Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 776
Filtrar
1.
BMC Genomics ; 25(1): 858, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271972

RESUMEN

BACKGROUND: Melanin in the black-bone chicken's body is considered the material basis for its medicinal effects and is an economically important trait. Therefore, improving the melanin content is a crucial focus in the breeding process of black-bone chickens. Luning chickens are black-bone chickens, with black beaks, skin, and meat. To investigate the genetic diversity and molecular mechanisms of melanin deposition in Luning chickens, we conducted whole-genome resequencing to analyze their breeding history and identify candidate genes influencing their black phenotype, along with transcriptome sequencing of dorsal skin tissues of male Luning chickens. RESULTS: Population structure analysis revealed that Luning chickens tend to cluster independently and are closely related to Tibetan chickens. Runs of homozygosity analysis suggested potential inbreeding in the Luning chicken and Tibetan chicken population. By combining genetic differentiation index (Fst) and nucleotide diversity (θπ) ratios, we pinpointed selected regions associated with melanin deposition. Gene annotation identified 540 genes with the highest Fst value in LOC101750371 and LOC121108313, located on the 68.24-68.58 Mb interval of chromosome Z. Combining genomic and transcriptomic data, we identified ATP5E, EDN3, and LOC101750371 as candidate genes influencing skin color traits in black-bone chickens. CONCLUSIONS: This study characterized the evolutionary history of Luning chickens and preliminarily excavated candidate genes influencing the genetic mechanism of pigmentation in black-bone chickens, providing valuable insights for the study of animal melanin deposition.


Asunto(s)
Pollos , Melaninas , Secuenciación Completa del Genoma , Animales , Pollos/genética , Pollos/metabolismo , Melaninas/metabolismo , Melaninas/genética , Pigmentación de la Piel/genética , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple
2.
Sci Rep ; 14(1): 22399, 2024 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333770

RESUMEN

Several dozen Mendelian mutants have been discovered in axolotl (Ambystoma mexicanum) populations, including several that affect pigmentation. Four recessive mutants have been described in the scientific literature and genes for three of these have been identified. Here we describe and genetically dissect copper, a mutant with an albino-like phenotype known only from the pet trade. We performed a cross segregating copper and wildtype color phenotypes and used bulked segregant RNA-Seq to identify a region on chromosome 6 that was enriched for single-nucleotide polymorphisms (SNPs) between the color phenotypes. This region included Tyrosinase-like Protein 1 (Tyrp1), a melanin synthesis protein that when mutated, is associated with lighter than black melanin coloration in animal models and oculocutaneous albinism in humans. Inspection of RNA-Seq reads identified a single nucleotide deletion that is predicted to change the coding frame, introduce a premature stop codon in exon 6 and yield a truncated Tyrp1 protein in copper individuals. Using CRISPR-Cas9 editing, we show that wildtype Tyrp1 crispants exhibit copper pigmentation, thus confirming Tyrp1 as the copper locus. Our results suggest that commercial and hobbyist axolotl populations may harbor useful mutants for biological research.


Asunto(s)
Ambystoma mexicanum , Cobre , Mutación , Pigmentación , Polimorfismo de Nucleótido Simple , Animales , Ambystoma mexicanum/genética , Cobre/metabolismo , Pigmentación/genética , Fenotipo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Melaninas/metabolismo , Melaninas/genética
3.
Genes (Basel) ; 15(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39202389

RESUMEN

Lichens have developed numerous adaptations to optimize their survival in various environmental conditions, largely by producing secondary compounds by the fungal partner. They often have antibiotic properties and are involved in protection against intensive UV radiation, pathogens, and herbivores. To contribute to the knowledge of the arsenal of secondary compounds in a crustose lichen species, we sequenced and assembled the genome of Toniniopsis dissimilis, an indicator of old-growth forests, using Oxford Nanopore Technologies (ONT, Oxford, UK) long reads. Our analyses focused on biosynthetic gene clusters (BGCs) and specifically on Type I Polyketide (T1PKS) genes involved in the biosynthesis of polyketides. We used the comparative genomic approach to compare the genome of T. dissimilis with six other members of the family Ramalinaceae and twenty additional lichen genomes from the database. With only six T1PKS genes, a comparatively low number of biosynthetic genes are present in the T. dissimilis genome; from those, two-thirds are putatively involved in melanin biosynthesis. The comparative analyses showed at least three potential pathways of melanin biosynthesis in T. dissimilis, namely via the formation of 1,3,6,8-tetrahydroxynaphthalene, naphthopyrone, or YWA1 putative precursors, which highlights its importance in T. dissimilis. In addition, we report the occurrence of genes encoding ribosomally synthesized and posttranslationally modified peptides (RiPPs) in lichens, with their highest number in T. dissimilis compared to other Ramalinaceae genomes. So far, no function has been assigned to RiPP-like proteins in lichens, which leaves potential for future research on this topic.


Asunto(s)
Genoma Fúngico , Líquenes , Melaninas , Melaninas/biosíntesis , Melaninas/genética , Líquenes/genética , Líquenes/metabolismo , Familia de Multigenes , Filogenia , Vías Biosintéticas/genética , Ascomicetos/genética , Ascomicetos/metabolismo , Policétidos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
PLoS One ; 19(7): e0306614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38976656

RESUMEN

Pigment patterns are incredibly diverse across vertebrates and are shaped by multiple selective pressures from predator avoidance to mate choice. A common pattern across fishes, but for which we know little about the underlying mechanisms, is repeated melanic vertical bars. To understand the genetic factors that modify the level or pattern of vertical barring, we generated a genetic cross of 322 F2 hybrids between two cichlid species with distinct barring patterns, Aulonocara koningsi and Metriaclima mbenjii. We identify 48 significant quantitative trait loci that underlie a series of seven phenotypes related to the relative pigmentation intensity, and four traits related to patterning of the vertical bars. We find that genomic regions that generate variation in the level of eumelanin produced are largely independent of those that control the spacing of vertical bars. Candidate genes within these intervals include novel genes and those newly-associated with vertical bars, which could affect melanophore survival, fate decisions, pigment biosynthesis, and pigment distribution. Together, this work provides insights into the regulation of pigment diversity, with direct implications for an animal's fitness and the speciation process.


Asunto(s)
Cíclidos , Melaninas , Sitios de Carácter Cuantitativo , Animales , Cíclidos/genética , Cíclidos/metabolismo , Melaninas/metabolismo , Melaninas/genética , Pigmentación/genética , Fenotipo , Masculino , Femenino
5.
Biotechnol Bioeng ; 121(11): 3572-3581, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39031482

RESUMEN

Xylose is an abundant, inexpensive and readily available carbohydrate common in minimally processed feedstocks such as seaweed and algae. While a wide variety of marine microbes have evolved to utilize seaweed and algae, only a few currently have the requisite characteristics and genetic engineering tools necessary to entertain the use of these underutilized feedstocks. The rapidly growing Gram-negative halophilic bacterium Vibrio natriegens is one such chassis. In this study, we engineered and tested xylose induction in V. natriegens as a tool for scalable bioproduction applications. First, we created a sensing construct based on the xylose operon from Escherichia coli MG1665 and measured its activity using a fluorescent reporter and identified that cellular import plays a key role in induction strength and that expression required the XylR transcription factor. Next, we identified that select deletions of the promoter region enhance gene expression, limiting the effect of carbohydrate repression when xylose is used as an inducer in the presence of industrially relevant carbon sources. Lastly, we used the optimized constructs to produce the biopolymer melanin using seawater mimetic media. One of these formulations utilized a nori-based seaweed extract as an inducer and demonstrated melanin yields comparable to previously optimized methods using a more traditional and costly inducer. Together, the results demonstrate that engineering xylose induction in V. natriegens can provide an effective and lower cost option for timed biosynthesis in scalable biomanufacturing applications using renewable feedstocks.


Asunto(s)
Ingeniería Metabólica , Vibrio , Xilosa , Vibrio/genética , Vibrio/metabolismo , Xilosa/metabolismo , Ingeniería Metabólica/métodos , Melaninas/biosíntesis , Melaninas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas/genética
6.
Adv Sci (Weinh) ; 11(31): e2402709, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889334

RESUMEN

Visual observation and therapeutic intervention against tumors hold significant appeal for tumor treatment, particularly in meeting the demands of intraoperative navigation. From a clinical perspective, the naked-eye visualization of tumors provides a direct and convenient approach to identifying tumors and navigating during surgery. Nevertheless, there is an ongoing need to develop effective solutions in this frontier. Genetically engineered microorganisms are promising as living therapeutics for combatting malignant tumors, leveraging precise tumor targeting and versatile programmed functionalities. Here, genetically modified Escherichia coli (E. coli) MG1655 bacterial cells are introduced, called MelaBac cells, designed to express tyrosinase continuously. This bioengineered melanogenesis produces melanin capable of pigmenting both subcutaneous CT26 xenografts and chemically induced colorectal cancer (CRC). Additionally, MelaBac cells demonstrate the initiation of photonic hyperthermia therapy and immunotherapy against tumors, offering promising selective therapeutic interventions with high biocompatibility.


Asunto(s)
Escherichia coli , Melaninas , Animales , Ratones , Melaninas/metabolismo , Melaninas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Animales de Enfermedad , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/metabolismo , Inmunoterapia/métodos , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Pigmentación/genética , Humanos , Melanogénesis
7.
Br Poult Sci ; 65(4): 387-393, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38748993

RESUMEN

1. Melanin distribution typically exhibits a gradient dilution along the dorsal-ventral axis of the body, including in domestic geese. However, the specific genes and molecular mechanisms responsible for this melanin distribution pattern remain incompletely understood.2. The transcriptomic comparisons were conducted at three embryonic stages, specifically on embryonic d 15 (E15), 22 (E22), and 29 (E29), between the pigmented dorsal skin and the depigmented distal foot.3. Differentially expressed genes (DEGs) associated with melanin synthesis were identified, particularly TYR, TYRP1, and EDNRB2, which exhibited significantly higher expression levels in the dorsal skin at E15 and E22. However, expression levels significantly decreased in later stages (E29).4. The ASIP gene showed remarkably high-expression levels in the distal feet compared to the dorsal skin post-E22 stage (log2FC: 5.31/6.88 at E22/E29). Gene Ontology (GO) enrichment analysis detected eight terms associated with melanin synthesis and melanosome formation (p < 0.05), including melanosome membrane (GO: 0033162) and melanin biosynthetic process (GO: 0042438). Additionally, KEGG pathway analysis showed significant enrichment of the melanogenesis pathway (hsa004916) at d 22 (E22).


Asunto(s)
Desarrollo Embrionario , Gansos , Perfilación de la Expresión Génica , Melaninas , Transcriptoma , Animales , Melaninas/metabolismo , Melaninas/genética , Gansos/genética , Gansos/crecimiento & desarrollo , Gansos/embriología , Gansos/metabolismo , Perfilación de la Expresión Génica/veterinaria , Desarrollo Embrionario/genética , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Regulación del Desarrollo de la Expresión Génica
8.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38806249

RESUMEN

Melanin-concentrating hormone (MCH) acts via its sole receptor MCHR1 in rodents and is an important regulator of homeostatic behaviors like feeding, sleep, and mood to impact overall energy balance. The loss of MCH signaling by MCH or MCHR1 deletion produces hyperactive mice with increased energy expenditure, and these effects are consistently associated with a hyperdopaminergic state. We recently showed that MCH suppresses dopamine release in the nucleus accumbens, which principally receives dopaminergic projections from the ventral tegmental area (VTA), but the mechanisms underlying MCH-regulated dopamine release are not clearly defined. MCHR1 expression is widespread and includes dopaminergic VTA cells. However, as the VTA is a neurochemically diverse structure, we assessed Mchr1 gene expression at glutamatergic, GABAergic, and dopaminergic VTA cells and determined if MCH inhibited the activity of VTA cells and/or their local microcircuit. Mchr1 expression was robust in major VTA cell types, including most dopaminergic (78%) or glutamatergic cells (52%) and some GABAergic cells (38%). Interestingly, MCH directly inhibited dopaminergic and GABAergic cells but did not regulate the activity of glutamatergic cells. Rather, MCH produced a delayed increase in excitatory input to dopamine cells and a corresponding decrease in GABAergic input to glutamatergic VTA cells. Our findings suggested that MCH may acutely suppress dopamine release while disinhibiting local glutamatergic signaling to restore dopamine levels. This indicated that the VTA is a target of MCH action, which may provide bidirectional regulation of energy balance.


Asunto(s)
Neuronas Dopaminérgicas , Hormonas Hipotalámicas , Melaninas , Hormonas Hipofisarias , Área Tegmental Ventral , Animales , Masculino , Ratones , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Ácido Glutámico/metabolismo , Hormonas Hipotalámicas/metabolismo , Hormonas Hipotalámicas/genética , Melaninas/metabolismo , Melaninas/genética , Ratones Endogámicos C57BL , Hormonas Hipofisarias/metabolismo , Hormonas Hipofisarias/genética , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/genética , Área Tegmental Ventral/metabolismo
9.
Pestic Biochem Physiol ; 200: 105810, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582582

RESUMEN

Ectropis grisescens (Lepidoptera: Geometridae) is a destructive tea pest in China. Mimesis, characterized by changing body color, is an important trait of E. grisescens larvae. Hence, identifying melanin pathway-related genes may contribute to developing new pest control strategies. In the present study, we cloned Egebony, a gene potentially involved in melanin pigmentation in E. grisescens, and subsequently conducted CRISPR/Cas9-mediated targeted mutagenesis of Egebony to analyze its role in pigmentation and development. At the larvae, prepupae, and pupae stages, Egebony-knockout individuals exhibited darker pigmentation than the wild-type. However, Egebony knockout did not impact the colors of sclerotized appendants, including ocelli, setae, and claws. While mutant pupae could successfully develop into moths, they were unable to emerge from the puparium. Notably, embryo hatchability and larval survival of mutants remained normal. Further investigation indicated that mutant pupae exhibited significantly stronger shearing force than the wild-type, with the pigmented layer of mutant pupae appearing darker and thicker. Collectively, these results suggest that the loss of Egebony might increase the rigidity of the puparium and prevent moth eclosion. This study provides new insights into understanding the function and diversification of ebony in insect development and identifies a lethal gene that can be manipulated for developing effective pest control strategies.


Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Melaninas/genética , Sistemas CRISPR-Cas , Larva/genética , Pigmentación/genética
10.
Poult Sci ; 103(6): 103691, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598910

RESUMEN

The blackness traits, considered an important economic factor in the black-bone chicken industry, still exhibits a common phenomenon of significant difference in blackness of breast muscle. To improve this phenomenon, this study compared growth traits, blackness traits, and transcriptome of breast muscles between the High Blackness Group (H group) and Low Blackness Group (L group) in the Xuefeng black-bone chickens. The results are as follows: 1) There was no significant difference in growth traits between the H group and the L group (P > 0.05). 2) The skin/breast muscle L values in the H group were significantly lower than those in the L group, while the breast muscle melanin content exhibited the opposite trend (P < 0.05). 3) A significant negative correlation was observed between breast muscle melanin content and skin/breast muscle L value (P < 0.05), and skin L value exhibiting a significant positive correlation with breast muscle L value (P < 0.05). 4) The breast muscle transcriptome comparison between the H group and L group revealed 831 and 405 DEGs in female and male chickens, respectively. This included 37 shared DEGs significantly enriched in melanosome, pigment granule, and the melanogenesis pathway. Seven candidate genes (DCT, PMEL, MLANA, TYRP1, OCA2, EDNRB2, and CALML4) may play a crucial role in the melanin production of breast muscle in Xuefeng black-bone chicken. The findings could accelerate the breeding process for achieving desired levels of breast muscle blackness and contribute to the exploration of the mechanisms underlying melanin production in black-bone chickens.


Asunto(s)
Pollos , Melaninas , Músculos Pectorales , Pigmentación , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Pollos/fisiología , Melaninas/metabolismo , Melaninas/genética , Músculos Pectorales/metabolismo , Femenino , Pigmentación/genética , Masculino , Transcriptoma , Expresión Génica
11.
Ecotoxicol Environ Saf ; 274: 116177, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461573

RESUMEN

Triphenyltin (TPT) is a typical persistent organic pollutant whose occurrence in coral reef ecosystems may threaten the survival of reef fishes. In this study, a brightly colored representative reef fish, Amphiprion ocellaris was used to explore the effects of TPT at environmental levels (1, 10, and 100 ng/L) on skin pigment synthesis. After the fish were exposed to TPT for 60 days, the skin became darker, owing to an increase in the relative area of black stripes, a decrease in orange color values while an increase in brown color values, and an increase in the number of melanocytes in the orange part of the skin tissues. To explore the mechanisms by which TPT induces darker body coloration, the enzymatic activity and gene expression levels of the members of melanocortin system that affect melanin synthesis were evaluated. Leptin levels and lepr expression were found to be increased after TPT exposure, which likely contributed to the increase found in pomc expression and α-melanocyte-stimulating hormone (α-MSH) levels. Then Tyr activity and mc1r, tyr, tyrp1, mitf, and dct were upregulated, ultimately increasing melanin levels. Importantly, RT-qPCR results were consistent with the transcriptome analysis of trends in lepr and pomc expression. Because the orange color values decreased, pterin levels and the pteridine metabolic pathway were also evaluated. The results showed that TPT induced BH4 levels and spr, xdh, and gch1 expression associated with pteridine synthesis decreased, ultimately decreasing the colored pterin content (sepiapterin). We conclude that TPT exposure interferes with the melanocortin system and pteridine metabolic pathway to increase melanin and decrease colored pterin levels, leading to darker body coloration in A. ocellaris. Given the importance of body coloration for the survival and reproduction of reef fishes, studies on the effects of pollutants (others alongside TPT) on body coloration are of high priority.


Asunto(s)
Melanocortinas , Compuestos Orgánicos de Estaño , Perciformes , Animales , Proopiomelanocortina , Ecosistema , Melaninas/genética , Pteridinas , Peces/genética , Perciformes/genética , Pterinas , Redes y Vías Metabólicas
12.
J Genet Genomics ; 51(7): 703-713, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38461943

RESUMEN

The evolution of light-skin pigmentation among Eurasians is considered as an adaptation to the high-latitude environments. East Asians are ideal populations for studying skin color evolution because of the complex environment of East Asia. Here, we report a strong selection signal for the pigmentation gene phenylalanine hydroxylase (PAH) in light-skinned Han Chinese individuals. The intron mutation rs10778203 in PAH is enriched in East Asians and is significantly associated with skin color of the back of the hand in Han Chinese males (P < 0.05). In vitro luciferase and transcription factor binding assays show that the ancestral allele of rs10778203 could bind to SMAD2 and has a significant enhancer activity for PAH. However, the derived T allele (the major allele in East Asians) of rs10778203 decreases the binding activity of transcription factors and enhancer activity. Meanwhile, the derived T allele of rs10778203 shows a weaker ultraviolet radiation response in A375 cells and zebrafish embryos. Furthermore, rs10778203 decreases melanin production in transgenic zebrafish embryos after ultraviolet B (UVB) treatment. Collectively, PAH is a potential pigmentation gene that regulates skin tanning ability. Natural selection has enriched the adaptive allele, resulting in weakened tanning ability in East Asians, suggesting a unique genetic mechanism for evolutionary skin lightening in East Asians.


Asunto(s)
Pueblos del Este de Asia , Pigmentación de la Piel , Animales , Humanos , Masculino , Alelos , Animales Modificados Genéticamente , Evolución Biológica , Pueblos del Este de Asia/genética , Melaninas/metabolismo , Melaninas/genética , Mutación , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Polimorfismo de Nucleótido Simple , Selección Genética , Pigmentación de la Piel/genética , Pigmentación de la Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Pez Cebra/genética
13.
Fungal Genet Biol ; 171: 103874, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38307402

RESUMEN

Aspergillus cristatus is a probiotic fungus known for its safety and abundant secondary metabolites, making it a promising candidate for various applications. However, limited progress has been made in researching A. cristatus due to challenges in genetic manipulation. The mitogen-activated protein kinase (MAPK) signaling pathway is involved in numerous physiological processes, but its specific role in A. cristatus remains unclear. In this study, we successfully developed an efficient polyethylene glycol (PEG)-mediated protoplast transformation method for A. cristatus, enabling us to investigate the function of Pmk1, Mpk1, and Hog1 in the MAPK signaling pathway. Our findings revealed that Pmk1, Mpk1, and Hog1 are crucial for sexual reproduction, melanin synthesis, and response to external stress in A. cristatus. Notably, the deletion of Pmk1, Mpk1, or Hog1 resulted in the loss of sexual reproduction capability in A. cristatus. Overall, this research on MAPK will contribute to the continued understanding of the reproductive strategy and melanin synthesis mechanism of A. cristatus.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Proteínas de Saccharomyces cerevisiae , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Melaninas/genética , Sistema de Señalización de MAP Quinasas/genética , Aspergillus/genética , Aspergillus/metabolismo , Fosforilación , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Poult Sci ; 103(4): 103539, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382189

RESUMEN

The economic losses incurred due to reduced muscle pigmentation highlight the crucial role of melanin-based coloration in the meat of black-bone chickens. Melanogenesis in the breast muscle of black-bone chickens is currently poorly understood in terms of molecular mechanisms. This study employed whole-transcriptome sequencing to analyze black and white breast muscle samples from black-bone chickens, leading to the identification of 367 differentially expressed (DE) mRNAs, 48 DElncRNAs, 104 DEcircRNAs, and 112 DEmiRNAs involved in melanin deposition. Based on these findings, a competitive endogenous RNA (ceRNA) network was developed to better understand the complex mechanisms of melanin deposition. Furthermore, our analysis revealed key DEmRNAs (TYR, DCT, EDNRB, MLPH and OCA2) regulated by DEmiRNAs (gga-miR-140-5p, gga-miR-1682, gga-miR-3529, gga-miR-499-3p, novel-m0012-3p, gga-miR-200b-5p, gga-miR-203a, gga-miR-6651-5p, gga-miR-7455-3p, gga-miR-31-5p, miR-140-x, miR-455-x, novel-m0065-3p, gga-miR-29b-1-5p, miR-455-y, novel-m0085-3p, and gga-miR-196-1-3p). These DEmiRNAs competitively interacted with DElncRNAs including MSTRG.2609.2, MSTRG.4185.1, LOC112530666, LOC112533366, LOC771030, LOC107054724, LOC121107411, LOC100859072, LOC101750037, LOC121108550, LOC121109224, LOC121110876, and LOC101749016, as well as DEcircRNAs, such as novel_circ_000158, novel_circ_000623, novel_001518, and novel_circ_003596. The findings from this study provide insight into the mechanisms that regulate lncRNA, circRNA, miRNA, and mRNA expression in chicken melanin deposition.


Asunto(s)
Pollos , MicroARNs , Animales , Pollos/genética , Pollos/metabolismo , Melaninas/genética , ARN Endógeno Competitivo , Transcriptoma , MicroARNs/genética , MicroARNs/metabolismo , Músculos Pectorales/metabolismo , Carne
15.
Hereditas ; 161(1): 8, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38317267

RESUMEN

BACKGROUND: Oculocutaneous albinism (OCA) is a group of rare genetic disorders characterized by a reduced or complete lack of melanin in the skin, hair, and eyes. Patients present with colorless retina, pale pink iris, and pupil, and fear of light. The skin, eyebrows, hair, and other body hair are white or yellowish-white. These conditions are caused by mutations in specific genes necessary for the production of melanin. OCA is divided into eight clinical types (OCA1-8), each with different clinical phenotypes and potential genetic factors. This study aimed to identify the genetic causes of non-syndromic OCA in a Chinese Han family. METHODS: We performed a comprehensive clinical examination of family members, screened for mutation loci using whole exome sequencing (WES) technology, and predicted mutations using In silico tools. RESULTS: The patient's clinical manifestations were white skin, yellow hair, a few freckles on the cheeks and bridge of the nose, decreased vision, blue iris, poorly defined optic disk borders, pigmentation of the fundus being insufficient, and significant vascular exposure. The WES test results indicate that the patient has compound heterozygous mutations in the OCA2 gene (c.1258G > A (p.G420R), c.1441G > A (p.A481T), and c.2267-2 A > C), respectively, originating from her parents. Among them, c.1258G > A (p.G420R) is a de novo mutation with pathogenic. Our analysis suggests that compound heterozygous mutations in the OCA2 gene are the primary cause of the disease in this patient. CONCLUSIONS: The widespread application of next-generation sequencing technologies such as WES in clinical practice can effectively replace conventional detection methods and assist in the diagnosis of clinical diseases more quickly and accurately. The newly discovered c.1258G > A (p.G420R) mutation can update and expand the gene mutation spectrum of OCA2-type albinism.


Asunto(s)
Albinismo Oculocutáneo , Melaninas , Humanos , Femenino , Melaninas/genética , Proteínas de Transporte de Membrana/genética , Mutación , Albinismo Oculocutáneo/diagnóstico , Albinismo Oculocutáneo/genética , China
16.
Nat Genet ; 56(2): 258-272, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38200130

RESUMEN

Skin color is highly variable in Africans, yet little is known about the underlying molecular mechanism. Here we applied massively parallel reporter assays to screen 1,157 candidate variants influencing skin pigmentation in Africans and identified 165 single-nucleotide polymorphisms showing differential regulatory activities between alleles. We combine Hi-C, genome editing and melanin assays to identify regulatory elements for MFSD12, HMG20B, OCA2, MITF, LEF1, TRPS1, BLOC1S6 and CYB561A3 that impact melanin levels in vitro and modulate human skin color. We found that independent mutations in an OCA2 enhancer contribute to the evolution of human skin color diversity and detect signals of local adaptation at enhancers of MITF, LEF1 and TRPS1, which may contribute to the light skin color of Khoesan-speaking populations from Southern Africa. Additionally, we identified CYB561A3 as a novel pigmentation regulator that impacts genes involved in oxidative phosphorylation and melanogenesis. These results provide insights into the mechanisms underlying human skin color diversity and adaptive evolution.


Asunto(s)
Albinismo Oculocutáneo , Melaninas , Pigmentación de la Piel , Humanos , Pigmentación de la Piel/genética , Melaninas/genética , Alelos , Genómica , Pigmentación/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Represoras/genética
17.
Mol Ecol ; 33(4): e17247, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38173194

RESUMEN

Feathers comprise a series of evolutionary innovations but also harbour colour, a key biological trait known to co-vary with life history or complex traits. Those relationships are particularly true in melanin-based pigmentation species due to known pleiotropic effects of the melanocortin pathway - originating from melanin-associated phenotypes. Here, we explore the molecular basis of melanin colouration and expected co-variation at the molecular level in the melanin-based, colour polymorphic system of the tawny owl (Strix aluco). An extensive body of literature has revealed that grey and brown tawny owl colour morphs differ in a series of life history and behavioural traits. Thus, it is plausible to expect co-variation also at molecular level between colour morphs. To investigate this possibility, we assembled the first draft genome of the species against which we mapped ddRADseq reads from 220 grey and 150 brown morphs - representing 10 years of pedigree data from a population in Southern Finland - and explored genome-wide associations with colour phenotype. Our results revealed putative molecular signatures of cold adaptation strongly associated with the grey phenotype, namely, a non-synonymous substitution in MCHR1, plus 2 substitutions in non-coding regions of FTCD and FAM135A whose genotype combinations obtained a predictive power of up to 100% (predicting grey colour). These suggest a molecular basis of cold environment adaptations predicted to be grey-morph specific. Our results potentially reveal part of the molecular machinery of melanin-associated phenotypes and provide novel insights towards understanding the functional genomics of colour polymorphism in melanin-based pigmented species.


Asunto(s)
Melaninas , Estrigiformes , Animales , Melaninas/genética , Estrigiformes/genética , Color , Pigmentación/genética , Fenotipo , Genómica
18.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38287676

RESUMEN

Oculocutaneous albinism (OCA) is characterized by reduced melanin biosynthesis affecting the retina, thus impairing visual function. The disease pathology of OCA is poorly understood at the cellular level due to unavailability of suitable biological model systems. This study aimed to develop a disease-specific in vitro model for OCA type 1A, the most severe form caused by TYR (tyrosinase) gene mutations, using retinal pigment epithelium (RPE) differentiated from patient-derived human-induced pluripotent stem cells (hiPSCs). A comparative study between healthy and OCA1A RPE cells revealed that while healthy RPE cells exhibited timely onest of pigmentation during differentiation, OCA1A RPE cells failed to pigment even after an extended culture period. This observation was validated by ultrastructural studies using electron microscopy, hinting at melanosome-specific defects. Immunocytochemistry demonstrated abnormal expression patterns of melanogenesis-specific protein markers in OCA1A RPE cells, indicating reduced or absence of melanin synthesis. Next, a quantitative assay was performed to confirm the absence of melanin production in OCA1A RPE cells. Tyrosinase assay showed no activity in OCA1A compared with healthy RPE, suggesting non-functionality of TYR, further corroborated by western blot analysis showing complete absence of the protein. Gene expression by RNA sequencing of healthy and OCA1A RPE cells uncovered differential gene expression associated with lens development, visual perception, transmembrane transporter activity, and key signaling pathways. This disease-in-a-dish model of OCA1A provides an excellent platform to understand disease mechanism, identify potential therapeutic targets, and facilitate gene therapy or gene correction.


Asunto(s)
Albinismo Oculocutáneo , Células Madre Pluripotentes Inducidas , Humanos , Melaninas/genética , Melaninas/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Albinismo Oculocutáneo/genética , Albinismo Oculocutáneo/terapia
19.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38243850

RESUMEN

Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.


Asunto(s)
Lagartos , Melaninas , Animales , Melaninas/genética , Lagartos/genética , Pez Cebra , Regulación de la Temperatura Corporal/genética , Pigmentación de la Piel/genética , Color
20.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37943814

RESUMEN

Bird plumage coloration is a complex and multifactorial process that involves both genetic and environmental factors. Diverse pigment groups contribute to plumage variation in different birds. In parrots, the predominant green color results from the combination of 2 different primary colors: yellow and blue. Psittacofulvin, a pigment uniquely found in parrots, is responsible for the yellow coloration, while blue is suggested to be the result of light scattering by feather nanostructures and melanin granules. So far, genetic control of melanin-mediated blue coloration has been elusive. In this study, we demonstrated that feather from the yellow mutant rose-ringed parakeet displays loss of melanosome granules in spongy layer of feather barb. Using whole genome sequencing, we found that mutation in SLC45A2, an important solute carrier protein in melanin synthetic pathway, is responsible for the sex-linked yellow phenotype in rose-ringed parakeet. Intriguingly, one of the mutations, P53L found in yellow Psittacula krameri is already reported as P58A/S in the human albinism database, known to be associated with human OCA4. We further showed that mutations in SLC45A2 gene affect melanin production also in other members of Psittaculidae family such as alexandrine and plum-headed parakeets. Additionally, we demonstrate that the mutations associated with the sex-linked yellow phenotype, localized within the transmembrane domains of the SLC45A2 protein, affect the protein localization pattern. This is the first evidence of plumage color variation involving SLC45A2 in parrots and confirmation of associated mutations in the transmembrane domains of the protein that affects its localization.


Asunto(s)
Melaninas , Loros , Humanos , Animales , Melaninas/genética , Plumas/química , Plumas/metabolismo , Mutación , Loros/metabolismo , Fenotipo , Pigmentación/genética , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Transporte de Membrana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA