Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 593
Filtrar
1.
Phys Chem Chem Phys ; 26(36): 23654-23662, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39224052

RESUMEN

Ketoaldehydes are key intermediates in biochemical processes including carbohydrate, lipid, and amino acid metabolism. Despite their crucial role in the interstellar synthesis of essential biomolecules necessary for the Origins of Life, their formation mechanisms have largely remained elusive. Here, we report the first bottom-up formation of methylglyoxal (CH3C(O)CHO)-the simplest ketoaldehyde-through the barrierless recombination of the formyl (HCO) radical with the acetyl (CH3CO) radical in low-temperature interstellar ice analogs upon exposure to energetic irradiation as proxies of galactic cosmic rays. Utilizing vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry and isotopic substitution studies, methylglyoxal and its enol tautomer 2-hydroxypropenone (CH3C(OH)CO) were identified in the gas phase during the temperature-programmed desorption of irradiated carbon monoxide-acetaldehyde (CO-CH3CHO) ices, suggesting their potential as promising candidates for future astronomical searches. Once synthesized in cold molecular clouds, methylglyoxal can serve as a key precursor to sugars, sugar acids, and amino acids. Furthermore, this work provides the first experimental evidence for tautomerization of a ketoaldehyde in interstellar ice analogs, advancing our fundamental knowledge of how ketoaldehydes and their enol tautomers can be synthesized in deep space.


Asunto(s)
Piruvaldehído , Piruvaldehído/química , Hielo , Medio Ambiente Extraterrestre/química , Acetaldehído/química , Acetaldehído/análogos & derivados
2.
Astrobiology ; 24(8): 795-812, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39159437

RESUMEN

The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Sales (Química) , Exobiología/métodos , Medio Ambiente Extraterrestre/química , Sales (Química)/análisis , Sales (Química)/química , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Aminoácidos/análisis , Salinidad , Compuestos Orgánicos/análisis , Vuelo Espacial , Agua de Mar/química , Agua de Mar/microbiología , Agua de Mar/análisis
3.
Nat Rev Chem ; 8(9): 652-664, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39025922

RESUMEN

Compartmentalization is crucial for the evolution of life. Present-day phospholipid membranes exhibit a high level of complexity and species-dependent homochirality, the so-called lipid divide. It is possible that less stable, yet more dynamic systems, promoting out-of-equilibrium environments, facilitated the evolution of life at its early stages. The composition of the preceding primitive membranes and the evolutionary route towards complexity and homochirality remain unexplained. Organics-rich carbonaceous chondrites are evidence of the ample diversity of interstellar chemistry, which may have enriched the prebiotic milieu on early Earth. This Review evaluates the detections of simple amphiphiles - likely ancestors of membrane phospholipids - in extraterrestrial samples and analogues, along with potential pathways to form primitive compartments on primeval Earth. The chiroptical properties of the chiral backbones of phospholipids provide a guide for future investigations into the origins of phospholipid membrane homochirality. We highlight a plausible common pathway towards homochirality of lipids, amino acids, and sugars starting from enantioenriched monomers. Finally, given their high recalcitrance and resistance to degradation, lipids are among the best candidate biomarkers in exobiology.


Asunto(s)
Fosfolípidos , Fosfolípidos/química , Evolución Química , Medio Ambiente Extraterrestre/química , Estereoisomerismo , Planeta Tierra , Origen de la Vida , Exobiología
4.
Sci Rep ; 14(1): 17083, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048621

RESUMEN

Recent renewed interest in the possibility of life in the acidic clouds of Venus has led to new studies on organic chemistry in concentrated sulfuric acid. We have previously found that the majority of amino acids are stable in the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest being water). The natural next question is whether dipeptides, as precursors to larger peptides and proteins, could be stable in this environment. We investigated the reactivity of the peptide bond using 20 homodipeptides and find that the majority of them undergo solvolysis within a few weeks, at both sulfuric acid concentrations. Notably, a few exceptions exist. HH and GG dipeptides are stable in 98% w/w sulfuric acid for at least 4 months, while II, LL, VV, PP, RR and KK resist hydrolysis in 81% w/w sulfuric acid for at least 5 weeks. Moreover, the breakdown process of the dipeptides studied in 98% w/w concentrated sulfuric acid is different from the standard acid-catalyzed hydrolysis that releases monomeric amino acids. Despite a few exceptions at a single concentration, no homodipeptides have demonstrated stability across both acid concentrations studied. This indicates that any hypothetical life on Venus would likely require a functional substitute for the peptide bond that can maintain stability throughout the range of sulfuric acid concentrations present.


Asunto(s)
Dipéptidos , Ácidos Sulfúricos , Dipéptidos/química , Dipéptidos/metabolismo , Ácidos Sulfúricos/química , Hidrólisis , Medio Ambiente Extraterrestre/química , Estabilidad Proteica
5.
Astrobiology ; 24(7): 698-709, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023275

RESUMEN

Europa and Enceladus are key targets to search for evidence of life in our solar system. However, the surface and shallow subsurface of both airless icy moons are constantly bombarded by ionizing radiation that could degrade chemical biosignatures. Therefore, sampling of icy surfaces in future life detection missions to Europa and Enceladus requires a clear understanding of the necessary ice depth where unaltered organic biomolecules might be present. We conducted radiolysis experiments by exposing individual amino acids in ices and amino acids from dead microorganisms in ices to gamma radiation to simulate conditions on these icy worlds. In the pure amino acid samples, glycine did not show a detectable decrease in abundance, whereas the abundance of isovaline decreased by 40% after 4 MGy of exposure. Amino acids in dead Escherichia coli (E. coli) organic matter exhibited a gradual decline in abundances with the increase of exposure dosage, although at much slower rates than individual amino acids. The majority of amino acids in dead A. woodii samples demonstrated a step function decline as opposed to a gradual decline. After the initial drop in abundance with 1 MGy of exposure, those amino acids did not display further decreases in abundance after exposure up to 4 MGy. New radiolysis constants for isolated amino acids and amino acids in dead E. coli material for Europa/Enceladus-like conditions have been derived. Slow rates of amino acid destruction in biological samples under Europa and Enceladus-like surface conditions bolster the case for future life detection measurements by Europa and Enceladus lander missions. Based on our measurements, the "safe" sampling depth on Europa is ∼20 cm at high latitudes of the trailing hemisphere in the area of little impact gardening. Subsurface sampling is not required for the detection of amino acids on Enceladus-these molecules will survive radiolysis at any location on the Enceladus surface. If the stability of amino acids observed in A. woodii organic materials is confirmed in other microorganisms, then the survival of amino acids from a potential biosphere in Europa ice would be significantly increased.


Asunto(s)
Aminoácidos , Escherichia coli , Exobiología , Medio Ambiente Extraterrestre , Rayos gamma , Hielo , Aminoácidos/análisis , Medio Ambiente Extraterrestre/química , Escherichia coli/efectos de la radiación , Exobiología/métodos , Hielo/análisis , Júpiter
6.
Astrobiology ; 24(7): 669-683, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38979620

RESUMEN

Mars has been exposed to ionizing radiation for several billion years, and as part of the search for life on the Red Planet, it is crucial to understand the impact of radiation on biosignature preservation. Several NASA and ESA missions are looking for evidence of ancient life in samples collected at depths shallow enough that they have been impacted by galactic cosmic rays (GCRs). In this study, we exposed a diverse set of Mars analog samples to 0.9 Megagray (MGy) of gamma radiation to mimic 15 million years of exposure on the Martian surface. We measured no significant impact of GCRs on the total organic carbon (TOC) and bulk stable C isotopes in samples with initial TOC concentration > 0.1 wt. %; however, diagnostic molecular biosignatures presented a wide range of degradation that didn't correlate to factors like mineralogy, TOC, water content, and surface area. Exposure dating suggests that the surface of Gale crater has been irradiated at more than five times our dose, yet using this relatively low dose and "best-case scenario" geologically recalcitrant biomarkers, large and variable losses were nevertheless evident. Our results empasize the importance of selecting sampling sites at depth or recently exposed at the Martian surface.


Asunto(s)
Biomarcadores , Arcilla , Radiación Cósmica , Medio Ambiente Extraterrestre , Marte , Arcilla/química , Biomarcadores/análisis , Medio Ambiente Extraterrestre/química , Carbonatos/química , Carbonatos/análisis , Exobiología/métodos , Silicatos de Aluminio/química , Isótopos de Carbono/análisis
8.
Astrobiology ; 24(6): 613-627, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853680

RESUMEN

Computation, if treated as a set of physical processes that act on information represented by states of matter, encompasses biological systems, digital systems, and other constructs and may be a fundamental measure of living systems. The opportunity for biological computation, represented in the propagation and selection-driven evolution of information-carrying organic molecular structures, has been partially characterized in terms of planetary habitable zones (HZs) based on primary conditions such as temperature and the presence of liquid water. A generalization of this concept to computational zones (CZs) is proposed, with constraints set by three principal characteristics: capacity (including computation rates), energy, and instantiation (or substrate, including spatial extent). CZs naturally combine traditional habitability factors, including those associated with biological function that incorporate the chemical milieu, constraints on nutrients and free energy, as well as element availability. Two example applications are presented by examining the fundamental thermodynamic work efficiency and Landauer limit of photon-driven biological computation on planetary surfaces and of generalized computation in stellar energy capture structures (a.k.a. Dyson structures). It is suggested that CZs that involve nested structures or substellar objects could manifest unique observational signatures as cool far-infrared emitters. While these latter scenarios are entirely hypothetical, they offer a useful, complementary introduction to the potential universality of CZs.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planetas , Exobiología/métodos , Medio Ambiente Extraterrestre/química , Termodinámica , Agua/química , Temperatura
11.
Astrobiology ; 24(8): 767-782, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38768415

RESUMEN

Pigments serve a multitude of functions in biology including light harvesting for photosynthesis, radiation protection, membrane support, and defense. The ubiquity of pigments-especially within extremophiles found in high-radiation, high-salinity, and dry environments-and their detectability via mission-ready techniques have elevated these molecules as promising targets in the search for evidence of life elsewhere. Moreover, the detection of pigments has been proposed as a "smoking gun" for extraterrestrial life as it has been suggested that these molecules cannot be generated abiotically. However, while pigments may hold promise as a biosignature, current understanding of their possible prebiotic origins remains understudied and uncertain. Better understanding of the abiotic synthesis of pigments is critical for evaluating the biogenicity of any pigment detected during missions, including by the Mars Perseverance rover or from returned samples. Compounding this uncertainty is the broad definition of pigment as it includes any compound capable of absorbing visible light and by itself does not specify a particular chemical motif. While not experimentally verified, there are promising prebiotic routes for generating pigments including hemes, chlorophylls, and carotenoids. Herein, we review the biochemistry of pigments, the inherent assumptions made when searching for these molecules in the field, their abiotic synthesis in industry and prebiotic reactions, prebiotically relevant molecules that can mimic their spectral signatures, and implications/recommendations for future work.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Pigmentos Biológicos , Pigmentos Biológicos/química , Pigmentos Biológicos/análisis , Medio Ambiente Extraterrestre/química , Exobiología/métodos , Origen de la Vida , Carotenoides/química , Carotenoides/análisis , Planetas
12.
Astrobiology ; 24(6): 590-603, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38805190

RESUMEN

Geological evidence and atmospheric and climate models suggest habitable conditions occurred on early Mars, including in a lake in Gale crater. Instruments aboard the Curiosity rover measured organic compounds of unknown provenance in sedimentary mudstones at Gale crater. Additionally, Curiosity measured nitrates in Gale crater sediments, which suggests that nitrate-dependent Fe2+ oxidation (NDFO) may have been a viable metabolism for putative martian life. Here, we perform the first quantitative assessment of an NDFO community that could have existed in an ancient Gale crater lake and quantify the long-term preservation of biological necromass in lakebed mudstones. We find that an NDFO community would have the capacity to produce cell concentrations of up to 106 cells mL-1, which is comparable to microbes in Earth's oceans. However, only a concentration of <104 cells mL-1, due to organisms that inefficiently consume less than 10% of precipitating nitrate, would be consistent with the abundance of organics found at Gale. We also find that meteoritic sources of organics would likely be insufficient as a sole source for the Gale crater organics, which would require a separate source, such as abiotic hydrothermal or atmospheric production or possibly biological production from a slowly turning over chemotrophic community.


Asunto(s)
Medio Ambiente Extraterrestre , Hierro , Marte , Nitratos , Oxidación-Reducción , Nitratos/análisis , Hierro/química , Hierro/análisis , Medio Ambiente Extraterrestre/química , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Exobiología/métodos , Compuestos Orgánicos/análisis , Lagos/química
13.
Proc Natl Acad Sci U S A ; 121(21): e2318905121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739787

RESUMEN

We propose that spontaneous folding and molecular evolution of biopolymers are two universal aspects that must concur for life to happen. These aspects are fundamentally related to the chemical composition of biopolymers and crucially depend on the solvent in which they are embedded. We show that molecular information theory and energy landscape theory allow us to explore the limits that solvents impose on biopolymer existence. We consider 54 solvents, including water, alcohols, hydrocarbons, halogenated solvents, aromatic solvents, and low molecular weight substances made up of elements abundant in the universe, which may potentially take part in alternative biochemistries. We find that along with water, there are many solvents for which the liquid regime is compatible with biopolymer folding and evolution. We present a ranking of the solvents in terms of biopolymer compatibility. Many of these solvents have been found in molecular clouds or may be expected to occur in extrasolar planets.


Asunto(s)
Solventes , Biopolímeros/química , Solventes/química , Medio Ambiente Extraterrestre/química , Evolución Molecular , Agua/química
14.
Astrobiology ; 24(5): 498-517, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768431

RESUMEN

Assessing the past habitability of Mars and searching for evidence of ancient life at Jezero crater via the Perseverance rover are the key objectives of NASA's Mars 2020 mission. Onboard the rover, PIXL (Planetary Instrument for X-ray Lithochemistry) is one of the best suited instruments to search for microbial biosignatures due to its ability to characterize chemical composition of fine scale textures in geological targets using a nondestructive technique. PIXL is also the first micro-X-ray fluorescence (XRF) spectrometer onboard a Mars rover. Here, we present guidelines for identifying and investigating a microbial biosignature in an aeolian environment using PIXL-analogous micro-XRF (µXRF) analyses. We collected samples from a modern wet aeolian environment at Padre Island, Texas, that contain buried microbial mats, and we analyzed them using µXRF techniques analogous to how PIXL is being operated on Mars. We show via µXRF technique and microscope images the geochemical and textural variations from the surface to ∼40 cm depth. Microbial mats are associated with heavy-mineral lags and show specific textural and geochemical characteristics that make them a distinct biosignature for this environment. Upon burial, they acquire a diffuse texture due to the expansion and contraction of gas-filled voids, and they present a geochemical signature rich in iron and titanium, which is due to the trapping of heavy minerals. We show that these intrinsic characteristics can be detected via µXRF analyses, and that they are distinct from buried abiotic facies such as cross-stratification and adhesion ripple laminations. We also designed and conducted an interactive survey using the Padre Island µXRF data to explore how different users chose to investigate a biosignature-bearing dataset via PIXL-like sampling strategies. We show that investigating biosignatures via PIXL-like analyses is heavily influenced by technical constraints (e.g., the XRF measurement characteristics) and by the variety of approaches chosen by different scientists. Lessons learned for accurately identifying and characterizing this biosignature in the context of rover-mission constraints include defining relative priorities among measurements, favoring a multidisciplinary approach to the decision-making process of XRF measurements selection, and considering abiotic results to support or discard a biosignature interpretation. Our results provide guidelines for PIXL analyses of potential biosignature on Mars.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Marte , Espectrometría por Rayos X , Exobiología/métodos , Exobiología/instrumentación , Medio Ambiente Extraterrestre/química , Espectrometría por Rayos X/métodos , Espectrometría por Rayos X/instrumentación
15.
J Chromatogr A ; 1722: 464860, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593521

RESUMEN

Thanks to the Cassini-Huygens space mission between 2004 and 2017, a lot was learned about Titan, the biggest satellite of Saturn, and its intriguing atmosphere, surface, and organic chemistry complexity. However, key questions about the potential for the atmosphere and surface chemistry to produce organic molecules of direct interest for prebiotic chemistry and life did not find an answer. Due to Titan potential as a habitable world, NASA selected the Dragonfly space mission to be launched in 2027 to Titan's surface and explore the Shangri-La surface region for minimum 3 years. One of the main goals of this mission will be to understand the past and actual abundant prebiotic chemistry on Titan, especially using the Dragonfly Mass Spectrometer (DraMS). Two recently used sample pre-treatments for Gas Chromatography - Mass Spectrometry (GC-MS mode of DraMS) analyses are planned prior analysis to extract refractory organic molecules of interest for prebiotic chemistry and astrobiology. The dimethylformamide dimethylacetal (DMF-DMA) derivatization reaction offers undoubtedly an opportunity to detect biosignatures by volatilizing refractory biological or prebiotic molecules and conserving the chiral carbons' conformation while an enantiomeric excess indicates a chemical feature induced primarily by life (and may be aided on the primitive systems by light polarization). The goal of this study is to investigate the ageing of DMF-DMA in DraMS (and likely MOMA) capsules prior to in situ analysis on Titan (or Mars). The main results highlighted by our work on DMF-DMA are first its satisfactory stability for space requirements through time (no significant degradation over a year of storage and less than 30 % of lost under thermal stress) to a wide range of temperature (0 °C to 250 °C), or the presence of water and oxidants during the derivatization reaction (between 0 and 10 % of DMF-DMA degradation). Moreover, this reagent derivatized very well amines and carboxylic acids in high or trace amounts (ppt to hundreds of ppm), conserving their molecular conformation during the heat at 145 °C for 3 min (0 to 4% in the enantiomeric form change).


Asunto(s)
Saturno , Estereoisomerismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Dimetilformamida/química , Exobiología/métodos , Medio Ambiente Extraterrestre/química , Vuelo Espacial
16.
Sci Adv ; 10(16): eadj7179, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38630826

RESUMEN

The formation of protein precursors, due to the condensation of atomic carbon under the low-temperature conditions of the molecular phases of the interstellar medium, opens alternative pathways for the origin of life. We perform peptide synthesis under conditions prevailing in space and provide a comprehensive analytic characterization of its products. The application of 13C allowed us to confirm the suggested pathway of peptide formation that proceeds due to the polymerization of aminoketene molecules that are formed in the C + CO + NH3 reaction. Here, we address the question of how the efficiency of peptide production is modified by the presence of water molecules. We demonstrate that although water slightly reduces the efficiency of polymerization of aminoketene, it does not prevent the formation of peptides.


Asunto(s)
Medio Ambiente Extraterrestre , Agua , Medio Ambiente Extraterrestre/química , Agua/química , Péptidos
17.
Astrobiology ; 24(5): 538-558, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38648554

RESUMEN

NASA's Perseverance and ESA's Rosalind Franklin rovers have the scientific goal of searching for evidence of ancient life on Mars. Geochemical biosignatures that form because of microbe-mineral interactions could play a key role in achieving this, as they can be preserved for millions of years on Earth, and the same could be true for Mars. Previous laboratory experiments have explored the formation of biosignatures under closed systems, but these do not represent the open systems that are found in natural martian environments, such as channels and lakes. In this study, we have conducted environmental simulation experiments using a global regolith simulant (OUCM-1), a thermochemically modelled groundwater, and an anaerobic microbial community to explore the formation of geochemical biosignatures within plausible open and closed systems on Mars. This initial investigation showed differences in the diversity of the microbial community developed after 28 days. In an open-system simulation (flow-through experiment), the acetogenic Acetobacterium (49% relative abundance) and the sulfate reducer Desulfosporomusa (43% relative abundance) were the dominant genera. Whereas in the batch experiment, the sulfate reducers Desulfovibrio, Desulfomicrobium, and Desulfuromonas (95% relative abundance in total) were dominant. We also found evidence of enhanced mineral dissolution within the flow-through experiment, but there was little evidence of secondary deposits in the presence of biota. In contrast, SiO2 and Fe deposits formed within the batch experiment with biota but not under abiotic conditions. The results from these initial experiments indicate that different geochemical biosignatures can be generated between open and closed systems, and therefore, biosignature formation in open systems warrants further investigation.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Marte , Medio Ambiente Extraterrestre/química , Exobiología/métodos , Agua Subterránea/microbiología , Agua Subterránea/química
18.
Astrobiology ; 24(5): 518-537, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669050

RESUMEN

Solar radiation that arrives on the surface of Mars interacts with organic molecules present in the soil. The radiation can degrade or transform the organic matter and make the search for biosignatures on the planet's surface difficult. Therefore, samples to be analyzed by instruments on board Mars probes for molecular content should be selectively chosen to have the highest organic preservation content. To support the identification of organic molecules on Mars, the behavior under UV irradiation of two organic compounds, undecanoic acid and L-phenylalanine, in the presence of vermiculite and two chloride salts, NaCl and MgCl, was studied. The degradation of the molecule's bands was monitored through IR spectroscopy. Our results show that, while vermiculite acts as a photoprotective mineral with L-phenylalanine, it catalyzes the photodegradation of undecanoic acid molecules. On the other hand, both chloride salts studied decreased the degradation of both organic species acting as photoprotectors. While these results do not allow us to conclude on the preservation capabilities of vermiculite, they show that places where chloride salts are present could be good candidates for in situ analytic experiments on Mars due to their organic preservation capacity under UV radiation.


Asunto(s)
Silicatos de Aluminio , Exobiología , Marte , Fenilalanina , Rayos Ultravioleta , Fenilalanina/química , Exobiología/métodos , Silicatos de Aluminio/química , Medio Ambiente Extraterrestre/química , Fotólisis , Ácidos Grasos/química , Ácidos Grasos/análisis
20.
Astrobiology ; 24(S1): S143-S163, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498826

RESUMEN

All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planeta Tierra , Medio Ambiente Extraterrestre/química , Planetas , Sistema Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA