Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.525
Filtrar
1.
J Mol Biol ; 436(6): 168487, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341172

RESUMEN

Synonymous mutations in messenger RNAs (mRNAs) can reduce protein-protein binding substantially without changing the protein's amino acid sequence. Here, we use coarse-grain simulations of protein synthesis, post-translational dynamics, and dimerization to understand how synonymous mutations can influence the dimerization of two E. coli homodimers, oligoribonuclease and ribonuclease T. We synthesize each protein from its wildtype, fastest- and slowest-translating synonymous mRNAs in silico and calculate the ensemble-averaged interaction energy between the resulting dimers. We find synonymous mutations alter oligoribonuclease's dimer properties. Relative to wildtype, the dimer interaction energy becomes 4% and 10% stronger, respectively, when translated from its fastest- and slowest-translating mRNAs. Ribonuclease T dimerization, however, is insensitive to synonymous mutations. The structural and kinetic origin of these changes are misfolded states containing non-covalent lasso-entanglements, many of which structurally perturb the dimer interface, and whose probability of occurrence depends on translation speed. These entangled states are kinetic traps that persist for long time scales. Entanglements cause altered dimerization energies for oligoribonuclease, as there is a large association (odds ratio: 52) between the co-occurrence of non-native self-entanglements and weak-binding dimer conformations. Simulated at all-atom resolution, these entangled structures persist for long timescales, indicating the conclusions are independent of model resolution. Finally, we show that regions of the protein we predict to have changes in entanglement are also structurally perturbed during refolding, as detected by limited-proteolysis mass spectrometry. Thus, non-native changes in entanglement at dimer interfaces is a mechanism through which oligomer structure and stability can be altered.


Asunto(s)
Membrana Celular , Escherichia coli , Exorribonucleasas , Multimerización de Proteína , Mutación Silenciosa , Escherichia coli/enzimología , Exorribonucleasas/química , Exorribonucleasas/genética , Cinética , Pliegue de Proteína , Multimerización de Proteína/genética , Membrana Celular/enzimología
2.
J Cell Biol ; 222(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37071416

RESUMEN

Cellulose Synthase-Like D (CSLD) proteins, important for tip growth and cell division, are known to generate ß-1,4-glucan. However, whether they are propelled in the membrane as the glucan chains they produce assemble into microfibrils is unknown. To address this, we endogenously tagged all eight CSLDs in Physcomitrium patens and discovered that they all localize to the apex of tip-growing cells and to the cell plate during cytokinesis. Actin is required to target CSLD to cell tips concomitant with cell expansion, but not to cell plates, which depend on actin and CSLD for structural support. Like Cellulose Synthase (CESA), CSLD requires catalytic activity to move in the plasma membrane. We discovered that CSLD moves significantly faster, with shorter duration and less linear trajectories than CESA. In contrast to CESA, CSLD movement was insensitive to the cellulose synthesis inhibitor isoxaben, suggesting that CSLD and CESA function within different complexes possibly producing structurally distinct cellulose microfibrils.


Asunto(s)
Actinas , Bryopsida , Membrana Celular , Glucosiltransferasas , Proteínas de Plantas , Actinas/metabolismo , Membrana Celular/enzimología , Celulosa/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Bryopsida/enzimología , Bryopsida/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citocinesis
3.
Cell Rep ; 42(4): 112394, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37058408

RESUMEN

The ATP-sensitive K+ (KATP) channel is a key regulator of hormone secretion from pancreatic islet endocrine cells. Using direct measurements of KATP channel activity in pancreatic ß cells and the lesser-studied α cells, from both humans and mice, we provide evidence that a glycolytic metabolon locally controls KATP channels on the plasma membrane. The two ATP-consuming enzymes of upper glycolysis, glucokinase and phosphofructokinase, generate ADP that activates KATP. Substrate channeling of fructose 1,6-bisphosphate through the enzymes of lower glycolysis fuels pyruvate kinase, which directly consumes the ADP made by phosphofructokinase to raise ATP/ADP and close the channel. We further show the presence of a plasma membrane-associated NAD+/NADH cycle whereby lactate dehydrogenase is functionally coupled to glyceraldehyde-3-phosphate dehydrogenase. These studies provide direct electrophysiological evidence of a KATP-controlling glycolytic signaling complex and demonstrate its relevance to islet glucose sensing and excitability.


Asunto(s)
Membrana Celular , Células Secretoras de Glucagón , Glucólisis , Células Secretoras de Insulina , Humanos , Animales , Ratones , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Canales KATP/metabolismo , Técnicas de Placa-Clamp , Electrofisiología , Membrana Celular/enzimología , Membrana Celular/metabolismo , Lactato Deshidrogenasas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Adenosina Difosfato/metabolismo , Fosfofructoquinasas/metabolismo
4.
Nature ; 607(7920): 823-830, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859174

RESUMEN

Filamentous enzymes have been found in all domains of life, but the advantage of filamentation is often elusive1. Some anaerobic, autotrophic bacteria have an unusual filamentous enzyme for CO2 fixation-hydrogen-dependent CO2 reductase (HDCR)2,3-which directly converts H2 and CO2 into formic acid. HDCR reduces CO2 with a higher activity than any other known biological or chemical catalyst4,5, and it has therefore gained considerable interest in two areas of global relevance: hydrogen storage and combating climate change by capturing atmospheric CO2. However, the mechanistic basis of the high catalytic turnover rate of HDCR has remained unknown. Here we use cryo-electron microscopy to reveal the structure of a short HDCR filament from the acetogenic bacterium Thermoanaerobacter kivui. The minimum repeating unit is a hexamer that consists of a formate dehydrogenase (FdhF) and two hydrogenases (HydA2) bound around a central core of hydrogenase Fe-S subunits, one HycB3 and two HycB4. These small bacterial polyferredoxin-like proteins oligomerize through their C-terminal helices to form the backbone of the filament. By combining structure-directed mutagenesis with enzymatic analysis, we show that filamentation and rapid electron transfer through the filament enhance the activity of HDCR. To investigate the structure of HDCR in situ, we imaged T. kivui cells with cryo-electron tomography and found that HDCR filaments bundle into large ring-shaped superstructures attached to the plasma membrane. This supramolecular organization may further enhance the stability and connectivity of HDCR to form a specialized metabolic subcompartment within the cell.


Asunto(s)
Dióxido de Carbono , Membrana Celular , Hidrógeno , Hidrogenasas , Nanocables , Dióxido de Carbono/metabolismo , Membrana Celular/enzimología , Microscopía por Crioelectrón , Estabilidad de Enzimas , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/genética , Hidrogenasas/metabolismo , Hidrogenasas/ultraestructura , Mutación , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Thermoanaerobacter/citología , Thermoanaerobacter/enzimología
5.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35140179

RESUMEN

S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.


Asunto(s)
Acilcoenzima A/química , Acilcoenzima A/metabolismo , Aciltransferasas/metabolismo , Aciltransferasas/genética , Dominio Catalítico , Membrana Celular/enzimología , Regulación Enzimológica de la Expresión Génica , Humanos , Lipoilación , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos
6.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163576

RESUMEN

Plant xyloglucan:xyloglucosyl transferases, known as xyloglucan endo-transglycosylases (XETs) are the key players that underlie plant cell wall dynamics and mechanics. These fundamental roles are central for the assembly and modifications of cell walls during embryogenesis, vegetative and reproductive growth, and adaptations to living environments under biotic and abiotic (environmental) stresses. XET enzymes (EC 2.4.1.207) have the ß-sandwich architecture and the ß-jelly-roll topology, and are classified in the glycoside hydrolase family 16 based on their evolutionary history. XET enzymes catalyse transglycosylation reactions with xyloglucan (XG)-derived and other than XG-derived donors and acceptors, and this poly-specificity originates from the structural plasticity and evolutionary diversification that has evolved through expansion and duplication. In phyletic groups, XETs form the gene families that are differentially expressed in organs and tissues in time- and space-dependent manners, and in response to environmental conditions. Here, we examine higher plant XET enzymes and dissect how their exclusively carbohydrate-linked transglycosylation catalytic function inter-connects complex plant cell wall components. Further, we discuss progress in technologies that advance the knowledge of plant cell walls and how this knowledge defines the roles of XETs. We construe that the broad specificity of the plant XETs underscores their roles in continuous cell wall restructuring and re-modelling.


Asunto(s)
Pared Celular/enzimología , Glucanos/metabolismo , Glicosiltransferasas/metabolismo , Células Vegetales/enzimología , Proteínas de Plantas/metabolismo , Plantas/enzimología , Xilanos/metabolismo , Membrana Celular/enzimología , Membrana Celular/genética , Pared Celular/genética , Glucanos/genética , Glicosilación , Glicosiltransferasas/genética , Proteínas de Plantas/genética , Plantas/genética , Especificidad por Sustrato , Xilanos/genética
7.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983849

RESUMEN

RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.


Asunto(s)
Membrana Celular/enzimología , Lípidos/química , Aprendizaje Automático , Simulación de Dinámica Molecular , Multimerización de Proteína , Proteínas Proto-Oncogénicas p21(ras)/química , Transducción de Señal , Humanos
8.
Front Immunol ; 12: 742292, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887854

RESUMEN

For a long time, proteins with enzymatic activity have not been usually considered to carry out other functions different from catalyzing chemical reactions within or outside the cell. Nevertheless, in the last few years several reports have uncovered the participation of numerous enzymes in other processes, placing them in the category of moonlighting proteins. Some moonlighting enzymes have been shown to participate in complex processes such as cell adhesion. Cell adhesion plays a physiological role in multiple processes: it enables cells to establish close contact with one another, allowing communication; it is a key step during cell migration; it is also involved in tightly binding neighboring cells in tissues, etc. Importantly, cell adhesion is also of great importance in pathophysiological scenarios like migration and metastasis establishment of cancer cells. Cell adhesion is strictly regulated through numerous switches: proteins, glycoproteins and other components of the cell membrane. Recently, several cell membrane enzymes have been reported to participate in distinct steps of the cell adhesion process. Here, we review a variety of examples of membrane bound enzymes participating in adhesion of immune cells.


Asunto(s)
Adhesión Celular/fisiología , Leucocitos/enzimología , 5'-Nucleotidasa/inmunología , 5'-Nucleotidasa/fisiología , Proteínas ADAM/inmunología , Proteínas ADAM/fisiología , ADP-Ribosil Ciclasa/inmunología , ADP-Ribosil Ciclasa/fisiología , ADP-Ribosil Ciclasa 1/inmunología , ADP-Ribosil Ciclasa 1/fisiología , Antígenos CD/inmunología , Antígenos CD/fisiología , Antígenos CD13/inmunología , Antígenos CD13/fisiología , Adhesión Celular/inmunología , Membrana Celular/enzimología , Membrana Celular/inmunología , Dipeptidil Peptidasa 4/inmunología , Dipeptidil Peptidasa 4/fisiología , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/fisiología , Humanos , Leucocitos/inmunología , Leucocitos/fisiología , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/fisiología , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/fisiología , Modelos Biológicos
9.
Cells ; 10(11)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34831146

RESUMEN

Significant expression of neprilysin (NEP) is found on neutrophils, which present the transmembrane integer form of the enzyme. This study aimed to investigate the relationship of neutrophil transmembrane neprilysin (mNEP) with disease severity, adverse remodeling, and outcome in HFrEF. In total, 228 HFrEF, 30 HFpEF patients, and 43 controls were enrolled. Neutrophil mNEP was measured by flow-cytometry. NEP activity in plasma and blood cells was determined for a subset of HFrEF patients using mass-spectrometry. Heart failure (HF) was characterized by reduced neutrophil mNEP compared to controls (p < 0.01). NEP activity on peripheral blood cells was almost 4-fold higher compared to plasma NEP activity (p = 0.031) and correlated with neutrophil mNEP (p = 0.006). Lower neutrophil mNEP was associated with increasing disease severity and markers of adverse remodeling. Higher neutrophil mNEP was associated with reduced risk for mortality, total cardiovascular hospitalizations, and the composite endpoint of both (p < 0.01 for all). This is the first report describing a significant role of neutrophil mNEP in HFrEF. The biological relevance of neutrophil mNEP and exact effects of angiotensin-converting-enzyme inhibitors (ARNi) at the neutrophil site have to be determined. However, the results may suggest early initiation of ARNi already in less severe HF disease, where effects of NEP inhibition may be more pronounced.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Neprilisina/metabolismo , Neutrófilos/enzimología , Anciano , Membrana Celular/enzimología , Estudios de Cohortes , Femenino , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Neprilisina/sangre , Factores de Riesgo , Volumen Sistólico , Factores de Tiempo , Remodelación Ventricular
10.
Nat Commun ; 12(1): 6439, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750373

RESUMEN

The S. cerevisiae plasma membrane H+-ATPase, Pma1, is a P3A-type ATPase and the primary protein component of the membrane compartment of Pma1 (MCP). Like other plasma membrane H+-ATPases, Pma1 assembles and functions as a hexamer, a property unique to this subfamily among the larger family of P-type ATPases. It has been unclear how Pma1 organizes the yeast membrane into MCP microdomains, or why it is that Pma1 needs to assemble into a hexamer to establish the membrane electrochemical proton gradient. Here we report a high-resolution cryo-EM study of native Pma1 hexamers embedded in endogenous lipids. Remarkably, we found that the Pma1 hexamer encircles a liquid-crystalline membrane domain composed of 57 ordered lipid molecules. The Pma1-encircled lipid patch structure likely serves as the building block of the MCP. At pH 7.4, the carboxyl-terminal regulatory α-helix binds to the phosphorylation domains of two neighboring Pma1 subunits, locking the hexamer in the autoinhibited state. The regulatory helix becomes disordered at lower pH, leading to activation of the Pma1 hexamer. The activation process is accompanied by a 6.7 Å downward shift and a 40° rotation of transmembrane helices 1 and 2 that line the proton translocation path. The conformational changes have enabled us to propose a detailed mechanism for ATP-hydrolysis-driven proton pumping across the plasma membrane. Our structures will facilitate the development of antifungal drugs that target this essential protein.


Asunto(s)
Membrana Celular/enzimología , Microdominios de Membrana/enzimología , ATPasas de Translocación de Protón/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Transporte Biológico/genética , Dominio Catalítico , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Activación Enzimática , Hidrólisis , Microdominios de Membrana/ultraestructura , Modelos Moleculares , Mutación , Conformación Proteica , Multimerización de Proteína , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Protones , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Nat Commun ; 12(1): 5963, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645814

RESUMEN

P4 ATPases are lipid flippases that are phylogenetically grouped into P4A, P4B and P4C clades. The P4A ATPases are heterodimers composed of a catalytic α-subunit and accessory ß-subunit, and the structures of several heterodimeric flippases have been reported. The S. cerevisiae Neo1 and its orthologs represent the P4B ATPases, which function as monomeric flippases without a ß-subunit. It has been unclear whether monomeric flippases retain the architecture and transport mechanism of the dimeric flippases. Here we report the structure of a P4B ATPase, Neo1, in its E1-ATP, E2P-transition, and E2P states. The structure reveals a conserved architecture as well as highly similar functional intermediate states relative to dimeric flippases. Consistently, structure-guided mutagenesis of residues in the proposed substrate translocation path disrupted Neo1's ability to establish membrane asymmetry. These observations indicate that evolutionarily distant P4 ATPases use a structurally conserved mechanism for substrate transport.


Asunto(s)
Adenosina Trifosfatasas/química , Lisofosfolípidos/química , Proteínas de Transporte de Membrana/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Membrana Celular/química , Membrana Celular/enzimología , Clonación Molecular , Microscopía por Crioelectrón , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Lisofosfolípidos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
12.
Nature ; 599(7884): 278-282, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707287

RESUMEN

The phytohormone auxin controls many processes in plants, at least in part through its regulation of cell expansion1. The acid growth hypothesis has been proposed to explain auxin-stimulated cell expansion for five decades, but the mechanism that underlies auxin-induced cell-wall acidification is poorly characterized. Auxin induces the phosphorylation and activation of the plasma membrane H+-ATPase that pumps protons into the apoplast2, yet how auxin activates its phosphorylation remains unclear. Here we show that the transmembrane kinase (TMK) auxin-signalling proteins interact with plasma membrane H+-ATPases, inducing their phosphorylation, and thereby promoting cell-wall acidification and hypocotyl cell elongation in Arabidopsis. Auxin induced interactions between TMKs and H+-ATPases in the plasma membrane within seconds, as well as TMK-dependent phosphorylation of the penultimate threonine residue on the H+-ATPases. Our genetic, biochemical and molecular evidence demonstrates that TMKs directly phosphorylate plasma membrane H+-ATPase and are required for auxin-induced H+-ATPase activation, apoplastic acidification and cell expansion. Thus, our findings reveal a crucial connection between auxin and plasma membrane H+-ATPase activation in regulating apoplastic pH changes and cell expansion through TMK-based cell surface auxin signalling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ácidos , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/enzimología , Activación Enzimática , Concentración de Iones de Hidrógeno , Hipocótilo/enzimología , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Proteínas de la Membrana/genética , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Protones , Treonina/metabolismo
13.
J Biol Chem ; 297(4): 101227, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34562451

RESUMEN

TMPRSS13, a member of the type II transmembrane serine protease (TTSP) family, harbors four N-linked glycosylation sites in its extracellular domain. Two of the glycosylated residues are located in the scavenger receptor cysteine-rich (SRCR) protein domain, while the remaining two sites are in the catalytic serine protease (SP) domain. In this study, we examined the role of N-linked glycosylation in the proteolytic activity, autoactivation, and cellular localization of TMPRSS13. Individual and combinatory site-directed mutagenesis of the glycosylated asparagine residues indicated that glycosylation of the SP domain is critical for TMPRSS13 autoactivation and catalytic activity toward one of its protein substrates, the prostasin zymogen. Additionally, SP domain glycosylation-deficient TMPRSS13 displayed impaired trafficking of TMPRSS13 to the cell surface, which correlated with increased retention in the endoplasmic reticulum. Importantly, we showed that N-linked glycosylation was a critical determinant for subsequent phosphorylation of endogenous TMPRSS13. Taken together, we conclude that glycosylation plays an important role in regulating TMPRSS13 activation and activity, phosphorylation, and cell surface localization.


Asunto(s)
Membrana Celular/enzimología , Precursores Enzimáticos/metabolismo , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Serina Endopeptidasas/metabolismo , Animales , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Precursores Enzimáticos/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Dominios Proteicos , Transporte de Proteínas/genética , Serina Endopeptidasas/genética
14.
Nat Commun ; 12(1): 5709, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588453

RESUMEN

The gastric H+,K+-ATPase mediates electroneutral exchange of 1H+/1K+ per ATP hydrolysed across the membrane. Previous structural analysis of the K+-occluded E2-P transition state of H+,K+-ATPase showed a single bound K+ at cation-binding site II, in marked contrast to the two K+ ions occluded at sites I and II of the closely-related Na+,K+-ATPase which mediates electrogenic 3Na+/2K+ translocation across the membrane. The molecular basis of the different K+ stoichiometry between these K+-counter-transporting pumps is elusive. We show a series of crystal structures and a cryo-EM structure of H+,K+-ATPase mutants with changes in the vicinity of site I, based on the structure of the sodium pump. Our step-wise and tailored construction of the mutants finally gave a two-K+ bound H+,K+-ATPase, achieved by five mutations, including amino acids directly coordinating K+ (Lys791Ser, Glu820Asp), indirectly contributing to cation-binding site formation (Tyr340Asn, Glu936Val), and allosterically stabilizing K+-occluded conformation (Tyr799Trp). This quintuple mutant in the K+-occluded E2-P state unambiguously shows two separate densities at the cation-binding site in its 2.6 Å resolution cryo-EM structure. These results offer new insights into how two closely-related cation pumps specify the number of K+ accommodated at their cation-binding site.


Asunto(s)
Mucosa Gástrica/enzimología , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Potasio/metabolismo , Sitios de Unión/genética , Cationes Monovalentes/metabolismo , Membrana Celular/enzimología , Microscopía por Crioelectrón , Cristalización , Pruebas de Enzimas , Mucosa Gástrica/citología , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , ATPasa Intercambiadora de Hidrógeno-Potásio/aislamiento & purificación , ATPasa Intercambiadora de Hidrógeno-Potásio/ultraestructura , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Ingeniería de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Especificidad por Sustrato/genética
15.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575984

RESUMEN

Membrane-bound inorganic pyrophosphatase (mPPase) resembles the F-ATPase in catalyzing polyphosphate-energized H+ and Na+ transport across lipid membranes, but differs structurally and mechanistically. Homodimeric mPPase likely uses a "direct coupling" mechanism, in which the proton generated from the water nucleophile at the entrance to the ion conductance channel is transported across the membrane or triggers Na+ transport. The structural aspects of this mechanism, including subunit cooperation, are still poorly understood. Using a refined enzyme assay, we examined the inhibition of K+-dependent H+-transporting mPPase from Desulfitobacterium hafniensee by three non-hydrolyzable PPi analogs (imidodiphosphate and C-substituted bisphosphonates). The kinetic data demonstrated negative cooperativity in inhibitor binding to two active sites, and reduced active site performance when the inhibitor or substrate occupied the other active site. The nonequivalence of active sites in PPi hydrolysis in terms of the Michaelis constant vanished at a low (0.1 mM) concentration of Mg2+ (essential cofactor). The replacement of K+, the second metal cofactor, by Na+ increased the substrate and inhibitor binding cooperativity. The detergent-solubilized form of mPPase exhibited similar active site nonequivalence in PPi hydrolysis. Our findings support the notion that the mPPase mechanism combines Mitchell's direct coupling with conformational coupling to catalyze cation transport across the membrane.


Asunto(s)
Catálisis , Difosfatos/química , Pirofosfatasa Inorgánica/química , Canales Iónicos/química , Membrana Celular/enzimología , Dimerización , Hidrólisis , Canales Iónicos/genética , Transporte Iónico/genética , Cinética , Potasio/química , Protones , Pirofosfatasas
16.
Elife ; 102021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34543184

RESUMEN

Synaptotagmin 7 (SYT7) has emerged as a key regulator of presynaptic function, but its localization and precise role in the synaptic vesicle cycle remain the subject of debate. Here, we used iGluSnFR to optically interrogate glutamate release, at the single-bouton level, in SYT7KO-dissociated mouse hippocampal neurons. We analyzed asynchronous release, paired-pulse facilitation, and synaptic vesicle replenishment and found that SYT7 contributes to each of these processes to different degrees. 'Zap-and-freeze' electron microscopy revealed that a loss of SYT7 diminishes docking of synaptic vesicles after a stimulus and inhibits the recovery of depleted synaptic vesicles after a stimulus train. SYT7 supports these functions from the axonal plasma membrane, where its localization and stability require both γ-secretase-mediated cleavage and palmitoylation. In summary, SYT7 is a peripheral membrane protein that controls multiple modes of synaptic vesicle (SV) exocytosis and plasticity, in part, through enhancing activity-dependent docking of SVs.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Axones/enzimología , Membrana Celular/enzimología , Hipocampo/enzimología , Vesículas Sinápticas/enzimología , Sinaptotagminas/metabolismo , Animales , Axones/ultraestructura , Membrana Celular/ultraestructura , Células Cultivadas , Exocitosis , Hipocampo/ultraestructura , Lipoilación , Ratones Noqueados , Simulación del Acoplamiento Molecular , Plasticidad Neuronal , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteolisis , Ratas Sprague-Dawley , Transmisión Sináptica , Vesículas Sinápticas/ultraestructura , Sinaptotagminas/genética , Factores de Tiempo
17.
J Cell Biochem ; 122(12): 1903-1914, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34553411

RESUMEN

Cardiac glycosides, such as digoxin and digitoxin, are compounds that interact with Na+ /K+ -ATPase to induce anti-neoplastic effects; however, these cardiac glycosides have narrow therapeutic index. Thus, semi-synthetic analogs of digitoxin with modifications in the sugar moiety has been shown to be an interesting approach to obtain more selective and more effective analogs than the parent natural product. Therefore, the aim of this study was to assess the cytotoxic potential of novel digitoxigenin derivatives, digitoxigenin-α-L-rhamno-pyranoside (1) and digitoxigenin-α-L-amiceto-pyranoside (2), in cervical carcinoma cells (HeLa) and human diploid lung fibroblasts (Wi-26-VA4). In addition, we studied the anticancer mechanisms of action of these compounds by comparing its cytotoxic effects with the potential to modulate the activity of three P-type ATPases; Na+ /K+ -ATPase, sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA), and plasma membrane Ca2+ -ATPase (PMCA). Briefly, the results showed that compounds 1 and 2 were more cytotoxic and selectivity for HeLa tumor cells than the nontumor cells Wi-26-VA4. While the anticancer cytotoxicity in HeLa cells involves the modulation of Na+ /K+ -ATPase, PMCA and SERCA, the modulation of these P-type ATPases was completely absent in Wi-26-VA4 cells, which suggest the importance of their role in the cytotoxic effect of compounds 1 and 2 in HeLa cells. Furthermore, the compound 2 inhibited directly erythrocyte ghosts PMCA and both compounds were more cytotoxic than digitoxin in HeLa cells. These results provide a better understanding of the mode of action of the synthetic cardiac glycosides and highlights 1 and 2 as potential anticancer agents.


Asunto(s)
Membrana Celular/enzimología , Digitoxigenina , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Membrana Celular/genética , Digitoxigenina/análogos & derivados , Digitoxigenina/farmacología , Células HeLa , Humanos , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasa Intercambiadora de Sodio-Potasio/genética
18.
Cells ; 10(8)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34440712

RESUMEN

Fatty acids are important biological components, yet the metabolism of fatty acids in microalgae is not clearly understood. Previous studies found that Chlamydomonas reinhardtii, the model microalga, incorporates exogenously added fatty acids but metabolizes them differently from animals and yeast. Furthermore, a recent metabolic flux analysis found that the majority of lipid turnover in C. reinhardtii is the recycling of acyl chains from and to membranes, rather than ß -oxidation. This indicates that for the alga, the maintenance of existing acyl chains may be more valuable than their breakdown for energy. To gain cell-biological knowledge of fatty acid metabolism in C. reinhardtii, we conducted microscopy analysis with fluorescent probes. First, we found that CAT1 (catalase isoform 1) is in the peroxisomes while CAT2 (catalase isoform 2) is localized in the endoplasmic reticulum, indicating the alga is capable of detoxifying hydrogen peroxide that would be produced during ß-oxidation in the peroxisomes. Second, we compared the localization of exogenously added FL-C16 (fluorescently labelled palmitic acid) with fluorescently marked endosomes, mitochondria, peroxisomes, lysosomes, and lipid droplets. We found that exogenously added FL-C16 are incorporated and compartmentalized via a non-endocytic route within 10 min. However, the fluorescence signals from FL-C16 did not colocalize with any marked organelles, including peroxisomes. During triacylglycerol accumulation, the fluorescence signals from FL-C16 were localized in lipid droplets. These results support the idea that membrane turnover is favored over ß-oxidation in C. reinhardtii. The knowledge gained in these analyses would aid further studies of the fatty acid metabolism.


Asunto(s)
Catalasa/metabolismo , Membrana Celular/enzimología , Chlamydomonas reinhardtii/enzimología , Retículo Endoplásmico/enzimología , Gotas Lipídicas/metabolismo , Ácido Palmítico/metabolismo , Peroxisomas/enzimología , Proteínas de Plantas/metabolismo , Catalasa/genética , Membrana Celular/genética , Chlamydomonas reinhardtii/genética , Peróxido de Hidrógeno/metabolismo , Isoenzimas , Microscopía Fluorescente , Oxidación-Reducción , Proteínas de Plantas/genética , Factores de Tiempo
19.
Int J Biol Macromol ; 187: 867-879, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34339786

RESUMEN

The wall-associated kinases (WAKs) and WAK-like kinases (WAKLs) form a group of receptor-like kinases (RLKs) with extracellular domains tightly linked to the cell wall. The WAKs/WAKLs have been known to be involved in plant growth, development, and stress responses. However, the functions of WAKs/WAKLs are less well known in cotton. In this study, 58, 66, and 99 WAK/WAKL genes were identified in Gossypium arboreum, G. raimondii, and G. hirsutum, respectively. Phylogenetic analysis showed they were classified into five groups, with two groups specific to cotton. Collinearity analysis revealed that segmental and tandem duplications resulted in expansion of the WAK/WAKL gene family in cotton. Moreover, the Ka/Ks ratios indicated this family was exposed to purifying selection pressure during evolution. The structures of the GhWAK/WAKL genes and encoded proteins suggested the functions of WAKs/WAKLs in cotton were conserved. Transient expression of four WAK/WAKL-GFP fusion constructs in Arabidopsis protoplasts indicated that they were localized on the plasma membrane. The cis-elements in the GhWAK/WAKL promoters were responsive to multiple phytohormones and abiotic stresses. Expression profiling showed that GhWAK/WAKL genes were induced by various abiotic stresses. This study provides insights into the evolution of WAK/WAKL genes and presents fundamental information for further analysis in cotton.


Asunto(s)
Membrana Celular/enzimología , Pared Celular/enzimología , Gossypium/enzimología , Proteínas Quinasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Membrana Celular/genética , Pared Celular/genética , Bases de Datos Genéticas , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Filogenia , Proteínas Quinasas/genética , Estrés Fisiológico , Transcriptoma
20.
Molecules ; 26(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34443697

RESUMEN

There is an urgent need to find new antibacterial agents to combat bacterial infections, including agents that inhibit novel, hitherto unexploited targets in bacterial cells. Amongst novel targets are two-component signal transduction systems (TCSs) which are the main mechanism by which bacteria sense and respond to environmental changes. TCSs typically comprise a membrane-embedded sensory protein (the sensor histidine kinase, SHK) and a partner response regulator protein. Amongst promising targets within SHKs are those involved in environmental signal detection (useful for targeting specific SHKs) and the common themes of signal transmission across the membrane and propagation to catalytic domains (for targeting multiple SHKs). However, the nature of environmental signals for the vast majority of SHKs is still lacking, and there is a paucity of structural information based on full-length membrane-bound SHKs with and without ligand. Reasons for this lack of knowledge lie in the technical challenges associated with investigations of these relatively hydrophobic membrane proteins and the inherent flexibility of these multidomain proteins that reduces the chances of successful crystallisation for structural determination by X-ray crystallography. However, in recent years there has been an explosion of information published on (a) methodology for producing active forms of full-length detergent-, liposome- and nanodisc-solubilised membrane SHKs and their use in structural studies and identification of signalling ligands and inhibitors; and (b) mechanisms of signal sensing and transduction across the membrane obtained using sensory and transmembrane domains in isolation, which reveal some commonalities as well as unique features. Here we review the most recent advances in these areas and highlight those of potential use in future strategies for antibiotic discovery. This Review is part of a Special Issue entitled "Interactions of Bacterial Molecules with Their Ligands and Other Chemical Agents" edited by Mary K. Phillips-Jones.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/enzimología , Descubrimiento de Drogas , Histidina Quinasa/química , Histidina Quinasa/metabolismo , Transducción de Señal , Ligandos , Dominios Proteicos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA