitro muscle culture. For translational purposes, biomaterials derived from large animals are an interesting and unexplored source for muscle scaffold production. Therefore, this study aimed to produce and characterize bovine muscle scaffolds to be applied to muscle cell 3D cultures. Bovine muscle fragments were immersed in decellularizing solutions for 7 days. Decellularization efficiency, structure, composition, and three-dimensionality were evaluated. Bovine fetal myoblasts were cultured on the scaffolds for 10 days to attest cytocompatibility. Decellularization was confirmed by DAPI staining and DNA quantification. Histological and immunohistochemical analysis attested to the preservation of main ECM components. SEM analysis demonstrated that the 3D structure was maintained. In addition, after 10 days, fetal myoblasts were able to adhere and proliferate on the scaffolds, attesting to their cytocompatibility. These data, even preliminary, infer that generated bovine muscular scaffolds were well structured, with preserved composition and allowed cell culture. This study demonstrated that biomaterials derived from bovine muscle could be used in tissue engineering.


Asunto(s)
Músculo Esquelético , Mioblastos , Ingeniería de Tejidos , Andamios del Tejido , Animales , Bovinos , Andamios del Tejido/química , Músculo Esquelético/citología , Ingeniería de Tejidos/métodos , Mioblastos/citología , Materiales Biocompatibles/química , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Células Cultivadas , Proliferación Celular , Matriz Extracelular/metabolismo
18.
ACS Biomater Sci Eng ; 10(5): 3218-3231, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38593429

RESUMEN

Spinal cord organoids are of significant value in the research of spinal cord-related diseases by simulating disease states, thereby facilitating the development of novel therapies. However, the complexity of spinal cord structure and physiological functions, along with the lack of human-derived inducing components, presents challenges in the in vitro construction of human spinal cord organoids. Here, we introduce a novel human decellularized placenta-derived extracellular matrix hydrogel (DPECMH) and, combined with a new induction protocol, successfully construct human spinal cord organoids. The human placenta-sourced decellularized extracellular matrix (dECM), verified through hematoxylin and eosin staining, DNA quantification, and immunofluorescence staining, retained essential ECM components such as elastin, fibronectin, type I collagen, laminin, and so forth. The temperature-sensitive hydrogel made from human placenta dECM demonstrated good biocompatibility and promoted the differentiation of human induced pluripotent stem cell (hiPSCs)-derived spinal cord organoids into neurons. It displayed enhanced expression of laminar markers in comparison to Matrigel and showed higher expression of laminar markers compared to Matrigel, accelerating the maturation process of spinal cord organoids and demonstrating its potential as an organoid culture substrate. DPECMH has the potential to replace Matrigel as the standard additive for human spinal cord organoids, thus advancing the development of spinal cord organoid culture protocols and their application in the in vitro modeling of spinal cord-related diseases.


Asunto(s)
Diferenciación Celular , Matriz Extracelular Descelularizada , Hidrogeles , Células Madre Pluripotentes Inducidas , Organoides , Placenta , Médula Espinal , Humanos , Organoides/citología , Organoides/metabolismo , Organoides/efectos de los fármacos , Femenino , Placenta/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Embarazo , Hidrogeles/química , Hidrogeles/farmacología , Médula Espinal/citología , Médula Espinal/metabolismo , Diferenciación Celular/efectos de los fármacos , Matriz Extracelular Descelularizada/farmacología , Matriz Extracelular Descelularizada/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/farmacología , Laminina/química
19.
Biofabrication ; 16(3)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663394

RESUMEN

Extracellular matrix (ECM) rich whole organ bio-scaffolds, preserving structural integrity and essential growth factors, has potential towards regeneration and reconstruction. Women with cervical anomalies or trauma can benefit from clinical cervicovaginal repair using constructs rich in site specific ECM. In this study, complete human cervix decellularization was achieved using a modified perfusion-based stir bench top decellularization method. This was followed by physico-chemical processes including perfusion of ionic agents, enzymatic treatment and washing using detergent solutions for a duration of 10-12 d. Histopathological analysis, as well as DNA quantification confirmed the efficacy of the decellularization process. Tissue ultrastructure integrity was preserved and the same was validated via scanning electron microscopy and transmission electron microscopy studies. Biochemical analysis and structural characterizations like Fourier transform infrared, Raman spectroscopy of decellularized tissues demonstrated preservation of important proteins, crucial growth factors, collagen, and glycosaminoglycans.In vitrostudies, using THP-1 and human umbilical vein endothelial cell (HUVEC) cells, demonstrated macrophage polarization from M1 to M2 and vascular functional genes enhancement, respectively, when treated with decellularized human cervical matrix (DHCp). Crosslinked DHC scaffolds were recellularized with site specific human cervical epithelial cells and HUVEC, showing non-cytotoxic cell viability and enhanced proliferation. Furthermore, DHC scaffolds showed immunomodulatory effectsin vivoon small rodent model via upregulation of M2 macrophage genes as compared to decellularized rat cervix matrix scaffolds (DRC). DHC scaffolds underwent neo-vascularization followed by ECM remodeling with enhanced tissue integration.


Asunto(s)
Cuello del Útero , Matriz Extracelular Descelularizada , Células Endoteliales de la Vena Umbilical Humana , Andamios del Tejido , Humanos , Femenino , Cuello del Útero/citología , Animales , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Andamios del Tejido/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Ratas , Ingeniería de Tejidos , Células THP-1 , Macrófagos/metabolismo , Macrófagos/citología , Ratas Sprague-Dawley
20.
Adv Healthc Mater ; 13(16): e2303737, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38560921

RESUMEN

Tissue engineering heart valves (TEHVs) are expected to address the limitations of mechanical and bioprosthetic valves used in clinical practice. Decellularized heart valve (DHV) is an important scaffold of TEHVs due to its natural three-dimensional structure and bioactive extracellular matrix, but its mechanical properties and hemocompatibility are impaired. In this study, DHV is cross-linked with three different molecular weights of oxidized hyaluronic acid (OHA) by a Schiff base reaction and presented enhanced stability and hemocompatibility, which could be mediated by the molecular weight of OHA. Notably, DHV cross-linked with middle- and high-molecular-weight OHA could drive the macrophage polarization toward the M2 phenotype in vitro. Moreover, DHV cross-linked with middle-molecular-weight OHA scaffolds are further modified with RGD-PHSRN peptide (RPF-OHA/DHV) to block the residual aldehyde groups of the unreacted OHA. The results show that RPF-OHA/DHV not only exhibits anti-calcification properties, but also facilitates endothelial cell adhesion and proliferation in vitro. Furthermore, RPF-OHA/DHV shows excellent performance under an in vivo hemodynamic environment with favorable recellularization and immune regulation without calcification. The optimistic results demonstrate that OHA with different molecular weights has different cross-linking effects on DHV and that RPF-OHA/DHV scaffold with enhanced immune regulation, anti-calcification, and recellularization properties for clinical transformation.


Asunto(s)
Ácido Hialurónico , Ingeniería de Tejidos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Animales , Ingeniería de Tejidos/métodos , Humanos , Válvulas Cardíacas , Andamios del Tejido/química , Inmunomodulación/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Ratones , Calcinosis , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Prótesis Valvulares Cardíacas , Proliferación Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Adhesión Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA